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Abstract

Risk management has become one of the core functions of all businesses over the past 30 years, it is a
vital part of every business organisation. Whilst a number of risk management methods have been devised
over the years to mitigate risk, many firms still suffer from being unable to manage losses. Value at Risk
has become an industry standard for risk measurement and risk based decision making. However Value at
Risk based decision making leads to problems in managing the risk identified using this method. In this
paper we provide a method for hedging risk that is determined using the Value at Risk methodology.
c©2019 World Academic Press, UK. All rights reserved.
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1 Introduction
Risk management has grown over the past 30 years, and is a vital part of every business organisation.
Essentially, risk management is the identification, mitigation or reduction of uncertain outputs. Risks can
occur from a variety of sources, such as project risk, political risk, credit risk etc. to name a few risk factors.
Given that such risks can have significant impact on firms, there has been substantial research to investigate
methods to manage risk in general.

A key part of risk management is the identification and quantification of risk. In order for risk to be
managed effectively, it must firstly be identified. This is a non-trivial task because it is widely reported that
many unanticipated risks can cause significant damage to a company. The issue of risk identification is a
significant area of research in itself, however the focus of our research is related to the other key part of risk
management: risk quantification.

Risk quantification or risk measurement has grown into a significant area of research in itself, with appli-
cations across a range of industries. One of the most widely used risk measures in industry is VaR (Value at
Risk), which has grown in popularity over the past 30 years. Whilst VaR has some significant disadvantages
(such as VaR cannot take into account diversification and is not a coherent risk measure) it is still the most
widely used risk measure; it is used by many industries. VaR has the advantage of being widely applicable to
a range of purposes, not just investment analysis, it can be applied to many types of risk. Additionally, VaR
can be easily applied to risk analysis and risk based decision making, as it clearly captures the risk facing a
company.

Whilst VaR is a popular risk measure and has risk analysis advantages, the method of measuring risk using
VaR causes problems in risk management (for example the VaR methodology tends to focus on losses, rather
than gains, from any risky event). One of the more fundamental problems with VaR based risk analysis is
that one needs to be able to devise a method of managing the risk. As mentioned previously, risk management
has been studied extensively due to its importance in industry.

In the context of VaR, a possible risk management strategy would be risk elimination, that is the firm
would exclude itself from such situations to remove exposure to such risks. Whilst this strategy is attractive
in simplicity it is also not frequently practical, as many firms cannot exclude many situations and risks e.g.
political risk, economic risk etc.. Another risk management strategy that is more frequently employed (and is
more applicable to a range of situations) is hedging. This is essentially purchasing some service or product to
transfer the risk incurred by the firm. Although the firm incurs a cost in purchasing the hedging contract, it is
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not exposed to extreme losses. This is also consistent with the VaR risk measurement methodology in reducing
risk. A practical case in point is the supply chain risk management industry, where a VaR methodology may
be applied along with a hedging contract.

We should note that whilst risk measures other than VaR exist, such as variance, spectral analysis, and
partial moments (see for instance [22] for a review), such risk measures do not have such a direct physical
representation in the real world. Hence alternative risk measures would not be as preferable to VaR in
industries that are directly involved in real world operations. Furthermore, we should also note that the
incentive to purchase a hedging contract (when a VaR method is applied) is not just applicable to the supply
chain industry. Such hedging contracts would be useful in other risk areas, such as project management risks,
economic risks and environmental risks.

In supply chain risk management, VaR has been used to measure the risk of firms that supply goods
to buyers (see for example [6] and [12]). In a VaR methodology the risk represents the possibility that the
supplier cannot sell its goods to a buyer, in other words the supplier has an excess supply of goods. Hence
under a VaR risk management methodology the excess supply represents a risk or loss to the supplier. One
way to hedge out such a risk is to transfer this risk by selling to alternative buyers. The supplier buys a
contract so that it can sell excess supplies to alternative buyers at a pre-agreed price. The alternative buyer
may be interested in such an arrangement because the supplier will typically agree to selling at a pre-agreed
price that is typically discounted to standard market prices.

The model of the hedging contract is as follows. The supplier purchases a contract that enables it to sell
its (excess) supply at a pre-agreed price to the alternative buyer. The supplier is not obligated to sell the
goods at any particular time, however the buyer will pay for the goods once the supplier sells them. The
buyer can then sell the goods onto its own customers. Although the buyer cannot force the time of sale of
goods, the buyer can determine the timing of the sale of the hedging contract. We model the sale of the
hedging contract as an optimal stopping problem. The method of optimal stopping has been used in many
applications to improve resource allocation problems, for example see [2, 14, 16, 20].

In order for this hedging method to be viable the (alternative) buyers need to determine its buying price
from the supplier. Additionally, the supplier’s excess supply of goods will affect the price of the goods, since
high supply reduces prices. In this paper we provide a solution to the buyer’s purchasing problem when
suppliers adopt a VaR risk methodology for risk management. Specifically, we provide a mathematical model
of the hedging operation and optimise the buyer’s purchase decision as an optimal stopping problem. We
follow [21] in our proofs.

This paper makes a number of contributions. Firstly, we provide a mathematical model of the hedging
contract; we model the operations, the hedging contract and the decision to use and sell the contract. Secondly,
we model the buyer’s decision as an optimal stopping problem and solve this to provide the optimal stopping
criteria. Thirdly, we provide closed form solutions to payoffs in our model. Fourth, we derive the limiting and
long term behaviour of our hedging contract, which provides insight on the long term impact of this process.

This paper is organised as follows. In the next section we introduce our preliminaries, the supplier model
for excess supply, the associated pricing model and the discounting process. In the next section we model the
buyer’s problem in terms of an optimal stopping problem. In the next section we provide our solution to the
optimal stopping problem in Theorem 1. In the next section we provide closed form solutions for our payoffs,
specifically by proving Theorems 2 and 3. In the next section we examine the long term behaviour of hedging
operation, by proving 4 lemmas which enable us to prove Theorem 4.

2 Preliminaries and Pricing Model

Let S(t) denote the excess supply of goods held by a supplier at time t. Let us define the probability space
for S(t) that is (Ω,F ,Ft,Ps), such that Ps(S(0) = s) = 1. We assume that the filtration Ft for t ≥ 0 is right
continuous. Let the mapping s → Es[X] be measurable for some random variable X, where Es denotes the
expectation under probability measure Ps.

Without loss of generality, we will assume that (Ω,F) equals the canonical space of continuous trajectories
Ω = C([0,∞);R) with Borel σ-algebra F = B(Ω), so that the shift operation Θt : Ω → Ω is well-defined
by Θt(ω)(u) = ω(t + u), for ω = (ω(u))u≥0 ∈ Ω and u, t ≥ 0. We will make use of the following known
properties: the Brownian motion S(t) is a strong Markov process relative to (Ω,F ,Ft,Ps) and for a given
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Borel measurable subset X ⊆ R that the time

ΓX = inf{t ≥ 0|S(t) ∈ X},

is an F-stopping time, and we use the convention inf ∅ =∞.
The stochastic process S = {S(t)}t≥0 is a one dimensional Brownian motion (also known as a Wiener

process) on the probability space (Ω,F ,Ps). The S(t) has continuous trajectories, that is t → S(t, ω) is
continuous in t for all ω ∈ Ω, the increments are independent, that is S(t2) − S(t1) and S(t4) − S(t3) are
independent for t1 < t2 ≤ t3 < t4, such that {t1, t2, t3, t4} ∈ R>0 . Additionally,

S(t2)− S(t1) ∼ N (0, t2 − t1),∀t1 < t2,

where N (ι, σ̃) denotes the Normal distribution with mean ι and variance σ̃.
The surplus model for {S(t) ∈ R+|t ≥ 0} implies that an oversupply of goods exists with the supplier. The

supplier will dispose of excess supply for a number of reasons: firstly the supplier will have limited space and
will need to provide space for newly arriving inventory, and secondly demand in the goods may have fallen
for a variety of reasons. The Brownian motion model for S(t) provides a good model of surplus quantities
because it enables us to model S(t) in continuous time, whilst also taking into account the random (and
unpredictable) nature of excess supply. This is not an uncommon model for modelling excess supply, see for
example [1, 7, 16]. We note in passing that our model can also take into account {S(t) ∈ R−|t > 0}, that is
negative values which indicate a supply shortage.

In addition to the quantity of surplus supply S(t), we also require the price of each good. We model the
price of goods as a function of the quantity of supply, that is price is modelled as f(S(t)). We model prices
according to a set of scenarios as follows: for {f(S(t)) = 0|S(t) ≥ µ2}, where µ2 ∈ R>0 is a constant. In this
scenario the excess supply is extremely high and the supplier simply needs to dispose of the goods, and so
will sell it at zero price. From an economic perspective, an excessively high supply would push prices down
along the supply curve, and so prices would be very close to 0.

In a contrary scenario, where there is a high shortage of goods, we have {f(S(t)) = Λ|S(t) ≤ µ1}, where
Λ ∈ R>0 and µ1 ∈ R<0 are constants. In scenarios of high shortage, the prices could theoretically increase
as shortages increase (in accordance with demand and supply curves). However, we assume the price will be
limited to Λ ∈ R>0, ∀S(t) ≤ µ1, so that firms cannot charge excessively high prices to consumers. This is to
reflect the pricing structure of many real world retail markets, where market prices are regulated to protect
consumers from excessively high prices.

In between the previous two scenarios, the prices will change with quantity S(t), where there is an inverse
relation between S(t) and f(S(t)). Consequently we have the model

f(s) = Λ.1{s≤µ1} + (e+ ls).1{µ1<s≤µ2},

where S(t) = s is the current value of S(t), f(s) is the price of goods now, µ1 = (Λ− e)/l, µ2 = −e/l, e and
l are constants, such that {Λ, e ∈ R>0} and {l ∈ R<0}. The constant e determines the "equilibrium" price,
that is the price that exists when there is neither an oversupply nor a shortage.

We now examine the hedging contract to sell surplus goods to buyers. The supplier purchases the contract
V which enables the supplier to sell its surplus at a pre-agreed price K (which we refer to as the strike price).
The supplier must purchase the contract a priori and has some forecasted estimate on the oversupply of goods
in the future. In other words, the supplier must have some measure of risk on the oversupply. To be more
precise, let us assume we have a real valued random variable X ∈ R within the measurable space {Ω,F},
where X follows a distribution of losses G, then a risk measure λ̃ is defined by

λ̃ : G 7→ R.

We assume the standard risk measure assumptions of coherent risk measurement [3], that is translation
invariance, subaddivity, monotonicity and positive homogeneity and are given (respectively) as

λ̃(X + k) = λ̃(X) + k, for k ∈ R,
λ̃(X1 +X2) ≤ λ̃(X1) + λ̃(X2),

λ̃(X1) ≤ λ̃(X2),∀X1 ≤ X2,

λ̃(kX) = kλ̃(X),∀k ∈ R≥0.
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One popular risk measure is VaR (Value at Risk) which is defined as

V aR%̂(X) = inf{x ∈ R : P(X ≤ x) ≥ α̂},

such that {α̂ ∈ R≥0|0 ≤ α̂ ≤ 1}. Essentially, an individual specifies a confidence level (or risk level) α̂ and
the associated threshold value is given by VaR. For our supplier, this risk measure implies that the supplier
would like to use the hedging contract if s exceeds some threshold value s∗. We note the supplier would also
trigger the contract in the event s exceeds a known amount s∗, since there will be operational constraints e.g.
storage space.

The supplier determines the time to exercise the hedge. We can assume the supplier exercises the hedge
when s > s∗, where s∗ is a constant. The supplier will receive price K for the goods, and the buyer pays K
to the supplier. We note that the buyer can sell the acquired goods later on, at any price it wishes to its own
customers. We now examine the arbitrage constraints regarding our contract. Firstly, the buyer pays a price
K for the goods, therefore

K ≤ Λ,

that is the strike must be less than the maximum sale price of goods Λ, otherwise the buyer is guaranteed to
make a loss with probability 1. This would be an arbitrage opportunity [5], such opportunities do not exist in
realistic and well-functioning markets. An implication of this arbitrage constraint is that market regulation
(which may enforce Λ) will limit K and so limit the sale of hedging contracts.

Secondly, the price V must be restricted by

V ≤ K,

that is the contract price must be limited by the strike. If this inequality did not exist then the buyer can
make a guaranteed profit if the supplier immediately exercises the contract. Finally, we must have

f(s∗) < K − V,

that is the net cost for the buyer should be greater than the price of the goods f(s∗). Again, if this inequality
does not exist then the buyer makes a profit by instantly selling goods at the market price f(s∗).

We now examine the discounting factor. The discount rate r(t) is required to obtain the present value of
any future cashflows. For a risk averse investor the discount rate will equal the short rate r′(t) plus the risk
premium rp , that is r(t) := r′(t) + rp [10]. We assume rp is constant and so r(t) can be modelled by a short
rate model. The modelling of stochastic interest rate factors is extensive. If we assume a Markov diffusion
process, under the risk neutral measure, then a stochastic interest rate factor is defined as

dr(t) = ς1(r(t), t)dt+ σ(r(t), t)dB0(t),

where σ ∈ R>0, ς1 ∈ R>0, ς2 ∈ R>0 are constants and dB0(t) is a Brownian motion. In particular, the interest
rate diffusion can be modelled to be correlated with other assets, with associated Wiener processes dB1(t)
and dB2(t). The correlation matrix [dB0(t), dB1(t), dB2(t)] is given by

1 ρ01 ρ02
ρ01 1 ρ12
ρ02 ρ12 1

where ρ01, ρ02, ρ12 are constants, such that {ρ01, ρ02, ρ12 ∈ ρ̃ ⊂ R|ρ̃2 ≤ 1}. In fact the Brownian motions can
be expressed as independent processes by

dB̃0(t) = dB0(t),

dB̃1(t) = ρ01dB0(t) +
√

1− ρ201dB1(t),

dB̃2(t) = ρ02dB0(t) +
ρ12 − ρ01ρ02√

1− ρ201
dB1(t) +

√
1− ρ202 −

(ρ12 − ρ01ρ02)2

1− ρ201
dB2(t).

For our model a continuous affine process in one dimension would be sufficient, a review is available in [18].
A standard interest rate model for r(t) is the Vasicek model [23], which has been used in derivatives pricing [11]
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and has been favoured in modelling [13]. The Vasicek model follows an Ornstein-Uhlenbeck process [4]. Let
our discounting process r(t) follow

dr(t) = (ς1 − ς2r(t))dt+ σdB(t),

so that dr(t) ∈ R,∀ς1, ς2, σ.
To determine r(t) we see that

d(exp(ς1t)r(t)) = exp(ς2t)dr(t) + ς2exp(ς2t)r(t)dt

= exp(ς2t)(ς1 − ς2r(t))dt+ exp(ς2t)σdB(t) + ς2exp(ς2t)r(t)dt,

⇒ exp(ς1t)r(t) = r(0) + ς1

∫ t

0

exp(ς2u)du+ σ

∫ t

0

exp(ς2u)dB(u)

∴ r(t) = r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t)) + σexp(−ς2t)

∫ t

0

exp(ς2u)dB(u).

Assuming that r(0) is a constant then we have a Gaussian distribution with mean

E[r(t)] = E

[
r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t)) + σexp(−ς2t)

∫ t

0

exp(ς2u)dB(u)

]
= E

[
r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t))

]
+ E

[
σexp(−ς2t)

∫ t

0

exp(ς2u)dB(u)

]
= E

[
r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t))

]
= r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t))

≈
(
ς1
ς2

)
, for t→∞.

We also have variance Var(r(t)) , denoted v2, given by

v2 = E[r(t)2]− E2[r(t)]

= σ2

(
1− exp(−2ς1t)

2ς1

)
→

(
σ2

2ς1

)
, for t→∞.

For a supplier hedging contract we expect a low volatility, and so ς1 >> σ2 ⇒ v2 → δ, ∀t, where δ is small.
We now apply the Chebyshev inequality

P(|r(t)− E[r(t)]| ≥ k) ≤ v2

k2
,

P(|r(t)− E[r(t)]| ≥ k) ≤ δ2

k2
,

where k ∈ R>0 is a constant. Hence for small v the probability of values diverging from E[r(t)] will be small,
hence

r(t) ≈ E[r(t)] ≈
(
ς1
ς2

)
.

Thus the discount rate is effectively constant and we denote this by r for convenience.

3 Buyer Model as an Optimal Stopping Problem
The buyer’s problem of purchasing goods from the supplier can be analysed in terms of an optimisation
problem, specifically by dynamic programming and an optimal starting-stopping problem (see for instance [17]
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and [19]). Hence let us define θ that is a measurable function, such that θ : R → [0,∞] then θ is r-excessive
relative to S(t) if θ is r-superaveraging, that is

exp(−rt)Es[θ(S(t))] ≤ θ(s),∀s ∈ R, t ≥ 0,

and that θ has the limit

lim
t↓0

exp(−rt)Es[θ(S(t))] = θ(s),∀s ∈ R,

where {r ∈ R+} is the discount rate. We now provide the following property, Proposition 1.

Proposition 1. If θ : R→ [0,∞] is r-excessive relative to S(t) then we can state that, firstly, the mapping

t→ θ(S(t)),

is right continuous on [0,∞) and has left hand limits on (0,∞], almost surely. Secondly, if θ(S(t)) is integrable
for all t ≥ 0, then

exp(−rt)θ(X(t)),∀t ≥ 0,

is a right continuous supermartingale. Thirdly, for all s ∈ R we have

Es[exp(−rT2)θ(S(T2))] ≤ Es[exp(−rT1)θ(S(T1)],∀T2 ≥ T1,

for all stopping times T1, T2, almost surely.
The buyer’s optimisation problem is undertaken with the probability measure Ps; for the benefit of clarity

this represents the real world or physical probability measure.
Assuming the supplier purchases the hedging contract, the supplier will exercise this contract if supply

quantity exceeds his storage capacity, denoted by s*. This frequently occurs if the supplier cannot shift goods
from its own sales. Hence the supplier exercises the hedging contract at time

Γs∗,∞ := inf{t ≥ 0|S(t) ≥ s∗},

that is Γs∗,∞ denotes the minimum time t at which the range of S(t) values exceed s∗, for S(t) ∈ {s∗,∞}.
Let us, initially, assume the buyer has sufficient storage space so that it can sell the hedging contract to the

supplier, and in the event the contract is triggered (by the supplier) the buyer can store the goods. The buyer
will pay the strike price K for the goods, hence we have the following discounted expected payoff g2(K, s) for
the buyer

g2(K, s) = Es[−Kexp(−rΓs∗,∞)],

which can be expressed as

g2(K, s) = −K, for s > s∗,

= −Kz(s), for s ≤ s∗,

where z(s) = exp(κ(s− s∗)), κ denotes κ =
√

2r for convenience. The payoff under the second condition (for
s ≤ s∗) is obtained using the well known Laplace transform for the hitting time of S(t) at a given point x ∈ R,
that is Γx = inf{t ≥ 0|S(t) = x}, is given by

Es[−Kexp(−rΓx)] = exp(−κ|x− s|).

Whilst in our model the buyer cannot determine the time of exercise of the hedge (since the exercise is
controlled by the supplier and the supplier’s excess supply follows a random process), the buyer can however
determine the time of offering the hedge and should optimise this time to maximise its income. Assuming
the buyer behaves rationally, the optimisation problem can be modelled as an optimal stopping problem with
stopping time τ ∈ T , where T ∈ R+ denotes the set of all stopping times. If we take into account the income
from the sale of the hedge V , where V ∈ R+, then our optimisation problem is

g1(K, s) = sup
τ2∈T

Ex[exp(−rτ2)(V + g2(S(τ2)))],
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where τ2 is the optimal stopping time for our optimisation.
In order to enable optimal timing of the sale of the hedge, the buyer must have sufficient physical empty

space (to store the additional goods from the supplier) at the point of offering such a hedge. This storage
issue is an important aspect of the model because the lack of storage space is one of the main motives behind
the supplier selling excess goods to the buyer. Hence we must take into account storage constraints with the
buyer. Consequently, in order for the buyer to optimise its sale of the contract, we must also take into account
the sale of its inventory to vacate space for the goods from the supplier. This sale time can also be modelled
as an optimal stopping problem at optimal stopping time τ1, such that the set of optimal times is given by

T2 = {(τ1, τ2) ∈ T × T |τ1 ≤ τ2}.

Given that the buyer sells at time τ2, that is price f(S(τ2)), our optimisation problem is

αV (s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g2(K, s))]. (1)

4 Optimal Starting-Stopping Solution
To solve the optimal solution to equation (1) by the principle of recursion (and dynamic programming), the
equation (1) would be solved as

U(s) := sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + g1(K,S(τ)))].

Alternatively, our optimal starting-stopping problem is optimisation of the expression

Js(τ1, τ2) = Es[η1(S(τ1))exp(−rτ1) + η2(S(τ2))exp(−rτ2)],∀(τ1, τ2) ∈ T2,

where η1(.), η2(.) are real-valued functions. In association with this optimisation, we define two optimal
stopping problems

β̂(s) = sup
τ∈T

Es[exp(−rτ)η2(S(τ))],

α̂(s) = sup
τ∈T

Es[exp(−rτ)η1(S(τ)) + η1(S(τ))],

with stopping sets ζα̂ and stopping time Γα̂ as

ζα̂ = {s ∈ R|α̂(s) = η1(s) + β̂(s)}, with Γα̂ = inf{t ≥ 0|S(t) ∈ ζα̂},

similarly for

ζβ̂ = {s ∈ R|β̂(s) = η2(s)}, with Γβ̂ = inf{t ≥ 0|S(t) ∈ ζβ̂}.

We are now ready to state Theorem 1 which provides a solution in terms of the optimal stopping problems
previously discussed.

Theorem 1. If the functions η1 and η2 are bounded and continuous, then we deduce that β̂(.) and α̂(.)

are continuous and bound functions. The function β̂(.) is the smallest r-excessive majorant of η2 and Γζβ̂ is
the optimal stopping time to β̂(s):

β̂(s) = Es[exp(−rΓζβ̂ )η2(S(Γζβ̂ ))],∀s ∈ R.

Also, α̂(s) is the smallest r-excessive majorant of η(.) + β̂(.) and Γζα̂ is the optimal stopping time to α̂(s):

α̂(s) = Es[exp(−rΓζα̂)(η1(S(Γζα̂)) + β̂(S(Γζα̂)))],∀s ∈ R.

Secondly, α̂(.) satisfies α̂(.) ≥ α(.), where

α̂(s) = Js(τ̂1, τ̂2) = α(s),∀s ∈ R, for τ̂1 = Γζα̂ , τ̂2 = τ̂1 + Γζβ̂ ◦Θτ̂1 .
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Furthermore, if we have η1(.) = f(.) and η2(.) = V + g2(K, s) are continuous and bounded functions, then
g1(K, s) and U(s) are continuous, bounded functions and r-excessive, and U(s) is a solution to the optimal
starting-stopping problem in equation (1), that is

U(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g2(K, s))].

Proof. We apply the results of [9] where ψr, φr are defined in [9]: given that η2(.) is a bounded function then
applying [9] gives

lim
s→∞

sup
η+2 (s)

ψr(s)
= lim

s→∞
sup

η+2 (s)

exp(κs)
= 0,

lim
s→−∞

sup
η+2 (s)

φr(s)
= lim

s→−∞
sup

η+2 (s)

exp(−κs)
= 0.

Using these equations, given that η2 is continuous, and applying Propositions 5.11 and 5.13 in [9], we conclude
that β̂(.) is continuous, the smallest r-excessive majorant of η2 and Γζβ̂ is the optimal stopping time. Similarly,
using analogous arguments, given that η1 + β̂(.) is continuous and bounded, we can then conclude that α̂ is
continuous, bounded, the smallest r-excessive majorant of η1 + β̂(.) and that the optimal stopping time is Γζα̂ .

To prove the second part of the Theorem, our proof follows the same way as in [15] and the reader is
referred to [15] for more information. Given that we have already deduced that α̂(.), β̂(.) are continuous,
bounded functions, with their respective majorants, then for any set of stopping times (τ1, τ2) ∈ T2 and using
Proposition 1 then we have the following:
Since

Js(τ1, τ2) = Es[exp(−rτ1)η1(S(τ1)) + exp(−rτ2)η2(S(τ2))],

and that

α̂(s) ≥ Es[exp(−rτ1)α̂(S(τ1))]

≥ Es[exp(−rτ1)η1(S(τ1)) + exp(−rτ1)β̂(S(τ1))],

⇒ α̂(s) ≥ Es[exp(−rτ1)η1(S(τ1)) + exp(−rτ2)η2(S(τ2))].

∴ α̂(s) ≥ sup
(τ1,τ2)∈T2

Js(τ1, τ2).

Now if we have
τ̂1 = Γζα̂ , τ̂2 = τ̂1 + Γζβ̂ ◦Θτ̂1 ,

and α̂(s) and β̂(s) are the functions for the optimal stopping problem with respective stopping times τ̂1 and
τ̂2, then we can apply the strong Markov property of S(t) so that since

Js(τ̂1, τ̂2) = Es[exp(−rτ̂1)η1(S(τ̂1)) + Es[exp(−rτ̂2)η2(S(τ̂2))|Fτ̂1 ]],

then

Js(τ̂1, τ̂2) = Es[exp(−rτ̂1)(φ1S(τ̂1) + β̂(S(τ̂1)))] = α̂(s).

Now a simple instance of the above proof, and if we have η1(.) = f(.) and η2(.) = V + g2(K, s) are continuous
and bounded functions, then g1(K, s) and U(s) are continuous, bounded functions and r-excessive. Also U(s)
is a solution to the optimal starting-stopping problem in equation (1), so that we can write

U(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g2(K, s))].

Hence our proof is completed. �
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5 Closed Form Solutions for Payoffs
In this section we prove Theorems 2 and 3, and so provide closed form solutions to g1(s,K) and U(s). To
achieve this we follow [21] and first introduce Proposition 2.

Proposition 2. (Proposition 5.12, [9]) Let us denote

H(s) :=
ψr(s)

φr(s)
= exp(2κs),

where H : R → (0,∞), s 7→ ψr(s) := exp(κs), and s 7→ φr(s) := exp(−κs) are the fundamental solutions of
the differential equation

1

2
.
d2

ds2
w(s)− rw(s) = 0.

Let us also define a continuous and bounded function g : R 7→ R, and let λ : [0,∞) 7→ [0,∞) be the smallest
non-negative concave majorant of

F (x) =
g(H−1(x))

φr(H−1(x))
.1{x>0}. (2)

The function U(.) for the optimal stopping problem

U(s) = sup
τ∈T

Es[exp(−rτ)g(S(τ))],

can be expressed as U(s) = φr(s)λ(H(s)) with optimal stopping time τ∗ as

τ∗ = ΓζU := inf{t ≥ 0 : S(t) ∈ ζU},

where

ζU := {s ∈ R : U(s) = g(s)} = {s ∈ R : φr(s)λ(H(s)) = g(s)}.

We now provide closed form solutions for g1(s,K) and U(s).

Theorem 2. The function g1(s,K) is given by

g1(s,K) = z(s)
(
Υ3.1{s>µ3} −K.1{s≤µ3}

)
+ V.1{s≤µ3},

with stopping region ζg1(s,K) = (−∞, µ3], where

µ3 = µ4 + s∗, µ4 =
ln(V/2K)

κ
,Υ3 =

V 2

4K
.

Proof. To prove this Theorem we apply Proposition 2. Let x∗ = H(s∗) = exp(2κs∗) then we have

F1(x) =

V + g2

(
K,

lnx

2κ

)
x−

1
2

= q̂1(x).1{x>x∗} + q1(x).1{0<x≤x∗},

where

q1(x) =
√
x

(
V −

√
x
K√
x∗

)
, for q1(x) ∈ (0,∞),

q̂1(x) =
√
x(V −K), for q̂1(x) ∈ (0,∞),

and q1(x),q̂1(x) are real-valued functions.
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Now we find the smallest, positive, concave majorant of F1. We observe that

q′1(x) =
1

2

V√
x
− K√

x∗
⇒ q′′1 (x) = −1

4
V x−

3
2 ,

q̂′2(x) =
1

2

(
V√
x
− K√

x

)
⇒ q̂′′2 (x) = −1

4
V x−

3
2 +

1

4
Kx−

3
2 .

We recall that 0 < V < K. From the previous equations we deduce that q̂1(x) is a monotonically decreasing,
negative, and convex function on (0,∞), whereas q1(x) is concave on (0,∞). We have the unique root of q1(x)

γ1 =

(
V
√
x∗

K

)2

,

and the unique root of q̂1(x) is γ2 = γ1/4, where γ2 < γ1 < x∗ because V < K. We can consequently conclude
that q1 on (i) (0, γ2]: concave, increasing and positive (ii) (γ2, γ1): decreasing, concave, decreasing and positive
(iii) (γ2,∞): concave, decreasing and negative. Therefore it follows that F1 on: (i) (0, γ2]: concave, increasing
and positive (ii) (γ2, γ1): decreasing, concave, decreasing and positive (iii) (γ2, x

∗): concave, decreasing and
negative (iv) (x∗,∞): convex, decreasing and negative.

We therefore deduce that the smallest non-negative concave majorant of F1 is

λ(x) = q1(x.1{0≤x≤γ2} + γ2.1{x>γ2}).

Now if we use Proposition 2 then we obtain:

g1(s,K) = z(s)
(
Υ3.1{s>µ3} −K.1{s≤µ3}

)
+ V.1{s≤µ3}

with stopping region ζg1(s,K) given by

ζg1(s,K) =

(
−∞, ln(V/2K)

κ
+ s∗

]
= (−∞, µ3].

�
We note in passing that V ≤ K is a necessary condition (as mentioned earlier) to prevent arbitrage profit

taking, as we would expect in a well functioning and realistic market. If this condition is not obeyed then
the solution would change (however this would admit arbitrage and so would be unrealistic). Another useful
conclusion is that

0 < V ≤ K ⇒ µ4 < 0,

and Theorem 2 implies that if a supplier is expected to exercise his contract immediately then it is not optimal
for the buyer to offer the contract.

We now provide a closed form solution to U(s) in the following Theorem, which is characterised in terms
of s4, where s4 ∈ (−∞,−(e+ V )/l] is a solution to the equation

0 =
1

2
exp(−κs)

(
e+ V +

l

κ
+ ls

)
−Kexp(−κs∗).

Based on Theorem 2, it is beneficial to analyse U(s) when s∗ ≥ µ1 − µ3 and s∗ < µ2 − µ3, as these situations
represent the typical scenarios facing the supplier. The other scenarios occur during extremely high excess
supply or high shortage of goods, both of which would not normally happen.

Theorem 3. The function U(s) over s∗ ≥ µ1 − µ4 and s∗ < µ2 − µ4, is given by:

(a) for the condition µ3 > s4 > µ1 then

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1

= e+ ls+ V −Kz(s) for µ1 < s < s4

= exp(−κ(s− s4))(e+ ls4 + V −Kexp(κ(s4 − s∗))), for s > s4,
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with stopping region (−∞, s4];
(b) for the condition s4 ≤ µ1 then

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1

= exp(−κs)exp(µ1κ) (Λ + V −Kexp(µ1κ− κs∗)) , for s > µ1,

with stopping region (−∞, µ1];
(c) for the condition s4 ≥ µ3 then

U(s) = Λ + V −Kz(s), for −∞ < s < µ1

= e+ ls+ V −Kz(s), for µ1 ≤ s ≤ µ3

= e+ ls+ z(s)Υ3, for µ3 < s ≤ −µ5

= − l
κ
exp

(
−κe
l
− 1− κs

)
+ z(s)Υ3, for s > −µ5,

where
−µ5 = −

(
e

l
+

1

κ

)
,

with stopping region (−∞,−µ5].

Proof. We first define some auxillary functions: x = H(s) = exp(2κs), so that x∗ = H(s∗) = exp(2κs∗). We
also have

Q(x) =
√
x

(
e+ Υ1 + V −

√
x
K√
x∗

)
, where Υ1 =

l.ln(x)

2κ

⇒ Q′(x) =
1

2
√
x

(
e+ V +

l

κ
+ Υ1 −

K√
x∗

)
⇒ Q′′(x) = −1

4
x−

3
2 (e+ V + Υ1) ,

with

Q̂(x) =
√
x

(
e+ Υ1 +

√
x∗√
x

Υ3

)
⇒ Q̂′(x) =

1

2
√
x

(
e+

l

κ
+ Υ1 −

K√
x∗

)
⇒ Q̂′′(x) = −1

4
x−

3
2 (e+ Υ1) ,

with

Q1(x) =
√
x

(
Λ + V −

√
x
K√
x∗

)
⇒ Q′1(x) =

1

2
√
x

(Λ + V )− K√
x∗
⇒ Q′′1(x) = −1

4
x−

3
2 (Λ + V ),

with

Q̂1(x) = Λ
√
x+
√
x∗

V

4K
⇒ Q̂′1(x) =

1

2
√
x
.Λ⇒ Q̂′′1(x) = −1

4
x−

3
2 Λ,

with

Q2(x) =
√
xV − xK

x∗
⇒ Q′2(x) =

V

2
√
x
− K√

x∗
⇒ Q′′2(x) = −V

4
x−

3
2 ,

and

Q̂2(x) = (
√
x∗)Υ3 ⇒ Q̂′2(x) = 0⇒ Q̂′′2(x) = 0.

Hence we can deduce Q̂1(.) is concave and increasing on R≥0. The function Q′′(.) is also continuous on R≥0,
it has a unique root at

x1 = exp

(
−2κ

l
(e+ V )

)
,
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it is negative on (0, x1), and positive on (x1,∞). Also, as Q′(.) is continuous, monotone and decreasing
on (0, x1), limx↓0Q

′(x) = ∞, Q′(x1) < 0, and Q′(.) has a unique root x4 ∈ (0, x1). Moreover, as Q′(.) is
continuous, monotone and increasing on (x1,∞) with limx↑∞Q′(x) = −K/

√
x∗ < 0, we conclude that Q′(.)

is negative on (x4,∞) and has a minimum at x1.
Next we deduce that Q(.) is concave and increasing on (0, x4), concave and decreasing on (x4, x1), convex

and decreasing on (x1,∞). Also, Q̂′(.) is continuous on (0,∞), has a unique root at

x2 = exp((
−2κe

l
)− 2),

Q̂′(.) is positive on (0, x2) and negative on (x2,∞). Moreover Q̂′′(.) has a unique root

x3 = exp(
−2κe

l
) < x1,

it is negative on (0, x3) and positive on (x3,∞), where x2 < x3.
Next we deduce that Q̂(.) is concave and increasing on (0, x2], concave and decreasing on (x2.x3), convex

and decreasing on (x3,∞), and

Q̂(x2) =
−2lexp(−κel − 1)

2κ
+ (
√
x∗)Υ3 > Q̂2(x), for {x ∈ R|x ≥ 0}.

Also, Q1(.) is concave on (0,∞), Q′1(.) is continuous and monotone on R≥0. Moreover, as limx↓0Q
′
1(x) =∞,

and limx↑∞Q′1(x) = −K/
√
x∗ < 0, Q′1(.) has a unique root x5 ∈ R≥0 where

x5 =

(√
x∗(Λ + V )

2K

)2

.

We therefore can conclude that Q1(.) is increasing on (0, x5] and decreasing on (x5,∞).
The function Q2(.) is concave on R≥0, with Q′2(.) continuous and monotonically decreasing on R≥0. Fur-

thermore, Q′2(.) has a unique root γ2 ∈ R≥0, which is

γ2 =

(√
x∗V

2K

)2

< x5.

Therefore Q2(.) is increasing on (0, γ2] and decreasing on (γ2,∞). Let

γs = exp (2κµ1) ,

and so

Q1(γs) = Q(γs) =
√
γs

(
Λ + V −K

√
γs

x∗

)
,

Q′1(γs) =
1

2
√
γs

(Λ + V )− K√
x∗
,

Q′(γs) =
Λ + l

κ

2
√
γs
,

therefore there is a continuous fit between Q1, Q at γs but we fail to have a smooth fit because Q(γs) < Q1(γs).
Now for Q̂1 and Q̂ we have

Q̂1(γs) = Q̂(γs) = Λ
√
γs + (

√
x∗)Υ3,

Q̂′1(γs) =
Λ

2
√
γs
,

Q̂′(γs) =
Λ + l

κ

2
√
γs
,
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and shows an continuous fit at γs but not a smooth fit because Q̂1(γs) > Q̂(γs). At point x3 we have

Q(x3) = Q2(x3) = exp

(
−κe
l

)
V − exp

(
−2κe

l

)
K√
x∗
,

Q′(x3) =
1

2
exp

(κe
l

)(
V +

l

κ

)
− K√

x∗
,

Q′2(x3) =
1

2
exp

(κe
l

)
V − K√

x∗
.

This is also a continuous fit but fails because Q′(x3) < Q′2(x3). However, at γ2 there is

Q2(γ2) = Q̂2(γ2) = (
√
x∗)Υ3,

Q′2(γ2) = Q̂′2(γ2) = 0,

which proves a continuous and smooth fit between Q̂2 and Q2 at γ2. Also for Q and Q̂(.) we have a smooth
and continuous fit at γ2

Q(γ2) = Q̂′(γ2)e
√
γ2 + l

√
γ2
ln(γ2)

2κ
+ (
√
x∗)Υ3,

Q′(γ2) = Q̂′(γ2) =
1

2
γ−

1
2

(
e+

l

κ
+
l.ln(γ2)

2κ

)
.

Similarly, for Q1(.) and Q̂1(.) there is a continuous and smooth fit at γ2

Q1(γ2) = Q̂1(γ2) = Λ

(√
x∗V

2K

)
+ (
√
x∗)Υ3,

Q′1(γ2) = Q̂′1(γ2) =
ΛK

V
√
x∗
.

Also at x3 we have

Q̂(x3) = Q̂2(x3) = (
√
x∗).Υ3,

Q̂′(x3) = exp
(κe
l

) l

2κ
,

Q̂′2(x3) = 0,

and so we have a continuous fit at x3 but not a smooth fit because Q̂′(x3) < Q̂′2(x3).
With all the previous results we can solve the two stage optimal stopping problem. We have 0 < γs ≤

γ2 < x3 and F2(.) is given by

F2(.) =
{f + g1}(H−1(x))

x−
1
2

, (3)

= Q1(x).1{0<x<γs} +Q(x).1{γs≤x≤γ2} + Q̂(x).1{γ2<x≤x3} (4)

+Q̂2(x).1{x3<x}. (5)

With the previous derivations we are now in a position to prove the Theorem. Firstly, we characterise the
small non-negative majorant λ of F2(.) as given in equations (3)-(5). As deduced previously, we have: Q1(.) is
concave everywhere, increasing on (0, x5] where x5 > γs; we have Q′(γs) < Q′1(γs), and Q′(γ2) > Q̂′(γ2);Q̂(.)
is concave everywhere, increasing on (0, x2], decreasing on (x2,∞), with 0 < x2 < x3 < x1;Q̂(x2) > Q̂(x),∀x ∈
R≥0. Now from equations (3)-(5) we can deduce that the transformed stopping region is {λ(.) = F2(.)} = (0,Π]
where Π ≤ x2.

We now determine U(s) for the specific subregions by applying Proposition 2. For:
(a) in this region we have γ2 > x4 > γs, the stopping region is (0, x4], for x ≥ x4 the function λ(.) is constant
with value Q(x4):

λ(x) =
√
x

(
Λ + V −K

√
x√
x∗

)
, for 0 < x < γs
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=
√
x

(
e+ Υ1 + V −K

√
x√
x∗

)
, for γs < x ≤ x4

=
√
x4

(
e+ l.

ln(x4)

2κ
+ V −K

√
x4
x∗

)
, for x4 < x.

Hence by applying Proposition 2 we have

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1

= e+ ls+ V −Kz(s), for µ1 < s < s4

= exp(−κ(s− s4))(e+ ls4 + V −Kexp(κ(s4 − s∗))), for s > s4,

(b)in this region we have x4 ≤ γs, with stopping region (0, γs], and x ≥ γs we have λ(.) is constant with value
Q(γs):

λ(x) =
√
x

(
Λ + V −K

√
x√
x∗

)
, for 0 < x ≤ γs

=
√
γs

(
Λ + V −K

√
x√
x∗

)
, for x > γs.

Hence by applying Proposition 2 we have

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1

= exp(−κs)exp(µ1κ)(Λ + V −Kexp(µ1κ− κs∗)), for s > µ1.

(c) in this region we have x4 ≥ γ2, however this inequality can be re-expressed as x2 ≥ γ2; the proof is as
follows. For x4 ≥ γ2 ⇒ Q̂′(γ2) ≥ 0 because Q̂′(γ2) = Q′(γ2), and Q′(.) is non-negative on (0, x4]. Also as
Q̂′(.) is non-negative on (0, x2], negative on (x2,∞) and has unique root at x2, then Q̂(γ2) ≥ 0⇒ x2 ≥ γ2.

The stopping region given by (0, x2], and x ≥ x2 the function λ(.) is constant with value Q̂(x2)

λ(x) =
√
x

(
Λ + V −K

√
x√
x∗

)
.1{0<x<γs} +

√
x

(
e+ Υ1 + V −K

√
x√
x∗

)
.1{γs<x≤γ2}

+
√
x

(
e+ Υ1 +

√
x√
x∗
.Υ3

)
.1{γ2<x≤x2} −

l

κ

√
x2 +

√
x∗.Υ3.1{x>x2}.

Hence by applying Proposition 2 we have

U(s) = Λ + V −Kz(s), for −∞ < s < µ1

= e+ ls+ V −Kz(s), for µ1 ≤ s ≤ µ3

= e+ ls+ exp(κ(s∗ − s))Υ3, for µ3 < s ≤ −µ5

= − l
κ
exp

(
−κe
l
− 1− κs

)
+ exp(κ(s∗ − s))Υ3, for s > −µ5,

Hence this completes our proof. �

6 Limiting Behaviour
Whilst we have provided equations to our payoffs on a single exchange (that is selling of goods to vacate space
at the buyer and then selling the contract), it would be useful to understand the long term behaviour after n
exchanges or operations, specifically for n → ∞. In other words we wish to know the limiting behaviour of
our operation. In order to analyse this situation we make the assumption that the buyer must await for the
supplier to exercise the nth contract, before the (n+ 1)th contract can be offered. Consequently, the following
function can be defined recursively as

αn = sup
(τ1,τ2)∈T2

Es[f(S(τ1))exp(−rτ1) + (V + gn2 (K,S(τ2)))exp(−rτ2)], (6)
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where

gn2 (K,S(τ2)) = Es[exp(−rΓ[s∗,∞))(α
n−1
V (S(Γ[s∗,∞))−K)],

with α0
V := 0, and

βn(s) = sup
τ∈T

Es[exp(−rτ)(V + gn2 (K,S(τ2)))]. (7)

Hence we are particularly interested in the limiting behaviour of

α∗(s) = lim
n→∞

αn(s),∀s ∈ R,

β∗(s) = lim
n→∞

βn(s),∀s ∈ R.

In order to understand the limiting behaviour of our optimisation problem, we follow [21] and present a num-
ber of proofs. First we provide a Lemma on the functions αn(.), βn(.), gn2 (.) and their sequences (Lemma
1). We then provide a Lemma on the optimal stopping problem and Brownian motion (Lemma 2). Next we
provide a Lemma (Lemma 3) on optimal stopping problems for gξ2(.) (to be defined later) and the stopping
region for function gξ1 (to be defined later). We then use the previous Lemmas to prove the limiting function
of α∗(.) (Lemma 4), and the previous Lemmas are used to prove Theorem 4 on α∗(.).

Lemma 1. The functions αn(.), βn(.) and gn2 (.) are continuous and bounded functions for all n ≥ 1. Also,
the sequence of functions {αn(.)}n≥0, {βn(.)}n≥1 and {gn2 (.)}n≥1 are non-decreasing.

Proof. First, we apply Theorem 1 to show β1 and α1 are continuous and bounded. We observe that
functions αn(.), gn+1

2 (.) and βn+1(.) are continuous and bounded, we have α0 = 0 is bounded and continuous,
which implies the function g12(.) is bounded and continuous by definition. By Theorem 1 this implies that β1

and α1 are continuous and bounded. Therefore for n = 1 we have αn−1 is continuous and bounded implying
that αn, βn and gn2 are continuous and bounded. If we then assume that for a given n ≥ 1 that αn−1 is
continuous and bounded, we can also assert similarly that αn, βn and gn2 are continuous and bounded. By
induction we therefore conclude that n ≥ 1.

We now apply Theorem 1 to prove that the sequences {αn}n≥0, {βn}n≥1 and {gn2 }n≥1 are non-decreasing.
By Theorem 1 we have α1 is non-negative, therefore g22 ≥ g12 . Now as α1, α2 are solutions to the equation (6)
(respectively), then

g22 ≥ g12 ⇒ α2 ≥ α1.

Similarly, if αn ≥ αn−1 for some n ≥ 1, then gn+1
2 ≥ gn2 and therefore αn+1 ≥ αn. By a similar approach we

deduce that βn+1 ≥ βn because βn is the solution to equation (7). Hence by induction on n ≥ 1 the proof is
completed. �

Using the previous Lemma we have {αn}n≥0 and {βn}n≥1 are non-decreasing sequences of continuous and
bounded functions. Now using Theorem 1 we can also deduce that αn for equation (6) also satisfies

αn(s) = sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + βn(S(τ))], n ≥ 1. (8)

We now wish to determine the optimal stopping problem for Brownian motion.

Lemma 2: For Brownian motion S(t) with initial value s ∈ R, on probability space (Ω,F ,Ps), then

U(s1) ≤ U(s2), for s1 > s2 ≥ s∗,

where function g(.) : R→ R is continuous, bounded and decreasing after s∗, that is g(s1) ≤ g(s2), and U(s) is
the optimal stopping problem

U(s) = sup
τ∈T

Es[exp(−rτ)g(S(τ))].

Proof: Let us define the stopping region ζU = {s ∈ R : U(s) = g(s)} for the optimal stopping problem, with
ΓζU = inf{t ≥ 0 : S(t) ∈ ζU}. For ζU = ∅ ⇒ U = 0 and the claim holds. For ζU 6= ∅ then we have at least one
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of the points, or none of points s1, s2 are in the stopping region. If we take the scenario that at least one point
is in the stopping region, let s1 ∈ ζU ⇒ U(s1) = g(s1) and g(s1) ≤ g(s2) ≤ U(s2). If s2 ∈ ζU ⇒ S(ΓζU ) ≥ s2,
∀s > s2 ⇒ g(S(ΓζU )) ≤ g(s2) = U(s2),∀s > s2, including s1. We therefore have U(s1) ≤ U(s2) by using the
non-negativity of U(.) and optimal value of ΓζU .

We now examine the scenario for neither points {s1, s2} in the stopping region. First we examine ζU ∩
{s1, s2} 6= ∅. Let s4 ∈ ζU ⇒ U(s4) = g(s4), with s4 ∈ ζU ∩ {s1, s2}, then g(s2) ≥ g(s4) ⇒ U(s2) ≥ U(s4).
Also as S(ΓζU ) ≥ s4,∀s > s4 ⇒ g(S(ΓζU )) ≤ g(s4), and g(s4) = U(s4). Hence U(s1) ≤ U(s4) ≤ U(s2). We
now examine the scenario ζU ∩{s1, s2} = ∅: if ζU ∩ (∞, s∗] = ∅ ⇒ ζU ⊆ [a,∞) where a ∈ ζU ∩ (s∗,∞) because
ζU is non-empty and closed. Given that 0 ≤ U(a), U(a) = g(a) and if we now use the optimality of ΓζU
then we have g(s∗) < U(s∗) ≤ g(a), which contradicts the assumption that g(.) is decreasing [s∗,∞), hence
ζU ∩ (−∞, s∗] 6= ∅. Now suppose first that ζU ⊂ (−∞, s2), which is a closed and non-empty set, then there
must exist a point l ∈ ζU , such that ζU ⊆ (−∞, l]. Therefore

U(s1) = exp(κ(l − s1))U(l),

U(s2) = exp(κ(l − s2))U(l)⇒ U(s1) ≤ U(s2).

Now finally, suppose that ΓU ∩ (−∞, a1] ∪ [a2,∞), where a1 < s2 < s1 < a2 and a1, a2 ∈ ζU . If we apply
Lemma 4.3 from [9] we obtain U(s) = f(a1, a2, s, κ) and by differentiating we obtain U ′(s) and the conditions
to determine that U(.) is decreasing on [s∗,∞). �

We now introduce our Lemma on the functions gξ1(.) and gξ2(s,K).

Lemma 3: Let ξ : R → R be a continuous and bounded function, decreasing on [x∗,∞) and ξ(s∗) > K.
Let us also define

gξ2(s,K) = Es[exp(−rΓ[s∗,∞])−K)],

and also the optimal stopping problem

gξ1(s) = sup
τ2

Es[exp(−rτ2)(V + gξ2(s,K))],

then we have (∞, s∗] ⊆ Γζ
g
ξ
1

= {gξ1 = V + gξ2}.

Proof: We first apply Proposition 2 to V + gξ2(s,K), and define F : [0,∞)→ R as

F (x) =
√
x

(
V +

(ξ(s∗)−K)
√
x

exp(κx∗)

)
.1{0<x≤x∗} +

√
x

(
V +

ln(x)

2κ
−K

)
.1{x>x∗}

where x∗ = F (s∗) = exp(2κs∗). Also, let us define q̂1(.) and q̂2(.), both defined on R≥0, with

q̂1(x) =
√
x

(
V + ξ

(
ln(x)

2κ

)
−K

)
,

and

q̂2(x) =
√
x

(
V +

ξ(s∗ −K)
√
x

exp(κs∗)

)
⇒ q̂′2(x) =

1

2
V x−

1
2 +

ξ(s∗)−K
exp(κs∗)

⇒ q̂′′2 (x) = −1

4
V x−

3
2 ,

noting that q̂′2(.) = F (.) over [0, x∗], and q̂′1(.) = F (.) over [x∗,∞]. Now if ξ(s∗) > K then the differentials
of q̂2 imply that q̂2 is non-negative, concave and increasing function. Therefore the smallest non-negative
concave majorant of q̂2 is itself, and q̂2 majorises F because q̂2(x) ≥ q̂1(x) and q̂1(x) = F (x) over [x∗,∞):

q̂2(x)− q̂1(x) =
√
x

(
V +

ξ(s∗ −K)
√
x

exp(κs∗)

)
−
√
x

(
V + ξ

(
ln(x)

2κ

)
−K

)
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=
x

exp(κs∗)
(ξ(s∗)−K)−

√
x

(
ξ

(
ln(x)

2κ

)
−K

)
≥
√
x

( √
x

exp(κs∗)
− 1

)
(ξ(s∗)−K)⇒ q̂2(x) ≥ q̂1(x),

where we utilise s → ξ(s) is decreasing on [s∗,∞),
√
x >

√
x∗ and x∗ = exp(κs∗) over (x∗,∞). Therefore

the smallest non-negative concave majorant of F and λ therefore gives λ ≤ q̂2. However, on [0, x∗] we have
F = q̂2 and so λ = q̂2 = F,∀[0, x∗], alternatively (−∞, s∗] ⊆ Γζξ1

. Hence the proof is completed. �

We now introduce Lemma 4, which requires Lemmas 2 and 3. Lemma 4 is required so that we can prove
Theorem 4.

Lemma 4. The limiting function of α∗ = limn→∞ αn is bounded.

Proof. To prove this, we examine α∗ value with respect to K. First for α∗ ≤ K, we apply Lemma 2
and using an induction argument prove that αn(s∗) ≥ αn(s), ∀s ≥ s∗,∀n ≥ 1. This inequality true for n = 0,
and if we assume it is also true for n = m = 1, then payoff V + gm2 is decreasing on [s∗,∞) and by Lemma
2 the same also holds for βm+1(s). Since f(.) is also decreasing on R, by Lemma 2 and the characterisation
of αm+1 in equation (8) to claim that αm+1 is decreasing on [s∗,∞). Now since αn(s∗) ≤ K,∀n ≥ 0 then
gn2 (s) ≤ 0 on (−∞, s∗],∀n ≥ 1. However, by the prior argument gn2 (s) = αn−1(s)−K ≤ αn(s∗)−K ≤ 0 over
(s∗,∞) ⇒ gn2 (s) ≤ 0,∀s ∈ R. Now we recall that V > 0 is constant, f(.) ≤ Λ, the characteristation of αn in
equation (6) to deduce that αn ≤ Λ + V,∀n ≥ 1⇒ α∗ ≤ Λ + V .

We now examine the case for α∗(s∗) > K and that there exists an index n ≥ 1: for equations (7) and (8)
we assign the stopping sets, respectively ζnβ = {s ∈ R|βn(s) = V + gn2 (s)}, ζnα = {s ∈ R|αn(s) = f(s) +βn(s)},
with respective stopping times τn1 = Γζαn , and τ

n
2 = τn1 + Γζβn ◦ Θτn1

. We now apply Theorem 1 ∀n ≥ 1, so
that

αn(s) = Es[exp(−rτn1 )f(S(τn1 )) + exp(−rτn2 (V + gn2 (S(τn2 )))].

Now if we define n0 as the first n ≥ 1 such that αn > K, then using previous arguments we have ∀n ≥ n0 the
inequality gn+1

2 (s) ≤ gn+1
2 (s∗),∀s ≥ s∗. Moreover, s∗ is the global maximum for gn+1

2 (s) and from equation
(7) one can show ∀n ≥ n0 that βn+1(s∗) = V + gn+1

s (s∗), and βn+1(s∗) ≥ βn+1(s). The remainder of the
proof is found by following [21] and the proof is outlined here. Firstly by deducing that the stopping region
is ζαn+1 ∩ (−∞, s′) 6= ∅,∀n ≥ n0 and s′ < s∗ is a constant. We then deduce that for every m ≥ 1 there exists
a point s ∈ ζαm+n0 , such that αm+n0(s∗) ≤ αm+n0(s). The next deduction is that for all m ≥ 1 then we must
have at least one point sm+n0

∈ ζαm+n0 ∩ (−∞, s′], such that αm+n0(s∗) ≤ αm+n0(sm+n0
). Now by applying

Lemma 3 we find that αn ≤ αn+1 ≤ V + Λ + Υ2,∀n ≥ n0, where Υ2 < ∞. If we take the limit for n → ∞
then we have α∗ ≤ V + Λ + Υ2. �

Now that we have stated our lemmas, we are now ready to state our Theorem.

Theorem 4. The functions α∗ and β∗ are lower semicontinuous functions and are bounded. The func-
tions have the following properties: firstly, α∗ is the smallest r-excessive majorant of f + β∗. Secondly, β∗ is
the smallest r-excessive majorant of V + g∗2 , where

g∗2(s) = (α∗(s)−K).1{s>s∗} + (α∗(s∗)−K).z(s).1{s≤s∗}.

Thirdly, α∗ and β∗ are functions of the optimal stopping problems:

α∗(s) = sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + β∗(S(τ)))],

β∗(s) = sup
τ∈T

Es[exp(−rτ)(V + g∗2(S(τ)))].

Finally, α∗ is the function of the implicit optimal starting-stopping problem

α∗(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g∗2S(τ2))].
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Proof. We note that α∗ and β∗ are the supremum of non-decreasing sequences of bounded and continuous
functions, hence we can deduce the functions exists and are lower semicontinuous. Moreover, Lemma 4 implies
that α∗ is bounded, and so g∗2 and β∗ are bounded.

We now wish to prove that α∗ is the smallest r-excessive majorant of f + β∗. From [8] we can assert
that as the limiting function of an increasing sequence of r-excessive functions, then α∗ is also r-excessive.
Now given that αn is the smallest r-excessive majorant of f + βn for n ≥ 1 then α ≥ f + βn,∀n ≥ 1. If
we now take the limit in terms of n then we obtain α∗ ≥ f + β∗, and α∗ is the r-excessive majorant of
f + β∗. To prove that α∗ is the smallest, let ᾱ : R → [0,∞] be any r-excessive function dominating f + β∗,
that is ᾱ ≥ f + β∗ ≥ f + βn,∀n ≥ 1. Given that we know that αn is the smallest r-excessive majorant of
f + βn,∀n ≥ 1, then

ᾱ ≥ αn,∀n ≥ 1⇒ ᾱ ≥ sup
n
αn ⇒ ᾱ ≥ α∗.

Moreover, to prove β∗ is the smallest r-excessive majorant of V +g∗2 , we use a similar argument to that applied
to α∗ previously.

To prove that α∗ and β∗ are functions of the optimal stopping problems, we first observe that β∗ is the
smallest r-excessive function majorising V + g∗2 , therefore it is the function of the optimal stopping problem

β∗(s) = sup
τ∈T

Es[exp(−rτ)(V + g∗2(S(τ)))].

Now by applying Proposition 5.13 in [9] we can conclude β∗ is continuous and bounded. If we now repeat
previous arguments then we can conclude that β∗ is the function of the optimal stopping problem

α∗(s) = sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + β∗(S(τ)))],

and so is continuous and bounded. If we now apply Theorem 1 then we can deduce that

α∗(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g∗2S(τ2))].

Hence this completes our proof. �

7 Conclusion
Risk management is a fundamental function of all businesses nowadays, and its importance has grown over the
past 30 years. In particular, suppliers need to manage their goods and Value at Risk (VaR) is a popular risk
measurement for risk analysis. Within a VaR risk methdology we have analysed a risk management strategy,
through transferring risk with a hedging contract to alternative buyers. We provide a mathematical model of
the hedging contract and operation, modelling it as an optimal stopping problem. We solve the problem to
derive the optimal stopping criteria. We provide closed form solutions to the payoffs involved in the model,
and we derive the limiting and long term behaviour of our operations. In terms of future work, we would like
extend our model to take into account additional transaction costs (such as taxes) to determine the impact
on payoffs. We would also like to investigate the impact of introducing switching clauses in our contract to
improve hedging costs.
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