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Abstract

This paper presents the application of an inferential statistical approach which combines imprecise
Bayesian methods with likelihood inference, to a standard software run reliability growth model. The
main idea of the approach is to divide the set of model parameters into two subsets related to funda-
mentally different aspects of the overall model, and to combine an imprecise Bayesian method related to
one of the subsets of the model parameters with maximum likelihood estimation for the other subset. In
accordance with the first subset and statistical data, the imprecise Bayesian model is constructed, which
provides lower and upper predictive probability distributions depending on the second subset of param-
eters. These further parameters are then estimated by a maximum likelihood method. This method is
applied to a basic software run reliability growth model and it is shown to perform better than a standard
model. Several aspects related to the method are discussed, including its advantages, its wider applicabil-
ity and the possibility to include relevant expert judgements.
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1 Introduction

One of the main goals of analysing software system development is to predict its future reliability based
on past experience, for which one typically constructs a statistical model to quantify uncertainties and to
enable learning from data. There is a variety of statistical theories and methods for such inference, and
researchers often strongly advocate one specific general theory, e.g. the Bayesian approach, whilst rejecting
other approaches that also have their merits. In this paper we explore combined use of imprecise Bayesian
methods [I, [II], where sets of prior distributions are used, with maximum likelihood estimation, both on
different subsets of all parameters appearing in a statistical model. At first look, these methods may appear
to have little in common and one may favour either a complete (imprecise) Bayesian approach or maximum
likelihood estimation of all parameters. However, if one considers a Bayesian approach as using a weighted
likelihood function, with weights reflecting prior knowledge, then the two methods are less contradictory and
exploration of the opportunity to combine both into a hybrid method is of interest. In this paper we develop
this hybrid method for a generalization of a well-known software run reliability model. Detailed fundamental
analysis and further exploration of this hybrid approach will be important for its full justification, in particular
with regard to possible interpretations of the resulting inferences; this is left as a topic for future research.
An important feature of many systems is change of some of their characteristics over time, which has to
be taken into account when constructing a statistical model for the system. For example, a common approach
for measuring software reliability [I5] is by using a statistical model whose parameters are generally estimated
from available data on software failures, and the model may be obtained by observing the overall trend of
reliability growth during the debugging process. In other words, a software reliability growth model describes
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how observation of failures, and correcting the underlying faults, such as occurs in software development
when the software is being tested and debugged, affect the reliability of software. The word “growth” is
rather conventional to describe reliability models with important characteristics changing over time, it does
not restrict use of such models to systems whose reliability actually improves. In other words, a growth
model can be regarded to be a mathematical expression which fits experimental data from systems with some
important changes over time.

Suppose that X, ..., X,, is a series of random variables with X; the number of successful software runs
between the (i — 1)-th and é-th software failures, for ¢« = 1,...,n. We suppose that variable X; is governed
by a probability distribution function p;(z | b,d) depending on two vectors of parameters b and d. The
vector b contains parameters of the probability distribution under consideration. The vector d of parameters
characterizes the growth, i.e., the growth is modelled by a function f(i,d) which characterizes the change of
the system behaviour (‘growth’). For example in software reliability analysis, the function f mainly shows
how parameters b of the probability distribution p; change with the number ¢ of corrected errors or faults.
Generally, the vector b depends on d and the number i, which is the index of the random variable X; under
consideration.

It should be noted that the growth function is explicitly stated in some models. For instance, Littlewood
and Verrall [6] suggest software reliability models with linear and quadratic forms for the function f with
two parameters d = (do,dy): f(i,d) = do + dyi or f(i,d) = do + dyi%. In these models, the growth function
is included as parameter of a gamma distribution, which changes with the number of corrected errors in the
software.

Clearly, the growth function f may model different characteristics. In software reliability models, it
typically enables possible changes of the parameters b of the probability distribution of random variables X;
to reflect actual changes to software systems, mostly due to fault corrections. In such models, we assume a
form of f and wish to learn about the parameters d of f from data.

There are several approaches for inference about growth models on the basis of statistical data. Nowadays,
the most popular inferential methods tend to use the likelihood function as main mechanism to link model
parameters and statistical data. For models such as reliability growth models, estimation is required both for
parameters of the basic probability model and parameters explicitly modelling the growth behaviour. This
may involve a substantial number of parameters, with possibly relatively few data available. In this paper,
we explore a possible way for dealing with this, by considering imprecise Bayesian inference for one subset of
parameters, and a maximum likelihood approach to estimate the other subset of parameters. Such imprecise
Bayesian inference has been presented, without a link to maximum likelihood for further parameters, by
Walter, Augustin and Peters [I4] with application to linear regression models. Typically, a precise parametric
model is assumed, with imprecision following through the use of sets of conjugate prior distributions [2} [8] [T3].
It is theoretically feasible to use sets of priors for all parameters combined, but this may well lead to very
wide posterior intervals for inferences of interest. Furthermore, if one can estimate some of the parameters
by means of maximum likelihood methods, it could also be attractive with regard to not having to assign
informative (sets of) prior distributions, in particular if they are on a feature about which no clear expert
judgement is available or which one strongly wishes to infer from the data. Exploring this possibility to
combine imprecise Bayesian inference for some of the model parameters with maximum likelihood estimation
for other parameters, is the main aim of this paper. It is particularly studied for software reliability growth
models as their parameters naturally divide into two groups, as will be discussed in Section 4.

The approach we propose in this paper is as follows. By using imprecise Bayesian inference, we can exclude
all the parameters of the vector b from the model, and derive a set of predictive cumulative distribution
functions (CDFs) such that their lower and upper bounds are conditional on all the parameters of the vector
d. This is followed by estimation of the parameters of the vector d, for which we use the modified maximum
likelihood estimation method which is explained in Section 2. This approach allows us to reduce the number
of parameters in the model and to maximize the likelihood function only over parameters of the vector d
without considering the parameters of vector b. Even further, it can be applied if one explicitly wishes to
take expert judgement into account on the part of the model corresponding to parameters b, and this expert
judgement is best reflected by imprecise probabilities, while no such prior information is available for the
model aspects related to parameters d, for which, however, one can use process data.

This paper is organized as follows. Section 2 explains the modified maximum likelihood estimation. Section
3 presents the imprecise Bayesian models used as part of the full model. Section 4 presents a general scheme
for the full model construction. Section 5 presents the software run reliability growth model considered in this
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paper, which is illustrated in Section 6 and compared to a standard model in Section 7. Section 8 explains
how additional prior information can be included in the model. The paper ends with concluding remarks in
Section 9.

2 Modified Maximum Likelihood Estimation

Let K = (kq,..., k) be a realization of X, ..., X,,, where the k;, ¢ = 1,...,n, are non-negative integers. If
probability distributions p;(k; | b,d) of the random variables X;, i = 1,...,n, are known or assumed, then the
standard way for obtaining the parameters b and d of a growth model is to maximize the likelihood function

L(K | b,d) = Hp,k; | b,d)

over a set of parameters b and d. Values of the parameters b and d should be chosen in order to maximize
L(K | b,d).

Many well-known software reliability growth models presented in the literature have been implemented with
such standard maximum likelihood estimation. Such models differ only by assumptions about the probability
distributions p; and the growth function f. For example, for p; the exponential distribution is used in the
Jelinski-Moranda model [5], while the Rayleigh distribution is used in the Schick-Wolverton model [10] and
the Beta distribution in the Littlewood-Verrall model [6].

Suppose that the random variable X; is governed by an unknown CDF F;(k) which is only known to
belong to the set M;(d) defined by the lower and upper CDF's

E (k)= i, F(5) )
Fik|d) = sup F(k). )
M;(d)

It should be noted that the set M;(d) is the set of all CDFs bounded by F,(k | d) and F;(k | d), so it is
not the set of parametric distributions having the same parametric form as the bounding distributions. This
is an important feature of the proposed approach for combined imprecise Bayesian and likelihood inference
in this paper. Moreover, the bounds F,(k | d) and F;(k | d) are assumed not to depend on the parameters
b, which is achieved by taking the predictive CDF's resulting from the imprecise Bayesian approach applied
with regard to the parameters b.

The likelihood function can be written in the following form:

LK |d)=Pr{X1 =k, -, X, =kp}.

Proposition 1 explains how the above likelihood function is maximized over all distributions belonging to

Mi(d), ..., My (d).

Proposition 1. Suppose that discrete random variables X1, ..., X,, are governed by a probability distribution
F(k) from sets M; defined by bounds -(@, respectively. If X4, ..., X,, are independent, then

ma)j{wnPr{Xlzkl,---, n=ky} = H{F Fi(ki—1)}. (3)

1yeees

Proof. Denote N = {1,2,...,n}, M = (my,...,my,). Let Iy j3(m) be the indicator function taking
the value 1 if m < k;. The indicator functions are used in order to represent all probabilities in the
form of expectations of indicator functions and to write the natural extension for computing the maxi-
mal value of Pr{X; =ky,---,X,, =k,} in its standard form. The upper bound for the joint probability
Pr{X; =ki, - -, X, = k,} can be found by solving the following optimization problem:

oo o0 n

max > oo Y Iy (M) [ pi(ma),

mi=1 my=1 1=1



Journal of Uncertain Systems, Vol.12, No.4, pp.292-308, 2018 295

subject to

m=1

o0
Fi(j) <> In..jpmpi(m) <Fi(§), i=1,.,n, j=1,2..
m=1

The objective function can be rewritten as follows:

H Z (It (ma) = T, —1y (ma)pi(my)) -

=1 mi:1

We introduce new variables
o0

Fi(j) = Z Ity 5y (mg)ps(my).
m;=1

Then we can rewrite the optimization problem as
n
max [ [ {F:(j) - F:(j — 1)},
i=1

subject to - o
F,(j)<FEG) <F(), F,-1)<FEG{-1)<Fi(j—-1),i=1,..,n

By using the known rules of interval analysis, we obtain , which completes the proof. O

Proposition 1 generalizes the standard likelihood estimation for precise probability models.

3 Imprecise Bayesian Models as a Way for Obtaining the Set M

We now consider how to derive the set M(d). A straightforward way is to use ideas similar to Walley’s
imprecise Bayesian approach [12] [13].

3.1 Standard Bayesian Analysis

One of the efficient approaches to estimation of the model parameters is Bayesian analysis [3, 0]. It treats
parameters of concern as random variables which are assigned a prior probability distribution before observa-
tions become available. If we assume that the random variable has a probability distribution with vector of
unknown parameters b, then these parameters would be regarded as random variables with a prior probability
density 7(b | ¢), characterized by (hyper-)parameters c. In this case, the Bayesian approach can be applied
for computing the CDF for the random variable of interest, with the parameter b integrated out:

ﬂMd:AF®wyﬂM®%.

Here 2 is the set of values of b.

Central to the Bayesian approach is the derivation of the posterior distribution of the unknown parameters,
given both the data and the assumed prior density for these parameters, and achieved by application of Bayes’
theorem. Suppose that the prior distribution 7(b | ¢) represents our uncertainty with regard to b prior to
collecting information in the form of a set K = (ky, ..., k) of observed values of independent random variables
X1,...,Xn. Let p(k) be the probability mass function for the observed data k given b. Then the posterior
distribution 7(b | K,c), which is the conditional distribution of b given the observed data K and prior
parameters c, is computed as

m(b | K,c) x p(ky) - p(ky) - m(b|c).

Here 7(b | K, c¢) represents updated beliefs about b, with information K taken into account.

The prior distribution is often chosen to facilitate calculation of the posterior, especially through the use
of conjugate priors [3]. If the posterior distribution 7(b | K, ¢) and the prior distribution 7(b | ¢) both belong
to the same family of distributions, then 7 is called a conjugate prior for p.
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3.2 Imprecise Prior Models

A critical feature of any Bayesian analysis is the choice of a prior distribution, which is often done by consid-
ering the choice of (hyper-)parameters of an assumed parametric prior probability distribution. This is both
important if one aims at modelling prior information and if one aims to choose a prior distribution in order to
reflect the absence of prior information about the parameters. In this paper we focus on the latter case, where
a so-called non-informative prior has to be constructed. Many criteria for non-informativeness, and methods
to determine non-informative priors, have been proposed in the literature [3, 9], with many methods applying
the Bayes-Laplace postulate or the principle of insufficient reason. However, this choice meets some difficulties
or problems. In particular, Walley [I3] provides examples illustrating possible problems and shortcomings of
the principle of insufficient reason.

An alternative way for using the Bayesian approach if one wishes not to take prior knowledge into account
is through the use of a class P of (non-informative) prior distributions 7 [Il [12], which can overcome most
problems that can occur when single non-informative priors are used. Such a class of priors can be considered
through the lower and upper probabilities of an event A, given by

P(A) =sup{P(A) : 7 € P},
P(A) = inf{P,(A) : 7 € P},

respectively. As pointed out by Walley [13], the class P is “not a class of reasonable priors, but a reasonable
class of priors”. This means that each single member of the class is not a reasonable model for prior ignorance,
because no single distribution can model ignorance satisfactorily, but the whole class is a reasonable model
for prior ignorance. When we have little prior information, the upper probability of a non-trivial event should
be close to one and the lower probability should be close to zero. This means that the prior probability of the
event may be arbitrary from 0 to 1.

Quaeghebeur and de Cooman [8] proposed a class of imprecise probability models in the framework of
the so-called exponential families of probability distributions [3]. These models significantly extend a set of
Bayesian imprecise models and give a possibility to develop a framework for imprecise growth models. In our
approach, the set P is used in the imprecise Bayesian framework to take data into account with regard to
parameters b, and thus to generate the set M of predictive distributions with lower and upper bounds which
allow us to apply Proposition [I| for maximum likelihood estimation of the parameters d.

4 A General Scheme of the Model Construction

We now present a general scheme for our proposed method which combines imprecise Bayesian inference
and maximum likelihood estimation. We present it using the setting of reliability growth models discussed
earlier in this paper, but the general idea is more widely applicable. The first task is to define the sets
Mi(d), ..., M, (d), or their bounds, by using an appropriate imprecise Bayesian model. It consists of four
steps.

1. We divide the set of parameters into two subsets. The first subset contains the parameters b of the
assumed probability distribution p of the random variables X7, ..., X;;. The second subset consists of
the growth parameters d.

2. For the assumed probability distribution p of the random variables, we choose an appropriate conjugate
prior 7(b | ¢) with parameters c.

3. We construct the corresponding imprecise Bayesian model on the basis of results of Walley [13] or
Quaeghebeur and de Cooman [8]. At that point we replace the parameters ¢ by new parameters
including the hyperparameter s (see [8, [[3] and examples below). The produced set P depends on the
hyperparameter s.

4. By using n observations ki, ..., k,, we write the lower and upper predictive CDFs, F,(k | d,s) and
F;(k | d,s), respectively, as functions of the parameters d and the hyperparameter s for every debugging
period. These functions form the sets M;(d),..., M, (d). (Note that the set M;(d) also depends on
the hyperparameter s, but we omit this parameter for ease of notation.)
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After completing the four steps of the first task, the sets M;(d), ..., M,,(d) have been derived and these sets
do not depend on the parameters b or c. They depend only on the growth parameters d, the hyperparameter
s for the imprecise prior class, and the numbers i of the debugging periods. The second task is to estimate
the parameters d, this consists of two steps.

1. The likelihood function L(K | d, s) is derived by applying Proposition
2. Values of the parameters d, for fixed s, should be chosen in order to maximize L(K | d, s).

Note that the parameters b do not appear in the process, as they have been integrated out with the use
of a class of priors to derive predictive distributions, and this process also implicitly replaced the parameters
c by s. Clearly, the step to get the parameters b out of the model, without explicitly estimating their values,
is imprecise and leads to imprecise predictive probabilities for the random variables of interest. For example,
if we construct a software reliability model, then we are looking for the predictive behaviour of the analyzed
software after n corrections of errors. In other words, we have to compute the probability measures of time
to the (n + 1)-th failure, in particular, the lower and upper probability distributions of time to the (n + 1)-th
failure. These bounds are totally determined by the parameters d and s in our approach, with s chosen to
specify the class of priors, and d to be estimated by our proposed maximum likelihood approach in the second
stage of our method.

In the following sections, we illustrate our method by considering some special cases which apply known
imprecise Bayesian models and consider well-known software reliability growth models.

5 A Software Run Reliability Growth Model

A detailed description of software run reliability models is given in [4]. A run is a minimum execution unit of
software. Any software execution process can be divided into a series of runs. When a run is executed, the
software either passes or fails. Usually it is assumed that after observing a software failure, the software is
corrected and that this action actually removes the software error that caused the failure, hence the software
improves due to this action and therefore the term “reliability growth” tends to be used. There are many
variations to this basic scenario in the literature, we do not address these here.

Let X be a run lifetime of software, that is, X is a discrete random variable taking the value k if the
software fails during the k-th run, so after k¥ — 1 successful runs. The run lifetime distribution (probability
mass function) is denoted by p(k) = Pr{X = k}.

5.1 The Imprecise Beta-geometric Model

If we assume that the random variable X (run lifetime of software) is governed by the geometric distribution
with parameter r and probability mass function

plk|r)=0—-r)*"1r k=1,2,...,

then the set M can be constructed by using an imprecise model that is similar to the beta-binomial model
proposed by Walley [13]. The Beta prior distribution of the random variable r, with parameters o > 0 and
B > 0 and denoted by Beta(q, 3), has probability density function

1
B(a, §)

Here B(q, 8) is the standard beta function.

Using the general notation introduced before in this paper for our new method, we write b = (r), ¢ = («, ).
If we observe k runs of software between the (i — 1)-th and i-th software failures, and we assume that the
number of such runs is geometrically distributed with parameter r, then the posterior distribution = (r | k, c)
is again a beta distribution, namely

ro‘_l(l —r)B_l, 0<r<l1.

m(r) =

w(r | k,c) = Beta(a+ 1, 5 + k).

Here Bayesian analysis leads to the probability distribution of the number of events with parameters «
and 8. We can call this a beta-geometric model. In the beta-binomial model, Walley proposed to replace
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these parameters by introducing s and v, with a = sy and 8 = s — s, and then the parameter ~ is allowed
to take on any value in the interval from 0 to 1, hence a set of prior distributions is created which only
depends on the choice of s > 0, and which trivially leads to a corresponding set of posterior distributions.
The hyperparameter s determines the influence of the prior distribution on posterior probabilities [I3]. The
beta-geometric model proposed here can be given the same imprecise Bayesian treatment, resulting in what
we call the imprecise beta-geometric model. The lower and upper bounds can be obtained by minimizing and
maximizing the probabilities of events over all values v in [0, 1].

5.2 The Imprecise Bayesian Growth Model

In contrast to Walley’s imprecise beta-binomial model, we use a similar model by assuming that the i-th run
lifetime of software X; is governed by the geometric distribution with parameter r;, i = 1,...,n (in place of
the binomial distribution). Suppose that the probability r; is a random variable having the beta distribution
with prior parameters o and 8 + f(i,). Here f(i,¢) is a function characterizing the software reliability
growth (see Section 1). In other words, the growth behaviour of the software during the debugging process is
modeled by changing the parameter 8 of the beta distribution. In particular, if we accept f(i,¢) = (i—1) - ¢,
then this model takes some features of the Littlewood-Verall model [6]. For simplicity, we will use this form
of the function f(i,¢). In this case, we get a model with three parameters, including two parameters a and
B of the distribution and one parameter ¢ of the reliability growth. The general notation introduced above
can be used by defining ¢ = (o, 8) and d = (¢).

The construction of the model is based on the idea of dividing the set of parameters «, 3, ¢ into two
subsets and to consider the imprecise Bayesian model on the set M;(p) of CDFs bounded by lower CDFs

F.(k| ¢,a,B) and upper CDFs F;(k | ¢,«, 5), which are defined by the set of parameters ¢ = (a, 8) for a
fixed parameter ¢, for i = 1,...,n. In other words, we fix ¢ and construct the sets of CDFs F;(k) with bounds
depending on f(i, ) by using the imprecise beta-geometric model.

After constructing the set M;(¢) of CDFs F;(k | ) through F;(k | ¢,a,3) and F;(k | ¢, a, 3) for every
1 =1,...,n, and by assuming that the random variables X1, ..., X, are independent, the likelihood function
can be written and maximized by application of Proposition [} leading to the value g that maximises this
likelihood and which we consider to be an appropriate estimate of .

The parameters of the i-th posterior beta distribution after n observations are

OZ*:O[+TL7 B::6+D1(9@)7

where

Di(¢) = Kn + f(4, = (k- 1).

j=1

Note that the posterior parameter 5 for the i-th posterior beta distribution is 8 = S + f(i,¢). In
addition, we get K, runs of the software during n periods of observations. This implies that the posterior
parameter 37 for the i-th period of debugging is defined by n periods of observations. This is an important
feature and it is the reason for using the index ¢ for the posterior parameter 3;.

It can be also seen from the above that the posterior parameters depend on d. In the considered special
case, 37 depends on f(i,¢). Now we can write the predictive CDF for the i-th step of the software debugging
process, after n observations, as

Filk | p.o ) = /0 (1- (1 - p)*) - Beta(a®, 5)dp

T +Bf) 0 B +k—1
=1— [ & TH) e — A d
= ) Ty 0

Dla™+67)  T(BF +k)
L;)  Tla*+ 87 +k)
B(a* + 87, k)
B35, k)

77

=1-

=1—-
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Similarly, the probability mass function is

, _ [ k1 D@+ 87) o1 g
pz(klw,a,ﬁ)—/op(l p) 11(04*)11(5;)1) (1—=p)7i—dp

~ D(a* +85) T(a* + DT(B; + k — 1)
C D(an)T(Br) Tl + 6 +k)

The expected number of successful runs after the i-th step of the software debugging process is

o+ 8 -1

BXi1 = a* —1

We introduce new parameters s > 0 and v € [0, 1] such that

a=sy, B8=s—s7.

Here the parameter s plays the same role as the hyperparameter in Walley’s imprecise beta-binomial model [13].
Then the predictive CDF for the i-th step of the software debugging process can be written as

B(s+n+ D;(v), k)
B(s — 57+ Di(p), k)

Fi(k|¢77’3):1_ (4)

The above representation of the predictive CDF in terms of beta functions shows that it increases as
increases in the interval [0, 1], because the beta function B(z,y) is decreasing in x for > 0. Hence, the lower
bound for the function F;(k | ¢,7,s) is

B(s+n+ Di(¢), k)
B(s + Di(¢),k) ’

Ei(k|g,s) =0S1r71fSlF¢(k | 0,7,8) = Fi(k | ,0,5) =1~

and the upper bound for the function F;(k | ¢,7,s) is

— B(s+n+ Di(v), k)
Fi(k|p,s)= sup Fi(k|y,v,s)=Fik|p1l,s)=1—
(k| ¢, s) oS (k[ @.7.8) (k] 1,s) BDi(2). k)

With these lower and upper CDFs, it follows from Proposition [1| that the likelihood function is of the
form:

L*(K | ¢,s) =

—-

Il
—

(Fi(ki | @,8) — Fi(ki — 1| ¢, 5))

K2

S

: ( B(Ci(p,8), ki—1)  B(Ci(g, s), ki))
T\B(s+Di(p), ki—1)  B(Di(e), ki) )~

(2

Here C;i(¢,s) = s +n+ D;(p), and this likelihood function is to be maximized over M;(y) for given s. The
optimal value ¢g of ¢ can be found by numerically solving the equation dln L*(K | ¢,s)/90¢ = 0. Once
we have calculated the estimate of the parameter ¢, we can derive the lower and upper software run failure
functions after the n-th software failure, i.e., we can compute the lower and upper CDFs of the (n + 1)-th

failure
B(S +n+ Dn-&-l(‘PO)a k)

B(s 4+ Dny1(w0), k)

—= B(s +n+ Dny1(¢o), k)
Foi(k,s)=1—
+1(k, ) B(Dy11(¢0), k)

The lower and upper expected numbers of successful runs after the n-th software failure are

EnJrl (kv S) =1-

s n+s+ Ky+ f(n+1,0) -1
E Xnir = ,:—i—n—l ’

n+s+K,+f(n+1l¢) —1

ESXR+1 == n— 1
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It should be noted that computing the optimal value g is generally not a simple task. However, it can be
simplified for some special cases of s. We will use the well-known property of beta functions B(a, b) = B(b, a)
and the following equality:
a+b—1

B(a,b—1) = -

B(a,b).

Hence, we have
B(Ci(p,s), ki—1) _ B(Ci(g,s), ki)  Ci(p,s) + ki —1
B(s + Di(p), ki—1)  B(s+Di(p), ki) s+ Di(p) +ki —1°

If s =1, then we can write
B(s + Di(p), ki) =B(1+ Di(p), ki) = -~ 7-B(Di(yp), ki).

Hence

B(Ci(p,1), ki —1) _ B(Ci(p,1), ki) Ci(p,1)+ki —1 Di(p) +k
B(1+4 Di(¢), ki—1)  B(Ds(¢), ki) Di(¢) + ki Di(¢)
_ B(Ci(p,1), ki) Ci(p,1) +ki—1
~ B(Di(p), ki) Di(yp)
_ B(Ci(p,1), ki) n+Di(p)+k;

B(D;(¢), ki) Di(p)

By substituting the last expression into the i-th term of the likelihood function L} (K | ¢, s), we get

. _ B(Ci(p, 1), ki) (n+ Di(p) +ki
Lo = G (R 1)
B B(Di(¢), ki) D;(¢)

Hence, the logarithm of the likelihood function is

i =3 (i () (B R )

i=1

Since k; is integer, we can use the equality

—1)!
B(a,n) = gnli)
[Ti=o (a+1)
Then o1
B(n+ 1+ Di(p), k) _  TLLy (Dile) +17)
B(Di(¢), ki) 150 (n+ 1+ Dy() + )
Hence, the logarithm of the likelihood function is
n—|—k n k;—1 n k;i—1
I L*(K | o.1) 2111( )+Z (Do) +5) =3 Y I (n+1+Di(g) + )
i=1 j=0 i=1 57=0
n n k;—1 n k;—1
=> I(n+k)+> Y WD) +4) =D > In(n+1+Di(p)+j).
i=1 i=1 j=1 i=1 j=0

Now the optimal value ¢ of the parameter ¢ can be found from the following equation:

OlnL*(K | p,1)

9o =0.
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By substituting the corresponding expression for In L*(K | ¢, 1) into the above equation, we get

n . ki—1 ki—1

df (i, @) [N 1 \ 1
> > - | =o. 5
= de \Z Dilp)+j gt l+Di(e)+] ®

By taking into account the form of the growth function, (i — 1) - ¢, we obtain the equation

n k’i—l 1 ki—l 1
1—1 - - — - -] =0
FZI( ) ]Z:; K,+({@—1)p+] jgonJrlJrKnJr(z—l)goJr]

It should be noted that the special case s = 2 allows us to obtain also a rather simple equation for computing
the optimal value ¢qg of the parameter ¢. The main advantage of the above approach is that we have to
find only one parameter. This allows us to solve equation by arbitrary numerical methods without major
difficulties.

6 An Illustrative Example

Suppose that the following three numbers of runs between software failures have been recorded: k; = 10,
ko = 30, k3 = 60. Assuming s = 1, equation becomes

30—-1 30—1 60—1 60—1

2 2 3 3
Z97+230+] ;4+97+2@+] 297+3<p+] Z4+97+3<,0+]

j=1 j=1 =0

This equation has the solution ¢ = 25.2. Hence we get

Beta(l + 3497+ 3-25.2,m)
F(m)=1- :
£y (m) Beta(l + 97 + 3-25.2,m)
_ Beta(1 -25.2
Fil)(m):l— eta(l +3+97+3-25.2,m)

Beta(97 + 3 - 25.2,m)

The functions F' il)(m) and Fil)(m) are shown in Figure The lower and upper mean runs to failure after
the third step of the debugging process can be computed as

3+1+974+3-25.2-1

E'X, = =58.5
= 1+3-1 ’
_ 341497432521

Elx, =2ttt 3+1 — 87.8.

Let us compare the proposed model with a simple geometric SRM, note that this is not the geometric
model proposed by Moranda [7]. We consider a model that can be regarded as a discrete analogue of the
Jelinski-Moranda model [5], with the mean number of runs between the (j — 1)-th and j-th software failures

being equal to
1 1

p;j SN —(j—1))
where N is the initial (unknown) number of faults in the software, ¢ is the parameter, p; is the parameter of

the geometric distribution between the (j — 1)-th and j-th software failures, i.e., the probability that software
fails at a run after the (j — 1)-th failure. The logarithmic likelihood function is of the form

In L(K|p, N) = Z (Inp; + (kj — 1) In(1 — p;))
=Y (n¢(N —j+1)+ (kj — )In(l — (N —j +1))).

Jj=1
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Figure 1: The functions Efll)(m) and Fil)(m)

Hence, we get the following system of equations for computing the parameters N and ¢:

OlmL(K|p,N) < 1 kj —1
oN S (gt i -us) ="

j=1

O L(K[p,N) n ( kj—1 )

_7+ f—
96 o ; 6—1/(N=j+1)
By substituting the debugging data, we obtain

l+ 10-1 . 1 L 30—-1 L 1 L 60 —1 —0
N N-1/¢ N-1 N-1-1/¢p N-2 N-2-1/¢p

3 10-1 30-—-1 60 — 1

PR ) A S [ s R 0 ) B

The above system has a set of solutions. However, only one solution satisfies the conditions

namely N = 0.774 and ¢ = —3.96 x 1072, Hence
Pt = ¢(N —n) = —3.96 x 1072 - (0.774 — 3) = 8.82 x 1072,

and
Fopim)=1—(1—py1)"=1—(1-882x10"%™

It can be seen from Figure [2] that the predicted results based on this discrete analogue of Jelinski-Moranda
model appear to be too optimistic.

7 Comparison of the Proposed SRGM with a Standard SRGM

We compare the proposed model and the discrete analogue of Jelinski-Moranda model by using a software
reliability data set introduced by Jelinski and Moranda [5], it is shown in Table The data consist of the
number of days between the 26 failures that occurred during the production phase of specific software. The
data represent the calendar time data corresponding to the continuous random times to failures. However,
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Figure 2: The functions F{" (m), Fil)(m) and Fy(m) (dotted)

to illustrate the new model presented in this paper, we regard the days to failure as the discrete number of
successful runs between software failures.

Table 1: A software reliability data set

1 9 11 1 21 11
2 12 12 6 22 33
3 11 13 1 23 7
4 4 14 9 24 91
5 7 15 4 25 2
6 2 16 1 26 1
7 ) 17 3
8 8 18 3
9 ) 19 6
10 7 20 1

In order to evaluate the proposed model we try to make a prediction of the (i + 1)-st discrete mean time
to software failure starting from i = 3, we set s = 1. By having the mean times to failures, we can compare
these with the actual times to failures given in Table [Il Moreover, we compare the results for the proposed
model and for the discrete analogue of the Jelinski-Moranda model as described in Section 6.

The thick curve with the cross markers in Figure [3] is the set of real software reliability data k;. The
curve with the triangle markers is the set of predicted expectations EX; 1, ¢ = 3,...,25, obtained by using
the discrete analogue of the Jelinski-Moranda model. The two curves with the square markers are the lower
and upper predicted expectations, EX,, 1 and EX,, 1, respectively.

In order to illustrate the quality of the proposed model when the amount of statistical data is small, we
provide the same curves for ¢ = 3, ...,16, in Figure fl This shows that the first three times to failure, that
is ki =9, ko = 12 and k3 = 11, have substantial impact on the predicted values from the discrete analogue
of the Jelinski-Moranda model. In spite of the clear deterioration of the software (kg =4, ks = 7, k¢ = 2),
the Jelinski-Moranda model “remembers” the first three times to failure and provides overestimated values
of predicted expectations of the numbers of runs. The method proposed in this paper reacts quicker to new
observations.

In order to investigate the quality of the models, we introduce the following measures of model quality,
based on the deviation of the predicted expectations EX; 1 from the observations k;,1: the largest deviation,
denoted by Ry (EX;t1); the mean value of the deviations, denoted by Ra (EX;41); the standard deviation of
the deviations, denoted by R3 (EX;;1). These measures are

Ry (EXjp) = max — [EXi — ki,

)
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Figure 3: Predicted expected values of successful runs to failure for different models with s =1

M
Ry (EX;41)=M"! Z [EXit1 — kiyal,
i=1

M
Ry (EXiy1) =M~ Z (EXip1 — kit1)”,
i=1
where M is the number of predicted times to failure.
Using the data set, we compute the corresponding measures of quality, with s = 1, after predicting 23
failures (from the 4-th test till the 26-th test; note that each prediction of a failure time is based only on the
previous failure times). For our newly proposed model, we get

R (E”XM) — 84.398, Ry (E“)XM) — 8.233, Ry (E“)Xm) — 3.988,

R (E(”Xm) — 84.098, Ry (E(”XM) — 8427, Ry (E(l)XZ—H) — 3.988,
while for the discrete analogue of the Jelinski-Moranda model, we get
Rl (EXZJrl) == 75062, R2 (EXZ+1) = 11762, Rg (EX1+1) = 4215

These results show that the quality of the proposed imprecise Bayesian model appears to be better in com-
parison with the discrete analogue of the Jelinski-Moranda model when all the deviations are considered, but
when only the maximum deviation is considered it performs a bit less. This is typical for our approach, as
for small numbers of observations there is much imprecision which can lead to a large deviation for early data
observations.

We compute the same measures after predicting only ten failures (from the 4-th test till the 13-th test, so
just the first 10 of the 23 failures that had been predicted before). In this case, we get for the proposed model

R (E”XZ—H) — 4919, R, (E“)Xm) —3.199, Ry (E”XM) — 1.078,

R, (E(”Xm) — 8.065, Ry (E(”Xm) — 3.530, Rs (E“)

Xm) — 1.269,
and for the discrete analogue of the Jelinski-Moranda model

Ry (EX;41) = 8.823, Ry (EXi41) =5.205, R3 (EX;41) = 1.858.
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Figure 4: Predicted expected values of numbers of successful runs to failure for different models for i = 3, ..., 16
with s =1

These values show that the predictive properties of the proposed imprecise Bayesian model are better in
comparison to the discrete analogue of the Jelinski-Moranda model when the number of tests is rather small.
A remaining question is how the hyperparameter s influences the predictive quality of the model. Using
the data set, we compute the quality measures with s = 4 for the proposed model after predicting 23 failures,
these are
R (E‘”XM) — 84.885, Ry (E‘*)XM) — 8201, Ry (E‘“Xm) — 4.004,
4)

=(

R (E(4)Xi+1) — 83.774, R, (E( Xm) — 8.933, Rs (]E 4)Xi+1) — 4.050,

and after predicting 10 failures, these are

R (E(‘*)Xm) — 5.249, R, (E‘“Xm) — 3.137, Ry <E(4)Xi+1> — 1.045,

R <E(4)Xi+1> — 18.925, R, (E(4)Xi+1) — 4.523, Ry (E(“’Xm) — 2.165.

The corresponding curves of the predicted expectations are shown in Figure [5| Comparing these values with
the corresponding values for s = 1, given above, we see that the increased imprecision for s = 4 leads to larger
maximum deviations than for s = 1, which is again due to the large imprecision for the first prediction in the
series, but the further results are pretty similar, hence the method learns quite quickly from the data.

8 Use of Prior Information

The proposed software reliability growth model is based on the assumption that there is no prior information
about the reliability behavior of the software considered. However, we may have such information in various
forms. Therefore, it is interesting to consider briefly how this information impacts on the software reliability
prediction quality.

Let us consider one possible kind of expert prior information. Suppose that an expert provides the following
judgement about the software reliability before the debugging process: ‘The software will function without a
failure on average longer than V' = 20 runs (or days)’. By taking into account that the run lifetime of software
is governed by the geometric distribution with parameter r, we can formalize the judgement as

EX =

S|

>V =20.
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Figure 5: Predicted expected values of numbers of successful runs to failure for different models for i = 3, ..., 16
with s =4

Hence r < 1/V = 0.05. It should be noted that we have used r € [0, 1] in the imprecise model. On the other
hand, the parameter v in the imprecise model is the expected value of the parameter r. This implies that we
can now restrict the set of values of v to the interval [0,1/V] instead of the interval [0, 1].

We study how this prior information changes the measures of model quality. We denote the prior set of
the parameter v by [yr,vv]. Then

B(s+n+ Di(p), k

)
F.(k :Flk ’ ’ =1- '
71( | @75) ( | ¥, VL S) B(S — SYL +Dl((p)ak)

B(s+n+ D;(v), k)
B(s — syu + Di(p), k)’

Fz(k | 9075) :Fz(k | 9977U58) =1-

and

* _ . B(Ci(<)075)7 ki — 1) . B(Oi(@78)7 kl)
riKles =11 (B e B =T ™ B DT

The lower and upper expected numbers of successful runs after the n-th software failure are

ES X n+s+ Ky + f(n+1,0) -1
L n+1 — S’YU+n—1 )

n+s+K,+ f(n+1,¢)—1

E' X, =
ntt sy +n—1

Using the data set from Table |1} the corresponding measures of quality with s = 1 and ~ € [0, 0.05] after
predicting 23 failures (from the 4-th test till the 26-th test) by use of the newly proposed model, are

Ry (EUXM) — 84.113, R, (El)XiH) — 8291, Ry (E(l)XiH) — 3.981,

) )

R (E“ XM) — 84.098, Ry (E“ XM) — 8.303, Ry (E(”Xm) — 3.982.

It can be seen from the numerical results that most measures of quality are approximately equal to the same
measures obtained for the case v € [0,1]. This results from the fact that quite a large number of data
observations are used.
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We compute the same measures after predicting 10 failures (from the 4-th test till 13-th test). In this case,
we get the following measures for the proposed model

R (E(l)XHl) — 6.629, R, (E“)Xm) —3.239, Ry (E“)XM) — 1.149,

R (E(”Xm) — 6.895, Ry (E(”Xm) —3.259, Rs (E“)Xm) — 1.116.

We can again see that the measures of quality are approximately equivalent to the same measures obtained
for the case v € [0,1].

Let us now consider v € [0,0.01], corresponding to prior judgement EX > 100. It can be clearly seen from
Table [I] that this prior information conflicts with the data. The corresponding measures of quality with s =1
after predicting 23 failures are

R (E“)Xm) — 84.101, Ro (E(UXM) — 8.646, Ry (E(”Xm) — 4.003,

R <E(1)Xi+1> — 84.098, R» (E(”Xm) — 8.649, Ry (E(”Xm) — 4.003.

These measures do not differ substantially from the same measures obtained in the previous cases. This can
again be explained by the quite large number of observed statistical data. However, if we take only 10 failures,
then the prediction quality is worse than in the previous case, reflected by the values

R (E(”Xm) — 8.884, Ry (E”Xm) — 4.039, Rs (E“)XM) — 1.493,

(€]

R, (E(”Xm) — 8.885, Ry (E Xi+1> — 4.045, Rs (E“)Xm) — 1.497.

It follows from the above that the inclusion of incorrect, and quite precise, prior information can lead to the
worse predictions in comparison to models with imprecision aimed at including little or no prior information.

9 Concluding Remarks

In this paper we have proposed a way towards development of statistical methods that combine imprecise
Bayesian inference for one subset of all parameters with maximum likelihood estimation for the other pa-
rameters. The key to this approach is Proposition 1, which provides a generalization of maximum likelihood
estimation for discrete variables with sets of distributions.

We presented the main idea of the new framework in this paper as an extension of the imprecise Bayesian
models [8, [13] to situations where the process considered has some changeable behaviour, which we also wish
to estimate using the data. In line with most reported developments in such imprecise Bayesian models, we
presented it from the perspective of a non-informative set of prior distributions, but it may also be useful to
apply this new method with an informative prior set of distributions. When such sets are also defined using
conjugate priors in the same way as for these non-informative prior sets, that can be done in a relatively
straightforward manner building on the approach presented in this paper. We chose to focus our presentation
on software reliability growth models, as these typically have clear divisions of the parameters according to
the different roles, for which we consider our proposed method particularly suitable.

The set M, (d) used in this paper is the set of all CDFs bounded by F; and F;. One could also consider the
use of only a set of parametric distributions, all with the same parametric form as the bounding distributions.
However, following this approach, maximization of the likelihood function over a set of distributions with
parameters ¢ would be reduced to its maximization over a set of parameters c. In this case, we get the
standard statistical model completely based on the maximum likelihood estimation, which does not differ
from many well-known models of software reliability.

In this paper, we did not consider continuous random variables, but of course this case is very important.
However, Proposition [I] can be extended to the continuous case, so the method can also be developed for
continuous random variables X7, ..., X,,. In this case, the likelihood function can be written as

P <X, < Al < Xp < zp+ Ay
L(X)=  lim Mo S X <ot by T S Xn STnt Bn}
N1—0,...,2,—0 Al e An
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and this suggests that maximum likelihood estimates for the parameters can be derived by maximizing

max  L(X) = [[ (Fi(z:) — F,(2:)) 6(as). (6)

Mlv"'7M’VL .
i=1

Here §(z;) is the Dirac function which has unit area concentrated in the immediate vicinity of the point z;.
L(X) achieves its maximum by taking the probability density functions such that p;(z;) = (F;(x;) — F;(x;))
-0(x;). However, whether or not condition @ is fully correct is yet to be established, which is an important
topic for further research.
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