
Journal of Uncertain Systems
Vol.13, No.2, pp.84-88, 2019

Online at: www.jus.org.uk

Optimal Distribution of Testing Resources Between Different

System Levels

Griselda Acosta1, Eric Smith2, Vladik Kreinovich3,∗

1Department of Electrical and Computer Engineering, University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA
2Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA
3Department of Computer Science, University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA

Received 7 February 2019; Revised 15 February 2019

Abstract

When designing a system, we need to perform testing and checking on all levels of the system hierarchy,
from the most general system level to the most detailed level. Our resources are limited, so we need to
find the best way to allocate these resources, i.e., we need to decide how much efforts to use of each on the
levels. In this paper, we formulate this problem in precise terms, and provide a solution to the resulting
optimization problem.
c©2019 World Academic Press, UK. All rights reserved.

Keywords: hierarchical systems, testing resources, optimal distribution

1 Formulation of the Problem

Need for system design. Sometimes, engineers and scientists concentrate on designing a specific device or a
specific software. However, no device and no software works on its own, whatever we design will be a part of a
system. For example, when we design a new industrial plant, we need to take into account how its functioning
will affect the natural ecosystem, how the increased transportation will affect the city infrastructure, how the
new people brought to this plant will change the demographic system, etc. Similarly, in science, when we
design a new radiotelescope (or even software to process signals from the radiotelescope), we need to take into
account that this telescope will be mostly used as a part of a system of radiotelescopes and other astronomical
instruments to observe different celestial objects.

System design is hierarchical. To properly design a system, it is important to first have a clear general
structure. After that, once it becomes clear what are the system components and how they are supposed
to interact, we can move to designing these individual components – taking into account the need for these
components to efficiently work together. These components usually also are subsystems, so we need to come
up with their own components, etc. At the end, once all the tasks have been clarified, we proceed to the most
detailed level, where we design individual machines and instruments and write the corresponding software.

Of course, the above sequence is an idealized representation of the actual design process: sometimes, after
we go to a more detailed level of design, we realize the need to make some changes in the previously decided
higher-level design structure. However, most of the time, the system design follows the above hierarchical
pattern.

Need for testing and checking. On each design level, we need to check for possible problems and flaws.
Flaws can occur on different levels.

For example, on the highest general-system level, we may forget an important aspect of the system – e.g.,
when designing a plant, we may not think about its ecological impact – and as a result, once the design is

∗Corresponding author.
Emails: gvacosta@miners.utep.edu (G. Acosta), esmith2@utep.edu (E. Smith), vladik@utep.edu (V. Kreinovich).

Journal of Uncertain Systems, Vol.13, No.2, pp.84-88, 2019 85

done, it may have to be redone completely. To avoid such situations, it is important to check the design on
each level before starting a more detailed design level.

Flaws may also occur on the very lowest most-detailed level: e.g., we can have a software that does not
always provide the correct control for the plant.

Need to allocate testing resources between different levels. We need to perform testing and checking
on different levels of the system hierarchy. However, our testing resources are limited. It is therefore important
to efficiently distribute the available resources between different levels; see, e.g., [2, 3, 4, 5, 6, 7, 9, 10, 11, 12].

What we do in this paper. In this paper, we describe the problem of allocating resources in precise terms,
and we provide a solution to the resulting optimization problem.

2 Analysis of the Problem

The cost of errors on different levels. Errors can occur on all the levels:

• we can make an error on the highest level, by deciding on a faulty overall design;

• we can also make an error on the most detailed level, e.g., making an error when manufacturing one of
the system’s components.

An error on a higher level is very costly: if there was indeed an error in the overall design, we have to redo
the overall design and thus, redo all the details – i.e., largely, start “from scratch”. On the other hand, errors
on the lower levels are not that costly: if we erred in designing one small component, then all we need to do
is re-design this small component.

Let us number the levels from the most general one – which will be Level 1, via the next-detailed Level
2, then even-more-detailed Level 3, etc., all the way to the most detailed Level. Let us denote the overall
number of levels by n. Then, the most detailed level is Level n.

In general, an error on each level i leads to the need of redoing several details on the next-detailed level
i + 1. Let us denote the average number of details that need to be redone by q. Then, an error on Level
i necessitates redoing q details on the next-detailed Level i + 1. Each of these re-doings requires redoing q
details on the next level i+ 2; thus, an error on Level i requires re-doing q2 details on Level i+ 2. Similarly,
we conclude that it requires re-doing q3 details on Level i + 3, and, in general, qk details on level i + k. In
particular, for k = n − i, we conclude that an error on Level i requires redoing qn−i details on the most
detailed Level n.

Let c denote the average cost of redoing a single detail on the most-detailed Level n. Then, the overall
cost of an error on Level i can be obtained by multiplying this per-error cost c by the total number of details
qn−i that need to be corrected, and is, thus, equal to c · qn−i.

The cost of discovering errors. How does the number N of remaining errors depend on the effort –
i.e., equivalently, on the time t spent to find these errors? We would like to find a general formula N(t) for
describing this dependence.

It is important to take into account that there are different way to count errors. For example, when we
talk about software errors, we can count the number of modules that do not perform as we intended, we
can count the number of lines of code where we made a mistake, or we can count the number of erroneous
operations on each line of code. All three (and other) ways of counting errors make sense – but they differ by
a factor. For example, to go from the number of erroneous moduli to the number of erroneous lines of code,
we need to multiply the number of erroneous moduli by the average number of erroneous lines of code in an
erroneous modulus. Thus, if we change the way we count errors, we go from the original number N(t) to the
new number C ·N(t), where C is the corresponding factor.

Both the original function N(t) and the new function C · N(t) make sense. Thus, instead of a single
function N(t) for describing how the number of remaining errors depends on time t, we should consider the
whole family of functions {C ·N(t)}C corresponding to all possible value C > 0.

The time t is the time from the moment when we started testing. This may sound well-defined, but
in practice, it changes from one person to another. Some programmers try to run the very first version of
the program that they wrote – and thus, start debugging the code right away. Other programmers first try

86 G. Acosta et al.: Optimal Distribution of Testing Resources Between Different System Levels

some on-paper tests and only start running when they are reasonably sure that they have eliminated the
most obvious bugs. While the results of both programmers may be similar, the starting time for measuring
t is different for the second programmer: what happened for the first programmer at time t, for the second
programmer, happens at time t − t0, where t0 is the time the second programmer spend analyzing his/her
code before running it. This value t0 may be different for different programmers. It is therefore reasonable to
require that the approximating family {C ·N(t)}C should not change if we simply change the way we measure
the time, i.e., if we go from t to t− t0.

In other words, the family {C ·N(t− t0)}C corresponding to the shifted time t− t0 should coincide with
the original family {C ·N(t)}C . This means, in particular, that for every t0, the function N(t− t0) from the
shifted family should belong to the original family, i.e., it should have a form

N(t− t0) = C(t0) ·N(t), (1)

for some value C(t0) depending on t0.
The function N(t) describing the number of remaining errors after time t, this function is (non-strictly)

decreasing: when t < t′, then we should have N(t) ≥ N(t′). Thus, it is measurable, and therefore, the function
C(t0) = N(t− t0)/N(t) is also measurable, as the ratio of two measurable functions. It is known (see, e.g., [1])
that for measurable functions, the only solutions to equation (1) have the form N(t) = N0 · exp(−a · t) for
some coefficients N0 and a; see [8].

Now, we are ready to formulate the problem in precise terms.

3 Formulation of the Problem in Precise Terms

Towards the formulation. We want to divide the overall people-time T that we have allocated for testing
into times t1, . . . , tn allocated to testing on different levels:

t1 + · · ·+ tn = T. (2)

According to the above formulas, for each level i, after the testing, we will have N0 · exp(−a · ti) errors.
The cost of each error on this level is c · qn−i, so the overall cost of all these errors is c · qn−i ·N0 · exp(−a · ti).

The overall cost E coming from all the remaining errors can be computed by adding the costs corresponding
to different levels:

E =

n∑
i=1

c · qn−i ·N0 · exp(−a · ti). (3)

Resulting formulation. We want to select the times t1, . . . , tn – under the constraint (2) – so as to minimize
the overall cost E of all the errors.

In other words, we want to minimize the expression (3) under the constraint (2).

4 Solving the Resulting Optimization Problem

Solving the problem. A usual way to solve a constraint optimization problem is to use Lagrange multi-
pliers, i.e., to reduce the original problem of minimizing a function f(x) under a constraint g(x) = 0 to the
unconstrained problem of minimizing an expression f(x)+λ ·g(x), where the parameter λ (known as Lagrange
multiplier) has to be determined from the condition g(x) = 0.

In our case, the constraint has the form

n∑
i=1

ti − T = 0,

so the corresponding unconstrained optimization problem means minimizing the expression

n∑
i=1

c · qn−i ·N0 · exp(−a · ti) + λ ·

(
n∑

i=1

ti − T

)
.

Journal of Uncertain Systems, Vol.13, No.2, pp.84-88, 2019 87

To find the minimum of this expression, we differentiate it with respect to each unknown ti and equate the
resulting (partial) derivative to 0. As a result, we get the following formula:

c · qn−i ·N0 · (−a) · exp(−a · ti) + λ = 0,

i.e.,

exp(−a · ti) =
λ

a · c ·N0
· qn−i.

Taking logarithms of both sides and dividing the result by −a, we get

ti = (n− i) · | ln(q)|
a

+ c1,

where we denoted

c1
def
= −1

a
· ln
(

λ

a · c ·N0

)
.

Combining terms not depending on i into a single expression, we get

ti = c2 − i ·
| ln(q)|
a

, (4)

where

c2
def
= c1 + n · | ln(q)|

a
.

In line with the main idea of the Lagrange multiplier technique, to find the value c2, we substitute the
expression (4) into the constraint (2). As a result, we get

T =

n∑
i=1

ti = n · c2 −

(
n∑

i=1

i

)
· | ln(q)|

a
.

Here,
n∑

i=1

i = 1 + 2 + · · ·+ n =
n · (n+ 1)

2
,

thus

T = n · c2 −
n · (n+ 1)

2
· | ln(q)|

a
,

and so,

c2 =
T

n
+
n+ 1

2
· | ln(q)|

a
.

Thus, we arrive at the following formula.

Resulting solution. In situation where an error on the next level costs q times less than the error on the
previous level, and the number of detected errors decreases with detection time as exp(−a · t), the optimal
allocation of the overall testing time T into times t1, . . . , tn allocated to each level has the form

ti =

(
T

n
+
n+ 1

2
· | ln(q)|

a

)
− i · | ln(q)|

a
. (5)

Discussion. In other words, the allocated time linearly decreases as we go from the most abstract level to the
more and more detailed levels. The fact that we allocate most of the testing time to the highest level makes
perfect sense: as we have mentioned, errors on this level are the costliest ones. That the decrease should be
linear follows from the specific formulas of our model.

Acknowledgments

This work was partially supported by the US National Science Foundation via grant HRD-1242122 (Cyber-
ShARE Center of Excellence).

88 G. Acosta et al.: Optimal Distribution of Testing Resources Between Different System Levels

References

[1] Aczél, J., and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 2008.

[2] Bahill, T., Botta, R., and J. Daniels, The Zachman framework populated with baseball models, Journal of
Enterprise Architecture, vol.2, no.4, pp.50–68, 2006.

[3] Dantu, B., and E. Smith, Diagnostic modeling for medical decision making, edited by Doolen, T., and E. Van
Aken, Proceedings of the 2011 Industrial Engineering Research Conference, Reno, Nevada, May 21–25, 2011.

[4] Ferreira, S., Valerdi, R., Medvidovic, N., Hess, J., Deonandan, I., Mikaelian, T., and G. Shull, Unmanned and
autonomous systems of systems test and evaluation: challenges and opportunities, Proceedings of the 5th IEEE
Systems Conference, San Diego, California, April 5–8, 2010.

[5] Gona, R., and E. Smith, Healthcare enterprise quality assessment with a Zachman-Bayesian framework, edited by
Doolen, T., and E. Van Aken, Proceedings of the 2011 Industrial Engineering Research Conference, Reno, Nevada,
May 21–25, 2011.

[6] Hess, J., Agarwal, G., Cowart, K., Deonandan, I., Kenley, C.R., Mikaelian, T., and R. Valerdi, Normative and
descriptive models for test & evaluation of unmanned and autonomous systems of systems, Proceedings of the
20th INCOSE Symposium, Chicago, Illinois, vol.1, pp.644–654, July 12–15 2010.

[7] Hess, J., and R. Valerdi, Test and evaluation of a SoS using a prescriptive and adaptive testing framework,
Proceedings of the 5th IEEE International Conference on Systems of Systems Engineering, Loughborough, UK,
June 22–24, 2010.

[8] Kreinovich, V., Swenson, T., and A. Elentukh, Interval approach to testing software, Interval Computations, no.2,
pp.90–109, 1994.

[9] Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R., and G. Moroney, Error cost escalation through
the project life cycle, Proceedings of the 14th Annual International Symposium of the International Council on
Systems Engineering (INCOSE), Toulouse, France, June 19–24, 2004.

[10] Zachman, J.A., A framework for information systems architecture, IBM Systems Journal, vol.38, nos.2-3, pp.454–
470, 1999.

[11] Zachman Framework, https://en.wikipedia.org/wiki/Zachman Framework, downloaded on January 29, 2019

[12] Zapata, F., Posadas, A., Akundi, A., and E. Smith, Combinatorial black box testing for genetic algorithms with
discrete and continuous variables and potential applications for general testing methods, Proceedings of the Joint
Workshops on “System-of-Systems: A Network Integration Evaluation (NIE) Experience” and “R&D ‘Use’ of
Propulsion Vehicles”, El Paso, Texas, July 16–18, 2013.

