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Abstract

In the introduction of this article, we gave a brief overview of publications on the theory of set-valued equations.
Next, we considered slow-fast systems of set-valued differential equations and substantiated the possibility of applying
the averaging method for approximate resolution or investigation of the properties of solutions of such systems.
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1 Introduction

Lately the development of calculus in metric spaces became an object of attention of many researchers [16, 39, 43,
63, 81, 95, 98, 106]. Earlier F.S. de Blasi and F. Iervolino [10] begun studying of set-valued differential equations
(SDEs) in semilinear metric spaces. Now it transformed into the theory of set-valued equations (SEs) as an independent
discipline. The properties of SDEs [1, 2, 3, 11, 9, 14, 107, 108, 109, 17, 18, 19, 20, 27, 28, 35, 38, 39, 40, 41, 42, 43,
45, 47, 48, 50, 44, 57, 70, 76, 81, 82, 83, 86, 88, 89, 96, 97, 104, 106, 113], set-valued differential inclusions [12, 22,
23, 34, 71, 72, 73, 74, 79, 91, 95, 102], the set-valued integral and integro-differential equations and inclusions [8, 30,
32, 33, 36, 65, 80, 84, 85, 87, 89, 90, 91, 103, 105, 114, 99], the fractional SDEs [110, 111], the set-valued stochastic
differential equations (SSDEs) [31, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 66, 116, 113, 117, 118], the impulse set-valued
differential equations (ISDEs) [4, 63, 64, 81, 101, 102], set-valued differential equations on time scales [49, 115] and
control set-valued systems [6, 7, 5, 34, 67, 68, 69, 71, 75, 77, 93, 95, 99] were considered. On the other hand, set-
valued equations are useful in other areas of mathematics. For example, SDEs are used as an auxiliary tool to prove
the existence results for differential inclusions [63, 96, 97, 106]. Also, one can employ SEs in the investigation of
fuzzy differential equations, fuzzy integral equations and other [38, 39, 41, 43, 44, 81]. Moreover, SDEs are a natural
generalization of usual ordinary differential equations in finite (or infinite) dimensional Banach spaces [44, 106]. On
the other hand, in many cases, when modeling real-world phenomena, information about the behavior of a dynamical
system is uncertain and one has to consider these uncertainties to gain better understanding of the full models. The
set-valued equations can be used to model dynamical systems subjected to uncertainties. We have given only a small
part of the literature on the theory of set-valued equations (see also the references therein). We also want to note that we
did not consider interval equations. They are a particular case of set-valued equations, but they have their own specifics.

The averaging methods combined with the asymptotic representations began to be applied as the basic constructive
tool for solving the complicated problems of analytical dynamics described by the differential equations [13, 15, 95,
100]. Averaging theory for ordinary differential equations has a rich history, dating to back to the work of N.M. Krylov
and N.N. Bogoliubov [37]. The possibility of using some averaging schemes for set-valued equations was studied
in [22, 23, 26, 29, 32, 33, 34, 62, 63, 64, 78, 79, 81, 92, 93, 94, 95, 102, 103] and the references therein.
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In works [61, 62, 63, 94] the authors considered systems of differential equations with the Hukuhara derivative:

DHX1 = F1(t,X1, · · · , Xm), X1(0) = X0
1 ,

DHX2 = F2(t,X1, · · · , Xm), X2(0) = X0
2 ,

...
...

DHXm = Fm(t,X1, · · · , Xm), Xm(0) = X0
m,

(1)

where DHX - Hukuhara derivative, t ∈ [0, T ], Xi ∈ conv(Rni), Fi : [0, T ] × conv(Rn1) × · · · × comv(Rnm) →
conv(Rni), proved the existence theorem for them, and substantiated the possibility of some averaging schemes for
such systems with a small parameter

DHX1 = εF1(t,X1, · · · , Xm), X1(0) = X0
1 ,

DHX2 = εF2(t,X1, · · · , Xm), X2(0) = X0
2 ,

...
...

DHXm = εFm(t,X1, · · · , Xm), Xm(0) = X0
m,

(2)

where ε > 0 is a small parameter.
In this article, we consider a slow-fast system of two differential equations with the Hukuhara derivative:

DHX = εF (t,X, Y, ε), X(0, ε) = X0,
DHY = Φ(t,X, Y, ε), Y (0, ε) = Y0,

(3)

where ε ∈ [0, ε0] is a small parameter; t ∈ [0, T ]; X ∈ conv(Rn) is a fast variable; Y ∈ conv(Rm) is a slow variable;
F : R+ × conv(Rn)× conv(Rm)× [0, ε0]→ conv(Rn), Φ : R+ × conv(Rn)× conv(Rm)× [0, ε0]→ conv(Rm)
are given set-valued mappings.

This paper is organized as follows. In Section 2, we recall some basic concepts and notations about set-valued
analysis and set-valued differential equations. In Section 3, we justify the possibility of applying one averaging scheme
for system (3).

2 Preliminaries
Let conv(Rn) be a space of all nonempty convex compact subsets of Rn with the Hausdorff metric

h(A,B) = min
r≥0
{B ⊂ Sr(A), A ⊂ Sr(B)}

where A,B ∈ conv(Rn), Sr(A) be a r-neighborhood of the set A.
The usual set operations, i.e., well-known as Minkowski addition and scalar multiplication, are defined as follows

A+B = {a+ b : a ∈ A, b ∈ B}

and
λA = {λa : a ∈ A, λ ∈ R}.

Lemma 2.1. ([81, 98]) The following properties hold:
1. (conv(Rn), h) is a complete metric space,
2. h(A+ C,B + C) = h(A,B),
3. h(λA, λB) = |λ|h(A,B) for all A,B,C ∈ conv(Rn) and λ ∈ R.
For any A ∈ conv(Rn), it can be seen A + (−1)A 6= {0} in general, thus the opposite of A is not the inverse

of A with respect to the Minkowski addition unless A = {a} is a singleton. To partially overcome this situation, the
Hukuhara difference has been introduced [21].

Definition 2.1. ([21]) Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z is called a Hukuhara
difference of the sets X and Y and is denoted by X hY.

An important property of Hukuhara difference is that AhA = {0}, for all A ∈ conv(Rn) and (A + B)hB = A,

for all A,B ∈ conv(Rn); Hukuhara difference is unique, but a necessary condition for AhB to exist is that A contains
a translate {c}+B of B.
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Let X : [0, T ] → conv(Rn) be a set-valued mapping; (t0 −∆, t0 + ∆) ⊂ [0, T ] be a ∆- neighborhood of a point
t0 ∈ [0, T ]; ∆ > 0.

For any t ∈ (t0−∆, t0+∆) consider the following Hukuhara differencesX(t) h X(t0), t ≥ t0, andX(t0) h X(t),
t ≥ t0 if these differences exist.

Definition 2.2. ([21]) We say that the mapping X : [0, T ] → conv(Rn) has a Hukuhara derivative DHX(t0) at a
point t0 ∈ [0, T ], if there exists an element DHX(t0) ∈ conv(Rn) such that the limits

lim
t↓t0

1

t− t0
(X(t)

h
X(t0)) and lim

t↑t0

1

t0 − t
(X(t0)

h
X(t))

exist in the topology of conv(Rn) and are equal to DHX(t0).

3 The Method of Averaging
Consider the slow-fast systems of differential equations with the Hukuhara derivative (3). We take ε = 0, then we
obtain the following system of differential equations with Hukuhara derivative

DHX = {0}, X(0, 0) = X0,
DHY = Φ(t,X, Y, 0), Y (0, 0) = Y0.

(4)

It’s obvious that the solution X(t, 0) of the first equation of system (4) such that X(t, 0) ≡ X0 for every t ≥ 0.
Let Y (t, 0) is solution of the second differential equation of system (4), i.e.

DHY = Φ(t,X0, Y, 0), Y (0, 0) = Y0.

Let there exists F (X) ∈ conv(Rn) such that a limit

h

 lim
T→∞

1

T

T∫
0

F (t,X, Y (t, 0), 0)dt, F (X)

 = 0 (5)

exists and the integral is understood in the sense of [21].
Now consider following problem with the small parameters

DHZ = εF (Z), Z(0, ε) = X0. (6)

Let Q = {t ≥ 0, X ⊂ P ∈ conv(Rn), Y ⊂ G ∈ conv(Rm), ε ∈ [0, ε0]}.
Theorem 3.1. Suppose the following conditions hold:
1) mappings F (·, X, Y, ε), Φ(·, X, Y, ε) are continuous, for all (X,Y, ε) ∈ Q;
2) there exists λ > 0 such that

h(F (t,X ′, Y ′, ε), F (t,X ′′, Y ′′, 0)) ≤ λ(h(X ′, X ′′) + h(Y ′, Y ′′) + ϕ1(ε)),

h(Φ(t,X ′, Y ′, ε),Φ(t,X ′′, Y ′′, 0)) ≤ λ(h(X ′, X ′′) + h(Y ′, Y ′′) + ϕ2(ε)),

for all (t,X ′, Y ′, ε), (t,X ′′, Y ′′, 0) ∈ Q, and lim
ε↓0

ϕi(ε) = 0, i = 1, 2;

3) there exists γ > 0 such that h(F (t,X, Y, ε), {0}) ≤ γ for every (t,X, Y, ε) ∈ Q;
4) there exists α > 0 such that

h(F (Z ′), F (Z ′′)) ≤ αh(Z ′, Z ′′)

for all Z ′, Z ′′ ∈ P ;
5) limit (5) exists in every (X0, Y0) ⊂ P ×G;
6) the solution of the problem (6) together with a ρ−neighborhood belong to the domain P for t ∈ [0, Lε−1].
Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈ (0, ε0] such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the

following inequality holds
h(X(t, ε), Z(t, ε)) < η. (7)
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Proof. Let X(·, ε), Y (·, ε) are solutions of the system of differential equations (3), and Z(·, ε) is solution of the
differential equation (6). Since

X(t, ε) = X0 + ε
t∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,

Y (t, ε) = Y0 +
t∫
0

Φ(s,X(s, ε), Y (s, ε), ε)ds,

Z(t, ε) = X0 + ε
t∫
0

F (Z(s, ε))ds,

we get

h(X(t, ε), Z(t, ε))

= εh

(
t∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,
t∫
0

F (Z(s, ε))ds

)
≤ εh

(
t∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,
t∫
0

F (X(s, ε))ds

)
+ εh

(
t∫
0

F (Z(s, ε))ds,
t∫
0

F (X(s, ε))ds

)
≤ εh

(
t∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,
t∫
0

F (X(s, ε))ds

)
+ ε

t∫
0

h
(
F (Z(s, ε)), F (X(s, ε))

)
ds

≤ εh
(
t∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,
t∫
0

F (X(s, ε))ds

)
+ εα

t∫
0

h(X(s, ε), Z(s, ε))ds.

(8)

Using condition 3) of the theorem, we obtain the following estimate

h(X(t, ε), X(t, 0)) ≤ 2εγt. (9)

By (9) and condition 2) of the theorem, we get

h(Y (t, ε), Y (t, 0))

= h

(
t∫
0

Φ(s,X(s, ε), Y (s, ε), ε)ds,
t∫
0

Φ(s,X(s, 0), Y (s, 0), 0)ds

)
≤

t∫
0

h (Φ(s,X(s, ε), Y (s, ε), ε),Φ(s,X(s, 0), Y (s, 0), 0)) ds

≤ λ
t∫
0

[h(X(s, ε), X(s, 0)) + h(Y (s, ε), Y (s, 0)) + ϕ2(ε)]ds

≤ lambda
t∫
0

[2εγs+ ϕ2(ε)]ds+ λ
t∫
0

h(Y (s, ε), Y (s, 0))ds

= λεγt2 + λϕ2(ε)t+ λ
t∫
0

h(Y (s, ε), Y (s, 0))ds.

Using Gronwall-Bellmans inequality, we obtain

h(Y (t, ε), Y (t, 0)) ≤ (λεγt2 + λϕ2(ε)t)eλt.

Let β(t, ε) = (λεγt2 + λϕ2(ε)t)eλt. Clearly, the function β(t, ε) is nondecreasing in t and such that lim
ε↓0

β(t, ε) = 0

for every t ≥ 0.
Now we take an arbitrary number ξ > 0. Let

t∗(ε, ξ) =

{
t∗, β(t∗, ε) = ξ,
+∞, β(t, ε) 6= ξ for all t ≥ 0

and
∆(ε, ξ) = min{ε−1/2, t∗(ε, ξ)}.

It’s obviously, for every ξ > 0
lim
ε↓0

∆(ε, ξ) = +∞. (10)
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Divide the interval [0, Lε−1] into partial intervals by the points tj = j∆, j = 0,m, where m∆ ≥ Lε−1. We take
any t ∈ [0, Lε−1]. It’s obviously, there exists constant such that t ∈ [tk, tk+1) and k < m. Therefore,

kε ≤ 1

∆
. (11)

Since h(F (Z), {0}) ≤ γ and t− tk < ∆, it follows that

h(X(t, ε), Z(t, ε)
≤ h(X(tk, ε), Z(tk, ε) + h(X(t, ε), X(tk, ε) + h(Z(t, ε), Z(tk, ε)
≤ h(X(tk, ε), Z(tk, ε) + 2εγ∆.

(12)

Therefore,

εh

(
tk∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,
tk∫
0

F (X(s, ε))ds

)
≤ ε

k−1∑
j=0

h

(
tj+1∫
tj

F (s,X(s, 0, Rj), Y (s, 0, Rj), 0)ds,
tj+1∫
tj

F (X(tj , ε))ds

)

+ ε
k−1∑
j=0

h

(
tj+1∫
tj

F (s,X(s, 0, Rj), Y (s, 0, Rj), 0)ds,
tj+1∫
tj

F (s,X(s, ε), Y (s, ε), ε)ds

)

+ ε
k−1∑
j=0

h

(
tj+1∫
tj

F (X(tj , ε))ds,
tj+1∫
tj

F (X(s, ε))ds

)
,

(13)

where Rj = (X(tj , ε), Y (tj , ε)).
We take any 0 < η < ρ. Then there exists ξ > 0 such that the following estimate is true

λξ ≤ η

4
e−αL. (14)

Further we estimate each of the terms in (13). By (10) and condition 3) of the theorem, we can choose numbers
T (η) > 0 and ε1 > 0 such that

1) ∆(ε, ξ) ≥ T (η);
2)

ε

k−1∑
j=0

h

 tj+1∫
tj

F (s,X(s, 0, Rj), Y (s, 0, Rj), 0)ds,

tj+1∫
tj

F (X(tj , ε))ds

 ≤ εγ∆
η

4
e−αL ≤ η

4
e−αL (15)

for all 0 < ε ≤ ε1.
Now if we recall condition 2) of the theorem and (11), we obtain

ε
k−1∑
j=0

h

(
tj+1∫
tj

F (s,X(s, 0, Rj), Y (s, 0, Rj), 0)ds,
tj+1∫
tj

F (s,X(s, ε), Y (s, ε), ε)ds

)
≤ ε

k−1∑
j=0

tj+1∫
tj

h (F (s,X(s, 0, Rj), Y (s, 0, Rj), 0), F (s,X(s, ε), Y (s, ε), ε)) ds

≤ λ[εγ∆ + ξ + ϕ1(ε)].

(16)

Similarly, we get

ε
k−1∑
j=0

h

(
tj+1∫
tj

F (X(tj , ε))ds,
tj+1∫
tj

F (X(s, ε))ds

)
≤ ε

k−1∑
j=0

tj+1∫
tj

h
(
F (X(tj , ε)), F (X(s, ε))

)
ds ≤ ε∆αγ

2 .

(17)

Combining (13)-(17), we obtain

εh

(
tk∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,
tk∫
0

F (X(s, ε))ds

)
≤ η

2e
−αL + λ[εγ∆ + ϕ1(ε)] + ε∆αγ

2 .

(18)
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Since ε∆ ≤
√
ε, then we can choose number ε2 > 0 such that inequality

λ[εγ∆ + ϕ2(ε)] + ε∆
αγ

2
≤ η

2
e−αL (19)

is true for all ε ∈ (0, ε2].
By (18) and (19), we have

εh

 tk∫
0

F (s,X(s, ε), Y (s, ε), ε)ds,

tk∫
0

F (X(s, ε))ds

 ≤ 3η

4
e−αL. (20)

Using (8), (20) and Gronwall-Bellmans inequality, we get

h(X(tk, ε), Z(tk, ε)) ≤
3η

4
. (21)

We take ε3 > 0 such that
2γε3∆ <

η

4
. (22)

Summing (12), (21) and (22), we get
h(X(t, ε), Z(t, ε)) < η

for all t ∈ [0, Lε−1], where ε ∈ (0, ε0), ε0 = min{ε1, ε2, ε3}. This completes the proof of theorem 3.1.
Remark 3.1. In case, ifX ∈ Rn, Y ∈ Rm, F : R+×Rn×Rm×[0, ε0]→ Rn,Φ : R+×Rn×Rm×[0, ε0]→ Rm,

then we have a slow-fast system of ordinary differential equations

Ẋ = εF (t,X, Y, ε), X(0, ε) = X0,

Ẏ = Φ(t,X, Y, ε), Y (0, ε) = Y0,
(23)

where Ẋ = dX
dt is ordinary derivative. In this case Theorem 3.1 was proved in the papers [24, 25, 112].

Remark 3.2. Clearly, the theorem 3.1 is also true for a system of interval-valued differential equations, i.e. if

DHX = εF (t,X, Y, ε), X(0, ε) = X0,
DHY = Φ(t,X, Y, ε), Y (0, ε) = Y0,

(24)

where ε ∈ [0, ε0] is a small parameter; t ∈ [0, T ], X ∈ conv(R); Y ∈ conv(R); F : R+ × conv(R) × conv(R) ×
[0, ε0]→ conv(R), Φ : R+ × conv(R)× conv(R)× [0, ε0]→ conv(R) are interval-valued mappings.

Remark 3.3. The same theorem 3.1 can also be proved for a system of fuzzy differential equations

DHX = εF (t,X, Y, ε), X(0, ε) = X0,
DHY = Φ(t,X, Y, ε), Y (0, ε) = Y0,

(25)

where DHX - fuzzy Hukuhara derivative; ε ∈ [0, ε0] is a small parameter; En(Em) is metric space of fuzzy sets [43];
t ∈ [0, T ]; X ∈ En; Y ∈ Em; F : R+ × En × Em × [0, ε0] → En, Φ : R+ × En × Em × [0, ε0] → Em are fuzzy
mappings.
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