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Abstract 
 

In order to optimize the allocation of water resources, an inexact two-stage stochastic dependent-chance 
programming model, which integrates stochastic dependent-chance programming, two-stage programming and interval 
programming, is given. Compared with the existing other water resources management models, this model reflects the 
dynamic characteristics and randomness of the water resource management system, emphasizes the importance of 
water users, and maximizes the probability of achieving the required economic goals set by the water manager. In 
order to solve the model with the data of multiply distributed stochastic boundaries, a hybrid algorithm, which 
incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. Finally, the 
model is applied to a case study of Handan City’s water resources management in 2024 and 2025, through which the 
optimized water-allocation in Handan City is realized. 
© 2019 World Academic Press, UK. All rights reserved.  
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1 Introduction 
 
Water resources are crucial to the survival of human beings and the development of the society. With the increasing 
number of water users, the consumption of water is increasing rapidly. Meanwhile the extreme weather, deterioration 
of ecological environment and water-consuming economics also lead to the increasing shortage of water resources. 
The efficient utilization of water resources has become an urgent problem.  

For the better use of water resources, the optimal configuration of water resources has attracted a lot of attention 
[2, 5, 14, 15, 17, 20]. Stochastic programming is one of the important optimization methods to handle the randomness 
in the water resources management system. For example, Gu et al. [3] gave a water resources management method by 
incorporating interval programming, multistage programming and joint-probabilistic integer programming. Taking 
into account the development and distribution processes for water, Li and Zhang [8] balanced the water allocation and 
system benefits through two-stage interval stochastic programming. Mo et al. [13] gave more discussion of urban 
water resources allocation problems by putting forward a multistage stochastic integer programming. In order to 
handle the relationship between water users and regional water exchange, Fu et al. [1] proposed a two-stage interval-
parameter stochastic programming model to replace water resources from the areas where water is used inefficiently 
to the areas where water is used efficiently. Actually, there are multiple events in a complex water resources 
management system [9]. Sometimes, the water manager wants to maximize the chance functions, such as probability 
measure, credibility measure, chance measure and so on, of meeting these events [9]. Dependent-chance 
programming [9] is a method to solve the problem. Up to now, dependent-chance programming has been used to 
optimize the disposition of water resources. Guo et al. [4] gave an uncertainty theory [10, 11] based dependent-chance 
goal programming model to manage water resources. Wang et al. [18] gave an optimal scheme of allocating irrigation 
water by establishing an interval quadratic fuzzy dependent-chance programming model. Peng and Zhou [16] 
proposed a fuzzy multi-objective dependent-chance programming model to allocate the water resources in Dalian 
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City of China. However these models did not discuss the water resources management in the stochastic environment 
nor consider the significance of different water users.  

In order to solve the above problems, an inexact two-stage stochastic dependent-chance programming model is 
given firstly, which combines stochastic dependent-chance programming, two-stage programming and interval 
programming. We set weights according to the importance of the different water users, obtain the maximum 
probability of achieving the aims formulated by the decision maker at different stages with different levels of inflow 
(such as high inflow, medium inflow and low inflow), and acquire optimized configuration schemes. It is difficult to 
solve the model by translating the model into deterministic equivalents because there are data with multiply 
distributed stochastic boundaries. Then a hybrid algorithm incorporating stochastic simulation, back propagation 
neural network, and genetic algorithm is introduced to solve the model. Next, this model is applied the water resource 
management system in Handan City. The optimized allocation of water resources can help balance the development 
of society, economy and environment under the existing system constraints of Handan City. In the end, the solutions 
of the model provide optimal water allocation schemes to municipal user, ecological user, agricultural user and 
industrial user in 2024 and 2025. 
 
2 An Inexact Multistage Stochastic Programming Model for Water Resources 

Management 
 
The maximum expected system benefits can be obtained through formulating the optimal water allocation schemes to 
different water users, such as municipal, ecological, industrial and agricultural users and so on. A water manager 
promises to provide a certain amount of water for each user in advance. If the promised amount of water can be 
satisfied, the users can gain profits or expand production [7]. If the promised amount of water is not available, the 
users have to reduce production or obtain water in other ways at higher prices, resulting a lower profit [12]. Because 
the supply of water is subject to the randomness of the amount of water in the future and certain dynamic 
characteristics exist in the long-term water resource allocation plan, Li et al. [7] proposed the following scenario-
based multistage stochastic programming model for water resources management under uncertainties, 
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where f  is the net benefit of the water management system (¥); m  is the water users’ number; i  represents the 
index of water users; n  is the number of the period; j  represents the index of the periods; jK  is the sum of scenarios 
in period ;j  ijNB  is the net benefit when per cubic meter of water is allocated to user i  in period j (¥/ 3m ); ijT  is the 

fixed amount of water which the water manager promises to distribute to user i  in period j ( 3m ); jkQ  is the water 

flow in the scenario k  occurs in period j ( 3m ); jkp  is the probability of occurrence for scenario k  in period ;j  ijkD  
is the water shortage amount of user i  in the scenario k  occurs in period j ( 3m ); ijC  is the loss when per cubic 

meter of water is not allocated to user i  in period j (¥/ 3m ); ( )1j kε −  is the surplus water inflow in the scenario k  

occurs in period 1j − ( 3m ); maxijT  is the amount of maximum allowable water allocation for user i  in period j ( 3m ). 
Suppose there are four water users such as municipal user, ecological user, the agricultural user and industrial 

user. The priorities of water users are different. For example, the water supply for the municipal user must be 
guaranteed first since water for life is crucial to people's survival. Besides that, due to the government’s focus on eco-
construction, the water supply for the ecological user should also be satisfied preferentially as compared with other 
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users. Therefore, we introduce the priority coefficients iω  [19] into the model (1) and establish the following model 
(2) to measure the priority level of water user i , 
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Take into account the difficulties of precise data collection, some fixed values, such as ,ijT ,ijNB ijC  and ,jkQ  
cannot be determined exactly. Thus, an inexact multistage stochastic programming model (3), which introduces 
interval parameters into model (2), is proposed as follows, 
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3 Stochastic Dependent-Chance Constrained Programming 
 
When the water manager wants to maximize the probability measure of meeting the events in a complex water 
resources management system, stochastic dependent-chance programming [9] can be employed. 

(1) Stochastic environment, stochastic event and chance function 
According to the reference [9], stochastic environment, stochastic events and chance function are basic concepts 

in stochastic dependent-chance programming. Let x  be a decision vector and ξ  a stochastic vector. 
Stochastic environment is defined by the stochastic constraints of 

( ), 0jg ≤x ξ ， 1,2, , .j p=   

Stochastic event is defined by the inequalities of  
( ), 0, 1, 2, , .kh k q≤ = x ξ  

The chance function of an event characterized by ( ), 0, 1, 2, ,kh k q≤ = x ξ  is defined as the probability 
measure of the event, i.e.,  

( ){ }( ) Pr , 0, 1, 2, ,kf x h k q= ≤ = x ξ  

subject to the stochastic environment. 
(2) Stochastic dependent-chance single-objective programming 
In order to maximize the chance function of the event in the stochastic environment, the following stochastic 

dependent-chance single-objective programming [9] is given, 
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where ( ), 0kh ≤x ξ ( 1,2, ,k q=  ) represent the stochastic event, ( ), 0jg ≤x ξ ( 1,2, ,j p=  ) represent the stochastic 
environment. 

 
4 An Inexact Two-Stage Stochastic Dependent-Chance Programming Model 

for Water Resources Management 
 
According to the practical applications, the n is set to 2 in model (3). Then combining the two-stage model with the 
dependent-chance programming model, an inexact two-stage stochastic dependent-chance programming model (5) for 
water resources management can be obtained as follows,  
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where v±  is the given target value. The aim of the programming is to maximize the probability of  
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5 The Inexact Two-Stage Stochastic Dependent-Chance Programming Model 

for Water Resources Management in Handan City 
 
Handan City, which has about 1.67 billion cubic meters of water and 191 cubic meters per capita, 9% of the national 
average level, is short of water resources extremely. Relevant data of Handan City’s water resources system can be 
obtained from Statistics Almanac of Handan City and the evaluation of water resources in Handan City (2008) [6]. 
Table 1 gives the water allocation targets in 2024 and 2025 of Handan City, Table 2 gives the distribution of water 
sources, and Table 3 gives relevant economic data in 2024 and 2025. And v ±  is set to be [65, 80] 8×10 ¥, then we will 
know how to allocate the water resources so that the probability of the event that the system net benefit is [65, 80]

8×10 ¥ more than the economic penalty is maximal. 
 

Table 1: Water allocation targets in 2024 and 2025 ( 8 310 m ) 

Water allocation targets 
Time periods 

1j =  2j =  

Municipality ( )1i =  [2.21,3.50] [1.99,3.15] 

Ecology ( )2i =  [0.95,1.53] [1.04,1.67] 

Agriculture ( )3i =  [12.40,14.96] [11.16,13.46] 

Industry ( )4i =  [2.25,3.31]  [2.02,2.98]  
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Table 2: The amount of water resources in 2024 and 2025 ( 8 310 m ) 

The flow level L ( )1k =  M ( )2k =  H ( )3k =  

j=1 [3.43,3.58]+ 11a  [3.61,3.76] + 12a  [6.68,6.79] + 13a  

j=2 [3.43,3.58] + 21a  [3.61,3.76] + 22a  [6.68,6.79] + 23a  

Probability 25.42% 47.46% 27.12% 

where ( , )U a b  represents a uniform distributed random variable and 11 12.73,13.~ ( ),43a U 12 12.85,13.~ ( ),57a U  

13 10.62,11.~ ( ),29a U 21 11.31,12.~ ( ),73a U 22 11.42,12.~ ( ),85a U 23 9.50,10.~ ( ).62a U  

Table 3: Net benefits and penalties in 2024 and 2025 (¥/m3) 

 
Time period 

1j =  2j =  
Net benefit when water demand is satisfied 

Municipality [ ]77.35,81.14  [ ]72.01,88.44  

Ecology 2 2( ,0.5 ), (11.97 16.92,0.5 )N N    2 2( ,0.5 ), (12.23 17.22,0.5 )N N    

Agriculture 2 2( ,0.5 ), (25.22 30.46,0.5 )N N    2 2( ,0.5 ), (38.8,0.53 )4.2N N    
Industry 5.82 5.64 

Penalty when water is not delivered 
Municipality [ ]122.46,130.90  [ ]156.74,167.54  

Ecology [ ]78.53,90.93  [ ]112.48,128.75  
Agriculture [ ]39.51,40.12  [ ],548.82 0.61  

Industry 188.84 270.64 
where 2( , )N µ σ  represents a normally distributed random variable.  

Due to the survival needs and the eco-priority principle, the priorities of water users are municipal user ( 1i = ), 
ecological user ( 2i = ), agricultural user ( 3i = ), and industrial user ( 4i = ), respectively. iω ( )=1,2,3,4i  represents 
the priority of the four users which can be set to 0.4, 0.3, 0.2 and 0.1 [19]. Considering the actual situations, the 
remaining water amount in the previous period is included into the water amount in the latter period, then ( )1j kε −  is no 
longer introduced separately. According to Tables 1-3, the model is proposed as follows:  
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The chance function of model (6) is 
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The aim of solving the model is to obtain ( )max f . 
In the following, the process of solving the model is given. 
(1) Solve the model (8) as follows: 
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where ijkD−  and ijy  are decision variables. The chance function of model (8) is 
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and solving model (8) is equivalent to obtaining 1max .f  
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In order to solve the model (8), a hybrid algorithm is proposed, which incorporates back propagation neural 
network, stochastic simulation and genetic algorithm. 

Step 1: We use stochastic simulation to generate input-output data for 1 1 2 1: ( , , ) .ij i k i kU y D D f− − →  
Step 2: BP neural network is used to simulate objective function according to the generated input-output data.  
Step 3: GA is used to obtain the optimal solution. Firstly, a certain number of chromosomes are initialized 

according to the distribution function. Then, the chromosomes are selected by running a standard scheme of the 
roulette wheel and updated by crossover and mutation operations. In this process, the trained BP neural network is 
used to calculate the values of the objective function as fitness value. Finally, the best chromosome is obtained as the 
optimal solution and the optimal value is also achieved after a given number of cycles. 

Step 4: The model (8) is solved. The optimal solution are ijkoptD− and ijopty , and the optimal value 1max f  is 
obtained. 

(2) Solve the following model (9): 
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                    (9) 

where ijkD+  is the decision variable. The chance function of model (9) is 

( )

( )

( )

4 2 4 3 4 9

1 1 1 2 2 2
=1 1 =1 1 =1 1

4

1 1 1 1 1
=1

4

2 2 2 2 22
=1

1max 1 1 1 1

, 1,2,3

, 1,2, ,9= Pr

i ij ij ij ijopt k i i i k k i i i k
i j i k i k

i i i opt i k k
i

i i i opt i k k
i

i i i i opt i k

NB T T y p C D p C D v

T T y D q k

T T y D q kf

T T T y D

ω ω ω− − + + + + −

= = =

− + −

− + −

± − −

+ ∆ − − ≥

+ ∆ − ≤ =

+ ∆ − ≤ =

≥ + ∆ ≥ ≥

∑∑ ∑∑ ∑∑

∑

∑ 

2 max 2 2 2 2

,

0, =1,2,3, 4, 1,2,3

0, =1,2,3, 4, 1,2, ,9i i i i opt i k

i k

T T T y D i k± − −

 
 
 
 
 
 
  
 
 
 

= 
 
 
 ≥ + ∆ ≥ ≥ =
  



 

and solving model (9) is equivalent to obtaining 2max .f  
In order to solve the model (9), the hybrid algorithm is also used. 
Firstly, we use stochastic simulation to generate input-output data for 2 1 2 2: ( , ) .i k i kU D D f+ + →  
Then, BP neural network is used to simulate objective function, GA is used to obtain the optimal solution. 

Finally, the model (9) is solved. The optimal solution is ijkoptD+  and the optimal value 2max f  is obtained. 
(3) The real water amount allocating to user i  when the scenario k  occurs in period j  can be obtained by 

ijkopt ij ij ijopt ijkoptA T T y D± − ±= + ∆ − . 

(4) The optimized interval solution is , ,ijkopt ijkopt ijkoptD D D± − + =   and the real optimized interval amount of 

allocating water is , .ijkopt ijkopt ijkoptA A A± − + =    We can also obtain the optimal value. 
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6 Results and discussions 
 
Table 4 and Table 5 indicate the amounts of the real allocation targets, the water shortages and optimized allocations 
in 2024 and 2025, respectively. Due to 11 0.899,opty = 21 0.447,opty = 31 0.697,opty = 41 1,opty = 12 0.578,opty =

22 0.9998,opty = 32 0.555,opty = 42 0.429,opty = the optimal allocation schemes are 11 3.46,optT ± = 21 3.18,optT ± =

31 12.40,optT ± = 41 1.10,optT ± = 12 2.12,optT ± = 22optT ± = 2.35, 32optT ± = 11.16, 42optT ± = 1.20 ( 8 310 m ), respectively. 
Table 4 shows the optimized solutions for four kinds of users under 3 scenarios in 2024. For example,

[ ]211 1.142,1. ,44= 6optD± [ ]212 2.689,= 2.720optD±  and [ ]213 0.564,= 1.616optD±  ( 8 310 m ) are water shortages for the 
ecological user ( 2i = ) when the level of the water flow is low (the probability is 25.42%), medium (the probability is 
47.76%), and high (the probability is 27.12%), respectively. Accordingly, the water allocations are 

[ ]211 1.082,= 1.583optA± , [ ]212 0.005,= 0.036optA±  and [ ]213 1.109,= 2.161optA±  ( 8 310 m ). In this case,  

( )
4 2 4 3 4 9

1 1 1 2 2 2
=1 1 =1 1 =1 1

max Pr 80i ij ij ij ij k i i i k k i i i k
i j i k i k

NB T T y p C D p C Dω ω ω+ − − − − −

= = =

 
+ ∆ − − > 

 
∑∑ ∑∑ ∑∑  

is 98.33%. In this sense, if we allot the water as the scheme in Table 4, the maximal probability that the system net 
benefit exceeds 80 8×10 ¥ as compared with the economic penalty is 98.33%. 

Table 5 gives the optimized solutions for four kinds of users under 3 scenarios in 2025. For example, 
[ ]127 0.336,1. ,90= 5optD± [ ]128 0.507,= 1.439optD± and [ ]129 1.504,= 2.279optD± ( 8 310 m ) are water shortages for the 

municipality user ( 1i = ) when the level of the water flow is low, medium and high, respectively, and the 
corresponding probability is 6.89%, 12.95% and 7.35%, respectively. Accordingly, the water allocations are 

[ ]127 1.070,= 2.324optA± , [ ]128 1.221,= 2.154optA±  and [ ]129 0.382,= 1.157optA± ( 8 310 m ). In this case,  

( )
4 2 4 3 4 9

1 1 1 2 2 2
=1 1 =1 1 =1 1

max Pr 65i ij ij ij ij k i i i k k i i i k
i j i k i k

NB T T y p C D p C Dω ω ω− − + + + +

= = =

 
+ ∆ − − > 

 
∑∑ ∑∑ ∑∑  

is 100%. In this sense, if we allot the water as the scheme in Table 5, the maximal probability that the system net 
benefit exceeds 65 8×10 ¥ as compared with the economic penalty is 100%. 

The optimal values represent that the maximal probability is [98.33%, 100%] of the event which the system net 
benefit is [65, 80] 8×10 ¥ more than the economic penalty subject to the constraints, which provides two extreme 
values. When the value of every parameter fluctuate between its lower and upper bounds, the probabilities would 
change correspondingly, which simultaneously reflects the balance between the system profit and the constraints. 

 
Table 4: Solutions in 2024 

Scenario (ijk) User The level of 
water flow 

Probability 
(%) 

Targets 
( 8 310 m ) 

Shortage 
( 8 310 m ) 

Allocation 
( 8 310 m ) 

111 Municipal L 25.42 3.37 [1.458,2.356] [1.013,1.911] 
211 Ecological L 25.42 2.725 [1.142,1.644] [1.082,1.583] 
311 Agricultural L 25.42 1.35 [1.276,1.348] [0.002,0.074] 
411 Industrial L 25.42 14.956 [12.808,14.916] [0.041,2.148] 
112 Municipal M 47.76 3.37 [0.064,1.913] [1.456,3.306] 
212 Ecological M 47.76 2.725 [2.689,2.720] [0.005,0.036] 
312 Agricultural M 47.76 1.35 [1.188,1.193] [0.157,0.162] 
412 Industrial M 47.76 14.956 [4.128,11.812] [3.145,10.828] 
113 Municipal H 27.12 3.37 [3.369,3.370] [0.000,0.001] 
213 Ecological H 27.12 2.725 [0.564,1.616] [1.109,2.161] 
313 Agricultural H 27.12 1.35 [0.143,0.989] [0.361,1.208] 
413 Industrial H 27.12 14.956 [8.418,13.356] [1.601,6.538] 

11 0.899,opty = 21 =0.447,opty 31 0.697,opty = 41 1.opty =  
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Table 5: Solutions in 2025 

Scenario
symbol 

(ijk) 
User 

Water 
flow 
level 

Probability 
(%) 

Associated 
water 
flow 

Associated 
probability 

(%) 

Water 
target 

( 8 310 m
) 

Water shortage 
( 8 310 m ) 

Water 
allocation 
( 8 310 m ) 

121 Municipal L 25.42 L-L 6.46 2.661 [0.803,2.083] [0.578,1.857] 
221 Ecological L 25.42 L-L 6.46 2.983 [0.806,1.784] [1.199,2.177] 
321 Agricultural L 25.42 L-L 6.46 1.394 [0.734,0.758] [0.636,0.660] 
421 Industrial L 25.42 L-L 6.46 12.15 [4.819,9.043] [3.107,7.331] 
122 Municipal M 47.76 L-M 12.14 2.661 [0.843,1.064] [1.597,1.818] 
222 Ecological M 47.76 L-M 12.14 2.983 [2.365,2.432] [0.551,0.618] 
322 Agricultural M 47.76 L-M 12.14 1.394 [1.364,1.394] [0.000,0.030] 
422 Industrial M 47.76 L-M 12.14 12.15 [1.877,8.932] [3.218,10.273] 
123 Municipal H 27.12 L-H 6.89 2.661 [0.709,1.075] [1.585,1.952] 
223 Ecological H 27.12 L-H 6.89 2.983 [0.910,1.927] [1.056,2.072] 
323 Agricultural H 27.12 L-H 6.89 1.394 [1.146,1.192] [0.202,0.248] 
423 Industrial H 27.12 L-H 6.89 12.15 [0.701,2.385] [9.765,11.449] 
124 Municipal L 25.42 M-L 12.14 2.661 [0.326,2.510] [0.151,2.335] 
224 Ecological L 25.42 M-L 12.14 2.983 [0.803,2.029] [0.954,2.180] 
324 Agricultural L 25.42 M-L 12.14 1.394 [0.876,1.149] [0.245,0.518] 
424 Industrial L 25.42 M-L 12.14 12.15 [8.894,12.039] [0.112,3.257] 
125 Municipal M 47.76 M-M 22.81 2.661 [1.632,2.270] [0.391,1.028] 
225 Ecological M 47.76 M-M 22.81 2.983 [0.853,2.675] [0.308,2.130] 
325 Agricultural M 47.76 M-M 22.81 1.394 [0.873,1.386] [0.009,0.521] 
425 Industrial M 47.76 M-M 22.81 12.15 [10.717,12.041] [0.110,1.433] 
126 Municipal H 27.12 M-H 12.95 2.661 [0.400,0.477] [2.183,2.261] 
226 Ecological H 27.12 M-H 12.95 2.983 [1.939,2.922] [0.061,1.044] 
326 Agricultural H 27.12 M-H 12.95 1.394 [0.260,1.308] [0.087,1.134] 
426 Industrial H 27.12 M-H 12.95 12.15 [10.898,11.567] [0.584,1.252] 
127 Municipal L 25.42 H-L 6.89 2.661 [0.336,1.590] [1.070,2.324] 
227 Ecological L 25.42 H-L 6.89 2.983 [1.510,2.291] [0.692,1.473] 
327 Agricultural L 25.42 H-L 6.89 1.394 [1.372,1.389] [0.005,0.022] 
427 Industrial L 25.42 H-L 6.89 12.15 [0.744,10.085] [2.065,11.406] 
128 Municipal M 47.76 H-M 12.95 2.661 [0.507,1.439] [1.221,2.154] 
228 Ecological M 47.76 H-M 12.95 2.983 [0.001,2.592] [0.391,2.982] 
328 Agricultural M 47.76 H-M 12.95 1.394 [1.189,1.392] [0.002,0.205] 
428 Industrial M 47.76 H-M 12.95 12.15 [5.102,9.259] [2.891,7.048] 
129 Municipal H 27.12 H-H 7.35 2.661 [1.504,2.279] [0.382,1.157] 
229 Ecological H 27.12 H-H 7.35 2.983 [0.640,2.185] [0.798,2.343] 
329 Agricultural H 27.12 H-H 7.35 1.394 [0.006,0.892] [0.502,1.388] 
429 Industrial H 27.12 H-H 7.35 12.15 [8.813,9.693] [2.457,3.337] 

12 0.578,opty =  22 0.9998,opty = 32 0.555,opty = 42 0.429.opty =  
 

 
7 Conclusions 
 
In this study, an inexact two-stage stochastic dependent-chance programming model for water resources management 
is put forward by incorporating stochastic dependent-chance programming, two-stage stochastic programming and 
interval programming within an optimization framework. Compared with the existing other dependent-chance 
programming for water resources management, this model is able to deal with the inexact data with multiply 
distributed stochastic boundaries, take into account the priority level of water users, and give a certain weight to each 
water user to make it more realistic. More complex models, such as nonlinear model, can also be solved by the 
proposed hybrid algorithm. Finally the model is applied to water resource management system in Handan City. The 
results provide the optimal allocation schemes in Handan City and maximize the probability of achieving the given 
target value proposed by the decision maker.  

Further studies can resort to introducing stochastic dependent-chance multiple-objective programming, fuzzy 
programming or uncertain programming into the optimization framework. Meanwhile more kinds of water resources, 
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such as reclaimed water, the water from south-to-north water diversion project, and so on, may be taken into 
consideration. 
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