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A Simple Quantitative Model of Cognitive Tradeoff Phenomenon

Griselda Acosta1, Eric Smith2, Vladik Kreinovich3,∗

1Department of Electrical and Computer Engineering, University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA
2Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA
3Department of Computer Science, University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA

Received 7 February 2019; Revised 15 February 2019

Abstract

A recent study of chimpanzees has shown that on the individual basis, they are, surprisingly, much
better than humans in simple tasks requiring intelligence and memory. A usual explanation – called
cognitive tradeoff – is that a human brain has sacrificed some of its data processing (computation) abilities
in favor of enhancing the ability to communicate; as a result, while individual humans may not be as
smart as possible, jointly, we can solve complex problems. A similar cognitive tradeoff phenomenon can
be observed in computer clusters: the most efficient computer clusters are not formed from the fastest,
most efficient computers, they are formed from not-so-fast computers which are, however, better in their
communication abilities than the fastest ones. In this paper, we propose a simple model that explains the
cognitive tradeoff phenomenon.
c©2019 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Interesting empirical phenomenon. A recent study of chimpanzees [1, 3, 4] showed, somewhat surpris-
ingly, that on the individual basis, they are much better than human in many tasks requiring intelligence. For
example, they can remember more objects in images, and in conflict situations their behavior is much closer
to the optimal behavior (as recommended by game theory) than the behavior of humans.

Cognitive tradeoff: an explanation for this phenomenon. A current explanation for this phenomenon
is based on what is called cognitive tradeoff: humans have better communication abilities, and so, human brain
has to sacrifice some individual intellectual abilities to leave space for parts needed for efficient communication.

The need for such a tradeoff is not limited to humans. A similar tradeoff phenomenon can be
observed not only in humans, but in computers as well. The world’s fastest computations are performed on
so-called high performance computers. Each of them is, in effect, a large number of processors constantly
communicating with each other.

In principle, there exist processors which are very fast and efficient, but modern super-computers are not
formed from these processors: they are formed from simpler processors – similar to the ones we use in not-very-
expensive home computers. One of the reasons for this choice is that these simple processors communicate
well, as opposed to more efficient processors; these more efficient processors individually perform better but
which take much longer time to communicate (another reason is that simple processors are usually much
cheaper, which allows the designers to combine many more such processors within the same budget).

The ubiquity of cognitive tradeoff motivates the desired to have a universal quantitative model.
The fact that cognitive tradeoff occurs in many situations, from human to computer communications, shows
that there must be a simple quantitative explanation for this phenomenon.
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In this paper, we provide a simple quantitative model that explains the main ideas behind this phenomenon.
We hope that this simple model can be used as a basis for more complex – and more realistic – models that
would not only qualitatively explain this phenomenon, but that would also lead to quantitative predictions.

2 Description of a Model

Main idea behind the model. We have a computing device – be it a computer or a brain – that is involved
in communication with other computing devices so that together, they can solve a certain important problem.

The main difficulty with communication is that we cannot just send the internal signals out. It does not
work for humans: we sometimes do not even understand each other’s gestures or words, we need to trans-
late our knowledge from our internal knowledge-representation language to a more universal one. Similarly,
computers cannot just send out signals describing 0s and 1s that serve as internal representations of the
corresponding knowledge: even if the two computers use the same way of representing, e.g., arrays of real
numbers, the actual representation includes the information on where exactly this arrays is stored in the
computer memory – the information that is useless for the computer that receives this information.

So, in general, to communicate, computing devices need to translate their internal signals into a different,
more universal communication language. For this translation, we need a dictionary stored in the computing
device.

In computing devices, usually, there are several levels of information storage. There is an operating memory
where access to information is fast but the size of this memory is limited. There is usually a much larger
second-tier memory that can store a much larger amount of information but where access takes much longer.
There are usually several more layers, but in this paper, for simplicity, we will simply assume that we have
two memory layers.

Details. Let a denote the overall computational ability related to the top (fastest-to-access) memory level.
Some part of this level memory is taken by the most frequent “words” in the dictionary – so that translation
of these words and thus, sending a message would go faster. Let a0 denote the part of this level memory that
is focused on this translation; then, we have a− a0 ability remaining for general computations.

Let us denote by t0 the part of the memory that is needed, on average, to store a translation of one word.

Then, in the part a0, we can store the translations of w
def
= a0/t0 words.

Let us assume that we need:

• to perform some fast computations – whose overall running time will be denoted by C – and

• to send several (M) messages (of average length of ` words per message); this means that overall, in
addition to computations, we need to communicate W = M · ` words.

Let d be the size of the dictionary, i.e., the overall number of words that can be used for communication.
In this arrangement, what is the best division of top layer memory a into parts a0 and a− a0 under which

both computation and communication tasks will be performed as fast as possible?

Zipf’s law. In our analysis, we will rely on the known law that describes how frequently different words
appear in a message. According to this law – known as Zipf’s law – if we sort all the words from a dictionary
in the decreasing order of their frequency, then the frequency fi with which the i-word appears is equal to
fi ≈ c/i, for some constant c; see, e.g., [2].

The constant c can be determined from the condition that the sum of all the frequencies f1, . . . , fd should
be equal to 1. Thus, we get

c
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The sum in parentheses is an integral sum for the integral∫ d
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dx = ln(x)|d1 = ln(d)− ln(1) = ln(d),



Journal of Uncertain Systems, Vol.13, No.2, pp.89-93, 2019 91

thus
1
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+
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+ · · ·+ 1

d
≈ ln(d),

hence c · ln(d) = 1, so c = 1/c = 1/ln(d) and

fi =
1

ln(d)
· 1

i
.

Towards formulas for computation and communication times. We have a− a0 elementary computa-
tional devices to perform the overall amount C of needed computations. So, if we distribute these computation
tasks between these a− a0 devices, then we need the time

C

a− a0

to perform all these computations.
Let us now estimate the amount of computations needed to send all M needed messages. In the fast

memory layer, we can store w words. To speed up computations, it is reasonable to store, in the fast memory,
translations to w most frequent words. If a message contains other words, we need to spend some time either
computing its translation, or, alternatively, bringing this translation from the slower memory layer. Let us
denote the average time needed to translate a not-stored-in-fast-memory word by t.

Among all W = M · ` words that we need to communicate, we need the translate for all the words except
for the w most frequent ones, i.e., for all the words whose frequencies are fw+1, . . . , fd. The overall frequency
f of all such words can be obtained by adding up all these frequencies; so, we get

f = fw+1 + · · ·+ fd =
c

w + 1
+ · · ·+ c

d
= c ·

(
1

w + 1
+ · · ·+ 1

d

)
.

The sum in the last expression is also an integral sum, this time for the integral∫ d

w+1

1

x
dx = ln(x)|dw+1 ≈ ln(d)− ln(w).

Thus, the frequency f is approximately equal to

f = c · (ln(d)− ln(w)) =
ln(d)− ln(w)

ln(d)
.

Among all W words, we thus need to spend time on f ·W words. Translating each word requires time t, so
overall, we need to spend time f ·W · t on this translation.

Substituting the above expression for f and the formula W = M · w0 into this formula, we conclude that
the overall time for sending M messages is equal to

ln(d)− ln(w)

ln(d)
·M · w0 · t,

i.e., taking into account that w = a0/t0 and thus, ln(w) = ln(a0)− ln(t0), we get

ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t.

By adding the computation and communication time, we get the following formula for the overall time.

Resulting formula for overall computation and communication time. The overall time T needed for
computation and communication is equal to

C

a− a0
+

ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t. (1)



92 G. Acosta et al.: A Simple Quantitative Model of Cognitive Tradeoff Phenomenon

3 Analysis of the Model: What is the Optimal Tradeoff Between
Computation and Communication

Main idea. The desired tradeoff is described by the parameter a0. We want to find the value of this
parameter for which the overall time T needed to perform all the tasks (including both computation and
communication) is the smallest possible. In other words, the expression (1) for this time T is our objective
function.

Towards an explicit expression for the optimal value a0. To find the optimal value a0, let us differ-
entiate the objective function (1) with respect to a0 and equate the derivative to 0. As a result, we get the
following formula:

C

(a− a0)2
− M · w0 · t

ln(d)
· 1

a0
= 0.

Multiplying both sides of this equality by (a− a0)2 · a0, we get a quadratic equation:

C · a0 −
M · w0 · t

ln(d)
· (a− a0)2 = 0.

Dividing both sides by the coefficient at (a− a0)2 and changing the sign of both sides, we get

(a− a0)2 − k · a0 = a20 − (k − 2) · a · a0 + a2 = 0,

where we denoted

k
def
=

C · ln(d)

M · w0 · t
.

Dividing both sides by a2, we get the following quadratic equation to the fraction r0
def
= a0/a of the top-level

memory allocated for communications:

r20 − (k − 2) · r0 + 1 = 0.

The solution of this quadratic equation is

r0 =
k − 2

2
±

√(
k − 2

2

)2

− 1,

and a0 = a · r0.

Analysis of the problem. When there are practically no communications, i.e., when the number of messages
M is very small, the second term in the expression (1) for the objective function is negligible, so the objective
function is approximately equal to its first term:

T ≈ C

a− a0
.

This expression is the smallest when the difference a− a0 is the largest, i.e., when the value a0 is the smallest
possible – and the smallest possible value of a0 is 0.

Thus, in situations when we do not need to perform many communications, it makes sense not to allocate
any top-level memory for communications, and use it all (or almost all) for computations.

On the other hand, if the number of messages is large, then, vice versa, we can ignore the first term in the
expression (1) for the objective function and conclude that the objective function is approximately equal to
its second term:

T ≈ ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t.

In this case, the larger a0, the larger is ln(a0) and thus, the smaller is the above expression. So, for this
expression to be as small as possible, we need to select the value a0 which is as large as possible. The largest
possible value of the communication-related portion a0 of the top-level memory is the whole amount a of this
memory: a0 = a.
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Thus, in situations when we need to perform a large number of communications, it makes sense to allocate
practically all top-level memory for communications, and leave only the bare minimum for computations.

These are the two extreme cases, but they show that the more communications we need, the larger portion
of the top-level memory should be allocated for communication purposes (and the above explicit formula for
the optimal value of a0 confirms this conclusion).

This is exactly what we observe, both in chimps and in computer networks, in terms of a tradeoff between
communication and computation. Thus, our simple model indeed captures – at least on the qualitative level
– the cognitive tradeoff phenomenon.
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