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Abstract

In many practical situations, we need to make a decision under interval or set uncertainty: e.g., we
need to decide how much we are willing to pay for an option that will bring us between $10 and $40, i.e.,
for which the set of possible gains is the interval S=[10,40]. To make such decisions, researcher have used
the idea of additivity: that if have two independent options, then the price we pay for both should be equal
to the sum of the prices that we pay for each of these options. It is known that this requirement enables
us to make decisions for bounded closed sets S. In some practical situations, the set S of possible gains
is not closed: e.g., we may know that the gain will be between $10 and $40, but always greater than $10
and always smaller than $40. In this case, the set of possible values is an open interval S=(10,40). In this
paper, we show how to make decisions in situations of general – not necessarily closed – set uncertainty.
c©2019 World Academic Press, UK. All rights reserved.
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1 Decision Making Under Set Uncertainty: What is Known and
What is the Remaining Problem

Need for decision making under interval uncertainty. In many practical situations, we do not know
the exact consequences of different alternatives. For example, we may know that investing $1000 into a certain
project will bring us between $10 and $40 at the end of year, but we do not know how much exactly. On
the other hand, there are usually some alternatives with known results: e.g., we can place this amount into
a saving account at the bank, this will bring us exactly $20 at the end of the year. In the first case, all we
know about our gain is it is somewhere in the interval [10, 40], in the second case the gain is 20. Which of
these two alternatives is better?

To be able to make a choice, we must be able to compare intervals with real numbers and intervals with
intervals.

From interval to set uncertainty. In some cases, we know that not all the values from the corresponding
interval are possible. For example, we may know that we will either get $10 or $40. In this case, the set of
the possible values is not the whole interval [10, 40], but the 2-point set {10, 40}.

We may have more complicated situations, e.g., we may have either $10, or some value between $30 and
$40. In this case, the set of possible values is

{10} ∪ [30, 40].

To make decisions in such situations, we need to be able to compare sets with intervals and numbers –
and with each other.

Additivity: the main idea behind such decision making. If:

• in one situation, we have a set S1 of possible gains s1, and
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• in another independent situation, we have a set S2 of possible gains s2,

then, by participating in both situation, we can gain the value s = s1 + s2. The set S of possible values of
the overall gain can be obtained if we consider all possible values s1 ∈ S1 and s2 ∈ S2:

S = S1 + S2
def
= {s1 + s2 : s1 ∈ S1 and s2 ∈ S2}. (1)

A reasonable idea is to assign, to each set S, a numerical value u(S): the price we are willing to pay to
participate in this situation. In these terms, if the two sets S1 and S2 have the same price (u(S1) = u(S2)),
we say that these two sets are equivalent and denote it by S1 ≡ S2.

The price to pay to participate in both events should be equal to the sum of the prices that we pay to
participate in each of these events, i.e., we should have

u(S1 + S2) = u(S1) + u(S2).

This property is known as additivity.

Definition 1. Let S be a class of sets which is closed under set addition. We say that a function u : S → IR
is additive if for every two sets S1, S2 ∈ S, we have u(S1 + S2) = u(S1) + u(S2).

If we assume additivity, then we can make the following corollary.

Definition 2. Let S be a class of sets which is closed under set addition. An equivalence relation ≡ is called
additive if the following condition is satisfied for all S1, S

′
1, S2 ∈ S:

if S1 + S2 = S′1 + S2 then S1 ≡ S′1. (2)

Proposition 1. For every additive function u, the relation

S1 ≡ S2
def
= (u(S1) = u(S2))

is additive.

Proof. Indeed, if S1 + S2 = S′1 + S2, then, due to additivity, we have

u(S1) + u(S2) = u(S′1) + u(S2).

Thus, u(S′1) = u(S1) and S′1 ≡ S1. The statement is proven.

Decision making under interval uncertainty: what is known. In case the set of possible gains is an
interval [a, a], no matter what happens, we will get at least a and at most a. Thus, the price of this interval
cannot be lower than a and cannot be higher than a.

Definition 2. We say that a real-valued function u defined on the set of all intervals is consistent if for each
interval, we have a ≤ u([a, a]) ≤ a.

Proposition 2. [2, 4] Every consistent additive function u on the set of all intervals has the form

u([a, a]) = α · u+ (1− α) · u, (3)

for some α ∈ [0, 1].

This formula was first proposed by the future Nobel prize winner Leo Hurwicz and is, thus, known as
Hurwicz optimism-pessimism criterion [1, 3].

• Optimism in this name corresponds to the case α = 1, when a decision maker values the interval as
much as its largest value – i.e., in effect, considers only the best value from this interval to be possible.

• Similarly, pessimism corresponds to the case α = 0, when a decision maker values the interval as much
as its smallest value – i.e., in effect, considers only the worst value from this interval to be possible.



106 S. Edupalli and V. Kreinovich: Decision Making Under General Set Uncertainty: Additivity Approach

Decision making under set uncertainty: what is known. What is known is how to make a decision
when the set S is bounded and closed – i.e., contains all its limit points.

In this case, we have the following result.

Proposition 3. For every additive equivalence relation on the set of all bounded closed sets, each such set S
is equivalent to the corresponding interval [inf(S), sup(S)].

Corollary. For each additive function on the set of all bounded closed sets, the utility of each set S is equal
to the utility of the corresponding interval

[inf(S), sup(S)].

Proof of Proposition 3. Every bounded closed sets contains its limit points; in particular, it contains the
points inf(S) and sup(S). Thus,

{inf(S), sup(S)} ⊆ S ⊆ [inf(S), sup(S)].

So, by a clear set-inclusion monotonicity of set addition, we conclude that

{inf(S), sup(S)}+ [inf(S), sup(S)] ⊆ S + [inf(S), sup(S)] ⊆ [inf(S), sup(S)] + [inf(S), sup(S)].

However, one can easily check that

{inf(S), sup(S)}+ [inf(S), sup(S)] = [inf(S), sup(S)] + [inf(S), sup(S)] = [2 inf(S), 2 sup(S)].

Thus, we the intermediate set S + [inf(S), sup(S)] should be equal to the same interval:

S + [inf(S), sup(S)] = [inf(S), sup(S)] + [inf(S), sup(S)] = [2 inf(S), 2 sup(S)].

Since the equivalence relation is assumed to be additive, we conclude that

S ≡ [inf(S), sup(S)].

The proposition is proven.

Remaining problem. Boundedness is reasonable: in all real-life situations, we have lower and upper bounds
on possible gains:

• in usual investments, we do not expect to gain millions, and

• we do not exact to lose millions – since usually, we just do not have these millions to lose.

However, the requirement that the set be closed may be too restrictive.
For example, we may know that the gain will be between 0 and $100, but we are sure that the gain cannot

be zero and cannot be exactly $100. In this case, the set S of possible values of gain is an open interval
(0, 100), an interval that does not contain its limit points 0 and 100.

How can we make decision under such general (not necessarily closed) set uncertainty? This is a question
that we analyze in this paper.

2 Main Result

Proposition 4. For every additive equivalence relation on the set of all bounded sets, each such set S is
equivalent to the corresponding interval [inf(S), sup(S)].

Comment. In other words, not only every bounded closed set is equivalent to the corresponding interval:
every bounded set S (not necessarily closed one) is equivalent to the interval [inf(S), sup(S)].

Proof.

1◦. Let us first show that each open or semi-open interval is equivalent to the corresponding closed interval.
Indeed, one can easily check that

(a, a) + (a, a) = [a, a] + (a, a) = (2a, 2a),
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thus, by definition of additivity of an equivalence relation, we get

(a, a) ≡ [a, a].

Similarly, from
(a, a] + (a, a) = [a, a] + (a, a) = (2a, 2a),

we conclude that
(a, a] ≡ [a, a],

and from
[a, a) + (a, a) = [a, a] + (a, a) = (2a, 2a),

we conclude that
[a, a) ≡ [a, a].

2◦. Let us now consider a general bounded set S. If this set contains both points inf(S) and sup(S), then
the equivalence of the set S and the corresponding interval follows from the proof of Proposition 3. Thus, to
complete our proof, it is sufficient to consider the case when either inf(S) 6∈ S or sup(S) 6∈ S. Without losing
generality, let us consider the case when inf(S) 6∈ S.

Let us prove that in this case, we have

S + (inf(S), sup(S)) = (2 inf(S), 2 sup(S)). (4)

Since it is easy to check that

(inf(S), sup(S)) + (inf(S), sup(S)) = (2 inf(S), 2 sup(S)),

the equality (4) would imply that

S + (inf(S), sup(S)) = (inf(S), sup(S)) + (inf(S), sup(S))

and thus, by additivity of the equivalence relation, S ≡ (inf(S), sup(S)). Since in Part 1 of this proof, we have
shown that (inf(S), sup(S)) ≡ [inf(S), sup(S)], we will thus be able to conclude that S ≡ [inf(S), sup(S)],
which is exactly what we want to prove. So, all we need to do is prove the equality (4).

The two sets are equal if the first is contained in the second one, and vice versa. Here, S ⊆ (inf(S), sup(S)],
thus

S + (inf(S), sup(S)) ⊆ (inf(S), sup(S)] + (inf(S), sup(S)) = (2 inf(S), 2 sup(S)).

Thus, to complete the proof, it is sufficient to prove that, vice versa, every number s from the interval
(2 inf(S), 2 sup(S)) belongs to the sum

S + (inf(S), sup(S)),

i.e., that this number s can be represented as s1 + s2, where

s1 ∈ S and s2 ∈ (inf(S), sup(S)).

To prove this, let us consider two possible cases: s ≤ inf(S) + sup(S) and inf(S) + sup(S) < s.

2.1◦. Let us first consider the case when s ≤ inf(S)+sup(S). Since s is in the open interval (2 inf(S), 2 sup(S)),
we have

2 inf(S) < s ≤ inf(S) + sup(S).

In this case, for s′
def
= s − inf(S), we get the inequality inf(S) < s′ ≤ sup(S). By definition of inf(S), for

every s′ > inf(S), there exists a point s1 ∈ S for which s1 < s′, i.e., a point s1 for which inf(S) < s1 < s−inf(S)
(the first inequality is strict since s1 ∈ S and we consider the case when inf(S) 6∈ S). From the inequality

s1 < s− inf(S), we conclude that inf(S) < s− s1, i.e., that the value s2
def
= s− s1 is larger than inf(S).

On the other hand, from the inequalities s ≤ inf(S) + sup(S) and inf(S) < s1, we conclude that

s2 = s− s1 < (inf(S) + sup(S))− inf(S) = sup(S).
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So, s2 ∈ (inf(S), sup(S)). Thus, indeed, s = s1 + s2, where

s1 ∈ S and s2 ∈ (inf(S), sup(S)).

2.2◦. Let us now consider the case when inf(S) + sup(S) < s, i.e., when

inf(S) + sup(S) < s < 2 sup(S).

From this inequality, it follows that

inf(S) < s− sup(S) < sup(S).

By definition of sup(S), for each value smaller than sup(S), in particular, for the value s−sup(S), there exists

a larger value from the set S. Let us denote this larger value by s1: s− sup(S) < s1. Thus, for s2
def
= s− s1,

we get s2 < sup(S).
On the other hand, from inf(S) + sup(S) < s and s1 ≤ sup(S), it follows that

(inf(S) + sup(S))− sup(S) = inf(S) < s2 = s− s1.

So, s2 ∈ (inf(S), sup(S)). Thus, indeed, s = s1 + s2, where

s1 ∈ S and s2 ∈ (inf(S), sup(S)).

The proposition is proven.
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