- ACADEM]C Journal of Uncertain Systems

Vol.13, No.2, pp.151-160, 2019
H™ \orid Academic Union © . 0-% PP .
Online at: www.jus.org.uk

A Weak Contraction in a Fuzzy Metric Space

P. Saha, Binayak S. Choudhury, Pradyut Das*

Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur
B. Garden, Shibpur, Howrah - 711103, West Bengal, India

Received 6 December 2017; Revised 25 October 2018

Abstract

In this work our aim is to establish a weakened version of a contraction mapping principle in a fuzzy
metric space with a partial ordering. The weak contraction is primarily considered on specific chains.
When it is considered on the whole space it generalizes a fuzzy contraction mapping theorem. The result
is supported with an example.
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1 Introduction and Preliminaries

The purpose of this paper is to generalize a fuzzy Banach contraction mapping principle to coincidence point
and common fixed point results in a fuzzy metric space with a partial order. In the sequel we prove a weak
contraction mapping theorem by way of weakening the contraction. Fuzzy metric space has been defined in
a number of ways. It is the inherent flexibility of fuzzy concepts that makes possible the fuzzification of the
notion of metric spaces in more than one inequivalent ways.

In particular, a notion of a fuzzy metric space was introduced by Kramosil and Michalek [22]. George
and Veeramani modified the definition of Kramosil and Michalek for topological reasons [I4]. They proved
that the topology induced by such a fuzzy metric space, is a Hausdorff topology. Actually, such a topology is
metrizable as one can find, for instance, in [12, Theorem 1]. There are several fixed point results established
in this fuzzy metric space. Some instances of these works are in [6} [1T], 15 16, 17, 25 B2], 39, 41 42, 43].
Fuzzy fixed results are more versatile than the regular metric fixed point results. This is due to the flexibility
which the fuzzy concepts inherently posses. For example, Banach’s contraction mapping principle has been
extended in fuzzy metric spaces in two inequivalent ways in [I5] [I7]. Today fuzzy fixed theory has a developed
literature and can be regraded as subject in its own right.

Attempts for generalizing the Banach’s contraction mapping principle had been therefor a long period of
time. Still today it remains an active branch of fixed point theory. The works noted in [2, [3, 13| 24, B7]
are some references from this area of research. One such generalization is the weak contraction principle
which was first introduced by Alber et al [I] in Hilbert spaces and later adapted to complete metric spaces
by Rhoades [29]. A weak contraction mapping is intermediate to a contraction mapping and a nonexpansive
mapping. Later on, several authors created a number of results using weak inequalities, that is, the inequalities
of the type used in [4} [7, O] 10, [12], 19]. These results are fixed and coincidence point results some of which
further generalize the weak contraction while others are independent results. Fixed point theory in partially
ordered metric spaces is of relatively recent origin. An early result in this direction is due to Turinici [38]
in which fixed point problems were studied in partially ordered uniform spaces. Later, this branch of fixed
point theory has developed through a number of works included in which are some results involving weak
contractive inequalities. Some instances of these works are in references [8], 26, 27] 28]. Weak contraction in
partially ordered metric spaces was studied amongst others by Harjani et al [I9] and Sauco et al [35].
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One reason for considering partially ordered metric space in fixed point theory of contractive mappings is
that the contraction condition is restricted only to pairs of points which are connected by the order relation.
In fact it has been observed in the proofs of several fixed point theorems including that of Banach’s contraction
mapping principle that the assumed contraction inequality is not required to be satisfied for arbitrary pairs
of points from the metric space. Thus it is possible to restrict the set of pairs of points appropriately for the
above purpose. The introduction of partial order does the job. There is also an alternative approach for the
same purpose which is by use of admissibility conditions [34]. We do not consider this approach here.

The same fact described above was also perceived in the fuzzy fixed point theory as well. This has resulted
into several fixed point related results in partially ordered fuzzy metric spaces. Some instances of these works
are [0l 311, [33], 40].

Our work is motivated by the above considerations. Putting the above mentioned concepts together we
establish a weak contraction mapping principle in the framework of fuzzy metric spaces with a partial order
defined on it in which the weak contraction condition is assumed only for pairs of points connected by the
partial order relation. The weak inequality is postulated by using two control functions. In metric spaces
there are several uses of control functions in similar results [ [0, [[3]. Compared with these results, in the
present work control functions need to satisfy some different conditions which are suitable for fuzzy metric
spaces. These conditions are instrumental in the proof of the main result obtained here.

Definition 1.1 ([I8, 36]). A binary operation * : [0,1]> — [0,1] is called a continuous t— norm if the
following properties are satisfied :

(i) * is associative and commutative,

(ii) ax 1 =a for all a € [0,1],

(iii) @ * b < ¢ * d whenever a < ¢ and b < d, for all a,b,c,d € [0,1].

Some examples of continuous t— norm are a *; b = min{a, b}, a 2 b = ab and a *3 b = max{a+b—1,0}.
Several aspects of the theory of t— norms with examples are given comprehensively by Klement al. in their
book [21].

George and Veeramani in their paper [14] introduced the following definition of fuzzy metric space. We
will be concerned only with this definition of fuzzy metric space.

Definition 1.2([14]) The 3— tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary non- empty
set, * is a continuous t— norm and M is a fuzzy set on X2 x (0, 00) satisfying the following conditions for all
z,y,z € X and s,t > 0:

(i) M(z,y,t) >0,

(ii) M(z,y,t) =1 if and only if x =y,

(ili) M(z,y,t) = M(y,z,1),

(iv) M(z,y,t) « M(y,z,8) < M(x,z,t+ s).

Definition 1.3([I4]) Let (X, M,*) be a fuzzy metric space. For ¢ > 0 and 0 < r < 1, the open ball
B(z,t,r) with center € X and radius r is defined by B(z,¢,7) = {y € X : M(z,y,t) > 1 —r}. A subset
A C X is called open if for each x € A, there exists t > 0 and 0 < r < 1, such that B(x,t,r) C A. Let 7
denote the family of all open subsets of X. Then 7 is a topology and is called the topology on X induced by
the fuzzy metric M. This topology is metrizable as we indicated above.

Example 1.4([14]) Let X be the set of all real numbers and d be the Euclidean metric on X. Let a % b =
min{a, b} for all a,b € [0,1]. For each ¢t > 0 and z,y € X, let M (z,y,t) =t/(t + d(z,y)). Then (X, M, «) is a
fuzzy metric space.

Example 1.5 Let (X,d) be a metric space and ¢ be an increasing and continuous function of (0,00) into
(0,1] such that tlim 1(t) = 1. Three typical examples of these functions are
—00

t
Yit) = et
v() = sin (2t2—&t—1)
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and
P(t)=(1—e™).

Let * be any continuous t— norm. For each t > 0 and z,y € X, let M (z,y,t) = ¥ (t)*®¥). Then (X, M, *) is
a fuzzy metric space.

Definition 1.6([I4]) Let (X, M, %) be a fuzzy metric space.
(i) A sequence {z,} in X is said to be convergent to a point € X iff lim M (z,,z,t) =1 for all £ > 0.
n— oo

(ii) A sequence {z,} in X is called a Cauchy sequence iff for each € satisfying 0 < € < 1 and each ¢ > 0, there
exists a positive integer ng such that M(x,, m,,t) > 1 — € for all n,m > nyg.
(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be a complete fuzzy metric
space.

The following lemma was proved by Grabiec[10] for fuzzy metric spaces defined by Kramosil et al. The
proof is also applicable to the fuzzy metric space given in Definition 1.2.

Lemma 1.7 ([15]) Let (X, M, %) be a fuzzy metric space. Then M(x,y,.) is non decreasing for all z,y € X.

Lemma 1.8 (Lépez and Romaguera [23]) M is continuous function on X2 x (0, 00).

Let (X, <) be a partially ordered set. A mapping f: X — X is said to be monotone increasing if for any
1,22 € X, 21 = xo implies fx1 < fxo.

Orbit of a function f : X — X at the point € X is the set {z, fz, f2x, f3z,..., f"z,...} where f"x is
the n-th iterate of f.

Definition 1.9 Let (X, M, %) be a complete fuzzy metric space. Let C be a subset of X. Let f: C — C be a
self mapping which satisfies the following inequality:

¢(M(f$,fyvt)) < ¢(M($ay7t)) - QS(M('rvyvt)) (11)

where z,y € X,t > 0 and ¢, ¢ : (0,1] — [0, 00) are two functions such that
(¢) v is continuous and monotone decreasing with ¢ (t) = 0 if and only if t = 1,
(#3) ¢ is lower semi continuous with ¢(s) = 0 if and only if s = 1.
Then f is called a weak contraction on C.
The following two lemmas were established in [33]. We use them for deriving our main results in the next
section.
Lemma 1.10 ([33]) If * is a continuous t-norm, and {ay,}, {8} and {y,} are sequences such that «,, = «,
Yn = 7 as n — 00, then
Lim (o % Bg % ) = a* Lm By *y
k—o0 k—o0
and
lim (ag * B *vk) = ax lim B * 7.

k—o0 k—o0

Lemma 1.11 ([33]) Let {f(k,.) : (0,00) — (0,1],k = 0,1,2,...} be a sequence of functions such that f(k,.)
is continuous and monotone increasing for each £ > 0. Then klim f(k,t) is a left continuous function in t and
—00

lim f(k,t) is a right continuous function in t.
k— o0

2 Main Results

Theorem 2.1 Let (X, <) be a partially ordered set and (X, M, ) be a complete fuzzy metric space which has
the property that whenever {z,} is a monotone increasing sequence in X converging to a point z, it follows
that z,, < z for all n. Let f: X — X be a mapping with the monotone property on X. Let there exist zg € X
such that xg < fxzo. Then the orbit O(zo, f) is a chain with z( as the least element. If f is weakly contractive
on every chain containing O(zg, f) with xg as the least element, then f has a fixed point.

Proof. Let zyp € X and {z,} be the sequence defined by z,11 = fx, = f"x9, n > 1. Since f has monotone
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property on X, by the fact that o < fxo = x1, it follows that =1 = fxg X fr; = x2. Repeating the above
process we have that

To XX 2T =X Xy R pgr (2.1)

Then O(f,x0) is a chain with x as the least element and, therefore, by a condition of our theorem, f is weakly
contractive on O(f, zg).

Putting = x,—1 and y = x,, in (1.1) we obtain, for all n > 1,¢ > 0,
V(M (fxn-1, fen,t) <P(M(xp_1,2n,t) — (M (xp_1,Tn,t)),
that is,
V(M (T, Tny1,t) <YM (2p—1, Tn,t) — (M (Xp—1,Tn,t)). (2.2)
From the above inequality, for all n > 1,¢ > 0,
V(M (2, Tnir,t) <YM (2n-1, T, 1)
which, by the monotone decreasing property of 1, implies that for all n > 1,¢ > 0,
M (xp, Tpy1,t) > M(xp_1,Zn,t),

that is, {M (z,,zn+1,t)} is a monotone increasing sequence in X. This sequence being bounded above by 1,
for every choice of t > 0, there exists a(t) such that

lim M(xn, Tpi1,t) = alt) < 1. (2.3)

n—oo

Now taking n — oo in (2.2) we obtain, for all ¢ > 0,v¢(a(t)) < ¥(a(t)) — ¢(a(t)), which is a contradiction
unless a(t) = 1, for all ¢t > 0.
Thus we conclude that for all ¢ > 0,

lim M (@, zpi1,t) = 1. (2.4)

n—oo

Next we suppose, if possible, that {x,} is not a Cauchy sequence in X. Then there exists some e > 0 and
some \ with 0 < A < 1, for which we can find two subsequences {2, )} and {,, )} of {z,} with

n(k) > m(k) >k (2.5)
such that
M(Zm(kys Tngrys€) < (1= A) (2.6)

for all positive integer k.
We may choose the n(k) as the smallest integer exceeding m(k) for which (2.6) holds. Then, for all positive
integer k,

M (T (k) Trky—1,€) > (1= A). (2.7)
Then, for all £ > 1,0 < s < €¢/2, we obtain,

(1=X) = M(Zwmm) Tnk)€)
> M(xm(k)axm(k)—hs) * Jw’(im,(k)—la"En(k)—lv6 - 28) * M(xn(k)—lvxn(k)as)~ (28)
Let

hi(t) = lim M(l‘m(k),l,xn(k),l,t), t>0. (2.9)

k—o0
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Taking limit supremum on both sides of (2.8), using (2.4), and the properties of M and *, by Lemma 1.10, we
obtain

(1 =X) > 1% Hm M(Zp(k)—1, Tnk)—1,€ — 25) * 1 = h1(e — 25). (2.10)
k—o0
Since M is bounded with range in [0,1], continuous and, by Lemma 1.7, monotone increasing in the third
variable t, it follows by an application of Lemma 1.11 that h; as given in (2.9) is continuous from the left.
In view of the above fact, letting s — 0 in (2.10), we obtain

ler{:OM(mm(k)_l,xn(k)_17e) <(1-=M). (2.11)
Let
hg(t) = lim M(xm(k),l,ﬁtn(k),l,t), t>0. (2.12)
k—oc0

Again, for all k > 1,5 > 0,

M (T (k)15 Tm(k)s 8) * M(Trn(k), Tr(k)—15€)

M (Zp(k)=1, Tn(k)y—1,€ +5) >
>

Taking limit infimum as £ — oo in (2.13), by virtue of (2.4), we obtain

ho(e+3s) = kliim M (T (k)—1, T(k)—1, € + 5) (2.14)
— 00
> Hm M (@ k) =15 Tm(k), 8) * (1 = A)
k—oc0
— 1k (1=A)=(1-\). (2.15)

Since M is bounded with range in [0,1], continuous and, by Lemma 1.7, monotone increasing in the third
variable t, it follows by an application of Lemma 1.11 that hy as given in (2.12) is continuous from the right.
Taking s — 0 in the above inequality (2.14), we obtain

lm M (Zp(k)—1, Tnk)—1,€) > (1 = A). (2.16)

k—o0

The inequalities (2.11) and (2.15) jointly imply that

kli_)n;oM<xm(k)717 Tn(k)—1, 6) = (1 - )\) (217)
Again by (2.6),
H M(Im(k), :En(k), 6) < (1 - /\) (218)
k— o0

Also for all k> 1,s > 0, we obtain
M (2 (k)s Tr(k)s € +28) = M (T (), Tn(k)—1,5) * M (L () =1, Tra(ky—15 €) * M (T () —1, Tru(i), 5)-
Taking limit infimum as k — oo in the above inequality, using (2.4), (2.16) and the properties of M and

*, by Lemma 1.10, we obtain

lm M (% k), Tnck), € +28) = 1k Hm M (T (k)—15 Tn(r)—1,€) * 1 = (1 = A).

k—o0 k—o0
Since M is bounded with range in [0,1], continuous and, by Lemma 1.7, monotone increasing in the third
variable t, it follows by an application of Lemma 1.11 that klim M (2 (k)s Tn(k), t) is continuous function of t
—00

from the right.
Taking s — 0 in the above inequality, and using Lemma 1.11, we obtain

Lm M (zyk), Tnck), €) = (1 — A). (2.19)

k—o0
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Combining (2.17) and (2.18), we obtain

lim M(mm(k), xn(k)a 6) = (1 - /\) (220)

k—oc0

Putting = Z,,(1)—1,¥ = Tn(k)—1 and t = € in (1.1) we obtain

V(M (T ) Tr(rys €)= VM (fTmry—15 fTnk)—1,€))
<YM (Tim(k)—1, Tnk)—15€)) = O(M (Trn(k)—1, Tr(k) -1, €))-

Letting k — oo in the above inequality, using (2.16), (2.19), continuity of ¢ and the lower semi-continuity of
¢, we obtain

P(1=X) <P(1=X) = (1 = N),

which is a contradiction since ¢(1 — A) # 0.
Thus it is established that {z,} is a Cauchy sequence and hence it is convergent to a point z in the
complete fuzzy metric space X, that is,

limz, = z€X (2.21)

n—oo

Next we show that z is fixed point of f.

By our construction, {x,,} is a monotone increasing sequence and hence, by our assumption of the theorem,
T, =<z forall n > 0.

If follows that {x,, : n > 0}U{z} is a chain containing O(f, zo) with x( as the least element. By a condition
of the theorem, f is a weak contraction on this chain. Then for all n > 1, ¢ > 0,

Y(M(zp, fz,t)) = P(M(frp-1,fz,1))
< w(M(xnflﬁzvt))_¢(M($nflvzat))'

Letting n — oo in the above inequality, using the properties of ¥, ¢ and (2.20), we obtain

P( lim M(zn, f2z,1)) < (1) = (1) =0,

n—oo
that is, by a property of 1,

lim M(z,, fz,t) = 1 forall t >0,

n—0o0

which implies that
Tn = fz as n— oco. (2.22)

Since the topology in the fuzzy metric space is a Hausdorff topology, we conclude from (2.20) and (2.22) that

z= fz.
This completes the proof of the theorem.

The fixed point in the above theorem is not in general unique as the example in the next section demon-
strates. In the following theorem we also show that when the weak contraction is defined over the whole
space, the fixed point is unique.

Theorem 2.2 Let (X, M, %) be a fuzzy metric space and f : X — X be a weak contraction on X as in the
Definition 1.9. Then f has a unique fixed point.

Proof. The existence of a fixed point is established by following the same argument as in the proof of Theorem
2.1 except that we need not have to consider the partial order relation here. The uniqueness of the fixed point
is established as following.

Let z; and 25 be two fixed points of f, that is, fz; = 21 and fzo = z9. Then, from (1.1), for all ¢ > 0,

Y(M (21, 22,1)) = (M(fz1, fz2,t))
< (M (z1,22,1)) — (M (21, 22, 1)),
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which is a contradiction unless M (21, 22,t) = 1, which implies that z; = 2.
Thus the fixed point is unique.

Corollary 2.3 (Fuzzy Banach Contraction mapping Theorem [14]) Let f : X — X, where (X, M, %) is a
complete fuzzy metric space, be such that

1 1
e < g ) 22
where z,y € X,t > 0 and 0 < k < 1. Then T has a unique fixed point.
Proof. Let .
his) = —
and
b(s) = (1- k)s(l —5)

where 0 < s < 1. Then we see that with the above choices of ¥ and ¢, (2.23) implies (1.1) for all z,y € X
and t > 0.

The Corollary 2.3 then follows by an application of the Theorem 2.2.

Remark 2.4 Corollary 2.3 is a generalization of a fuzzy contraction principle established by Gregori et al. [T7].

3 Example
In this section we provide an illustration of our main result.
Example 3.1 Let X = [0,00) and « <y if z > y. Let

_lz—yl

M(z,y,t) =e

where 7,y € X and t > 0. Let * be any continuous t— norm. Let f(z) = 2. Then f is a monotone function.
We consider any element 2o = ¢ of X where 0 < ¢ < 1/4. Then O(f, o) = {c,c?,¢*,...}. Let

7

In the following we verify that with the above choices of 1, ¢ and z, the inequality (1.1) is satisfied on any
chain containing O(f,zp) with x¢ as the least element. This will be established if we show that (1.1) is
satisfied on any maximal chain containing O(f, xg) with xg = ¢ as the least element.

In the present case there is only one maximal chain, namely, the set [0, c]. Let 2,y € [0, ¢]. Without loss
of generality we assume = < y, that is, x > y. The case where x = y is trivial from the properties of i) and ¢.
Then (1.1) is written as

Ys) =12 and 4ls) =1~ -

which is the same as

(@®—y?) (@—y) _@—w)
e -1 < e 7 —1—¢( )
(z—y) (z—y) (z—y)
= et —1l—e ¢t H4e 2t |
that is, the same as
@?—y?) (@—y)
(7)<
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Now z 4+ y < 1/2 by our choice of ¢ < 1/4. Then, for all ¢ > 0

(z2—4?) (z—y) (z+y))
e t = e t
(z—y)
< e 2ty
(x—y)(z+y))
< e

that is, the inequality (1.1) is satisfied in this case. Then, by an application of Theorem 2.1, we obtain a fixed
point of f. Here we obtain x = 0 as a fixed point.

Remark 3.2 Here fixed point of the function is not unique, = 1 being another fixed point. Also Corollary
2.3 is not applicable to this example since this is not a contraction on the whole space. Following Remark 2.4
we conclude that Theorem 2.1 actually improves the result of Gregori et.al [I7].

4 Conclusions

In our study we use arbitrary continuous t-norms. It is an interesting question whether the result is valid
with some non-continuous t-norms as well. Particularly Hadzi¢ type t-norm [I8] can be considered for this
purpose. The weak contraction is intermediate to a contraction and a non-expansive mapping. In metric
spaces the introduction of weak contraction by Rhoades [29] has opened a new chapter in metric fixed point
theory with a large number of papers following it. It is expected that such a development paralleling that in
metric spaces is also possible in fuzzy metric spaces. Moreover, the weak contractive type results have many
applications as, for instances, in the works [20, [30]. Such applications in problems like those of fuzzy integral
equations, etc. are supposed to be in order in future works.
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