
Journal of Uncertain Systems
Vol.13, No.3, pp.167-170, 2019

Online at: www.jus.org.uk

Smaller Standard Deviation for Initial Weights Improves

Performance of Classifying Neural Networks: A Theoretical

Explanation of Unexpected Simulation Results

Diego Aguirre, Philip Hassoun, Rafael Lopez, Crystal Serrano
Marcoantonio R. Soto, Andrea Torres, Vladik Kreinovich∗

Department of Computer Science, University of Texas at El Paso, 500 W. University

El Paso, Texas 79968, USA

Received 12 April 2019; Revised 7 May 2019

Abstract

Numerical experiments show that for classifying neural networks, it is beneficial to select a smaller
deviation for initial weights than what is usually recommended. In this paper, we provide a theoretical
explanation for these unexpected simulation results.
c©2019 World Academic Press, UK. All rights reserved.

Keywords: Keywords: deep learning, neural networks, classification problems

1 Formulation of the Problem

Classifying neural networks: a brief reminder. In deep learning [2], a neural network that classifies
into C classes works as follows:

• Computations start with the values x1, . . . , xv describing the object that we need to classify. These

values are the input signals for the first layer: si,1 = xi for i = 1, . . . , n0
def
= v.

• On each layer `, input signals s1,`, . . . , sn`−1,` to this layer get transformed into outputs

si,`+1 = max

n`−1∑
j=1

w
(`)
i,j · sj,` − w

(`)
i,0 , 0

 ,

where w
(`)
i,j are appropriate weights, and n` denotes the number of neurons in the `-th layer.

• These outputs serve as inputs to the next layer `+ 1.

We do this until we reach the last layer L, where we use softmax; namely:

• based on C neural outputs zi = si,L,

• we compute the probability pi of being in a i-th class as

pi =
exp(β · zi)

C∑
j=1

exp(β · zj)

for some β > 0.

∗Corresponding author.
Emails: daguirre6@utep.edu (D. Aguirre), pchassoun@miners.utep.edu (P. Hassoun), relopez6@miners.utep.edu (R.

Lopez), cserrano5@miners.utep.edu (C. Serrano), mrsoto3@miners.utep.edu (M.R. Soto), aftorres@miners.utep.edu (A. Torres),
vladik@utep.edu (V. Kreinovich).



168 D. Aguirre et al.: Smaller Standard Deviation for Initial Weights Improves Performance

Selecting initial weights is important. We have several objects for which the know the correspond-

ing classification c(k). Each of these objects is characterized by the numerical values x
(k)
1 , . . . , x

(k)
v of the

corresponding quantities.

Training a neural network means selecting the weights w
(`)
i,j for which the classification produced by the

neural network is, in some reasonable sense, the closest to the actual classification c(k).

To perform this training, we start with some initial values of all these weights w
(`)
i,j , and then we iteratively

update them until we get a good match. How fast the network learns depends on how well we selected the
initial weights.

If the initial weights are too far from the actual ones, training takes much longer.

How initial weights are selected now. According to the current recommendations [3], weights should be
selected layer-by-layer, starting with the input layer.

• For each neuron i in the currently considered layer `, we start with weights r
(`)
i,j uniformly distributed

on some interval [−Z,Z].

• Then, we apply Gram-Schmidt orthonormalization to the vectors

r
(`)
i =

(
r
(`)
i,1 , · · · , r

(`)
i,n`−1

, r
(`)
i,0

)
.

Specifically, sequentially, for i = 1, . . . , n`, we compute the new vectors

w̃
(`)
i =

r
(`)
i −

i−1∑
j=1

(
r
(`)
i , w̃

(`)
j

)
∥∥∥∥∥r(`)i −

i−1∑
j=1

(
r
(`)
i , w̃

(`)
j

)∥∥∥∥∥
,

where, as usual, (a, b)
def
=
∑
j

aj · bj and ‖a‖ def
=
√∑

j

a2j .

• Then, we preliminarily select the weights w̃
(`)
i for neurons from this layer, and use the already selected

weights for the neurons from the previous layers.

• For each neuron i from the currently analyzed `-th layer, we select a small sample of size K (where K
is a pre-selected number) from the list of all available input patterns. For each pattern(

x
(k)
1 , · · · , x(k)v

)
from the selected sample, we perform the neural network computations up to this layer, and get the
outputs si,`+1(k) of this neuron. We then compute the standard deviation σi,`+1 of the resulting K
values by using the usual statistical formulas:

si,`+1 =
1

K
·

K∑
k=1

si,`+1(k)

and

σi,`+1 =

√√√√ 1

K − 1
·

K∑
k=1

(si,`+1(k)− si,`+1)
2
.

After this, we select the re-scaled values

w
(`)
i,` =

w̃
(`)
i

σi,`+1

as the initial values of the weights of the `-th layer.



Journal of Uncertain Systems, Vol.13, No.3, pp.167-170, 2019 169

One can check that if we use these weights for the `-th layer, then for each neuron i on this layer, the standard
deviation of the K signals coming from this neuron will be equal to σ0 = 1.

Then we freeze these weights and go to the next layer.
To select the weights from the last (linear) layer, we try our best to match the results with the desired

outputs.

Empirical observation that needs explaining. One of us (DA) tried to use σ0 < 1 in the above algorithm.

Specifically, at each layer, at the last step, instead of the weights w̃
(`)
i /σi,`+1, we selected somewhat different

initial weights

W
(`)
i,` = σ0 ·

w̃
(`)
i

σi,`+1
.

On several classification examples, he got much better results for σ0 = 0.5 than for the usually recom-
mended value σ0 = 1. Once he got this result, he tried even smaller values σ0 = 0.4 and σ0 = 0.3. In turns
out, surprisingly, that the smaller σ0, the better the results.

What we do in this paper. In this paper, we provide a theoretical explanation for this unexpected empirical
result.

Comment. This explanation was first announced in [1].

2 Analysis of the Problem

If we use σ0 < 1, then on the first layer, instead of the original initial weights w
(`)
i,j , we get new weights

W
(`)
i,j = σ0 ·w(`)

i,j . Then, with the same weights on other layers, we get standard deviation σ0 on each of them.
After L layers, we get new signals Zi = σ0 · zi.

3 Our Explanation

Until we get to the last layer, we do not use the actual output. So we do now know the actual probabilities
q1, . . . , qC of different classes. It is therefore reasonable to select the initial weights so that:

• the resulting probabilities pi

• are, on average, as close to the actual (unknown) probabilities qi as possible.

The closeness can be described:

• either by the Euclidean distance

‖p− q‖2 =
∑
i

(pi − qi)2 → min,

• or by any other strictly convex function C(p, q) of p, e.g., by relative entropy.

So, we minimize the expected value
∫
C(p, q) · ρ(q) dq.

At this stage, we do not have any information about the probabilities of different classes. So, it is reasonable
to assume that this criterion does not change if we simply re-order the classes.

Since the function C(p, q) is convex, there is only one vector p for which this minimum is attained; see,
e.g., [4]. Thus, the optimal tuple p should also be invariant under such re-ordering, i.e., pi = pj for all i and
j. Hence, in the optimal case, we get pi = 1/C for all i.

The use of σ0 < 1 places all zi closer to 0. Thus, the corresponding softmax values pi are closer to the
optimal values 1/C. This explains why the results of using σ0 < 1 are better.

There is a minor difference between zi and 0 – and thus, between pi and the optimal values 1/C. The
smaller σ0, the smaller this difference.

This explains why the smaller σ0, the better the results.



170 D. Aguirre et al.: Smaller Standard Deviation for Initial Weights Improves Performance

Comment. It should be mentioned that while decreasing σ0 to a smaller positive number makes the classifi-
cation faster, we cannot decrease this value all the way to σ0 = 0. Indeed, in this case, all the weights will
be 0, so the weights for all the neurons in each layer will be the same. Since the training is a deterministic
process, the weights of all the neurons in each layer will be updated in exactly the same way – thus, all the
neurons in each layer will remain identical. In particular, we will have identical signals zi at the last layer –
and thus, such network will always assign equal probabilities 1/C to each of C classes.

Acknowledgments

This work was partially supported by the US National Science Foundation via grants 1623190 (A Model of
Change for Preparing a New Generation for Professional Practice in Computer Science) and HRD-1242122
(Cyber-ShARE Center of Excellence).

References

[1] Aguirre, D., Hassoun, P., Lopez, R., Serrano, C., Soto, M.R., Torres, A., and V. Kreinovich, Smaller standard
deviation for initial weights improves neural networks performance: a theoretical explanation of unexpected sim-
ulation results, Abstracts of the 23rd Joint UTEP/NMSU Workshop on Mathematics, Computer Science, and
Computational Sciences, El Paso, Texas, November 3, 2018.

[2] Goodfellow, I., Bengio, Y., and A. Courville, Deep Leaning, MIT Press, Cambridge, Massachusetts, 2016.

[3] Mishkin, D., and J. Matas, All you need is a good init, Tetrahedron, vol.69, no.14, pp.3013–3018, 2015.

[4] Rockafeller, R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1997.


	jus-13-3-1.pdf
	Formulation of the Problem
	Why Matrix Factorization: Our Explanation

	jus-13-3-2.pdf
	Formulation of the Problem
	Analysis of the Problem
	Our Explanation

	jus-13-3-3.pdf
	Common Sense Addition
	Towards Precise Formulation of the Problem
	Hurwicz Optimism-Pessimism Criterion: Reminder
	Analysis of the Problem and the Resulting Explanation of Common Sense Addition

	jus-13-3-4.pdf
	Formulation of the Problem
	Systems-Based Analysis of the Problem and the Resulting Explanation of the Reversed Flynn Effect
	Maybe the Same Idea can Explain the Observed Increase in Universe's Expansion Rate: A Speculative Observation

	jus-13-3-5.pdf
	EPR Paradox: A Brief Reminder
	EPR Paradox: Bohr's Explanation
	Towards a More Adequate Description of a Quantum State

	jus-13-3-6.pdf
	Formulation of the Problem
	80/20 Rule: Reminder
	7 Plus Minus 2 Law
	How These Two Laws Explain the 3.5% Rule

	jus-13-3-7.pdf
	Buying and Selling Prices are Different: A Phenomenon and Its Current Quantitative Explanations
	Qualitative Explanation

	jus-13-3-8.pdf
	Formulation of the Problem
	Main Result: Scale Invariance Explains Quadratic Damping

	jus-13-3-9.pdf
	Formulation of the Problem
	Conference Organization: General Advice

	jus-13-3-10.pdf
	Before the Study Process
	During the Study Process
	After the Study Process
	General Ideas

	jus-13-3-11.pdf
	Formulation of a Problem
	Relation to Nuclear Stability

	jus-13-3-12.pdf
	Formulation of the Problem
	General Invariances
	First Attempt: Let Us Directly Apply Invariance Ideas to Our Problem
	Let Us Now Apply Invariance Ideas Indirectly

	jus-13-3-13.pdf
	Formulation of the Problem
	Our Explanation

	jus-13-3-14.pdf
	Need to Consider Multiple Scenarios: Theoretical Explanation of an Empirical Observation
	Using Experts: Theoretical Explanation of an Empirical Observation
	Why Should We Play Down Emotions: A Theoretical Explanation

	jus-13-3-15.pdf
	Formulation of the Problem
	Towards a Formulation of the Problem in Precise Terms
	Main Result

	jus-13-3-16.pdf
	Formulation of the Problem
	Seven Plus Minus Two Law: A Brief Reminder
	Why 90, 80, 70, etc.: An Explanation

	jus-13-3-17.pdf
	Formulation of the Problem
	Our Idea

	jus-13-3-18.pdf
	Introduction
	Problem Description
	Modeling and Solving
	Integrated Scenario
	Manufacturer-Dominant Scenario
	Retailer-Dominant Scenario
	Nash Game Scenario

	Numerical Experiment
	The Effect of Government Subsidy
	The Effect of the Uncertain Degree of 
	The Effect of the Uncertain Degree of c

	Conclusion




