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Abstract

An open question of dealing with the changing decision function is treated. The changing is metastated, i.e. it is 
described as this function changes through a set of metastates. By that, the goal is to solve a decision making problem 
applying a lot of applicable criteria. Thus a hybridization rule for finding an optimal decisions’ subset is formulated. It
is intended for combining criteria of various natures. For this, preference of straightforward calculation of normalized 
expected utility is explained. The expected utility is calculated from the function of three variables by eliminating 
states and metastates. The elimination is realized with extremization, multiplication, integration. The integration over 
finite sets is substituted with summation. Hybridization of a great number of criteria must expectedly disregard 
controversies of some criteria and possible non-appropriateness of the expected utility calculation.
© 2018 World Academic Press, UK. All rights reserved.
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1 Introduction

A lot of criteria exist and, likely, will be developed, for solving decision making problems [3, 18, 24]. Operating over 
the decision function, which preferably is reduced to a matrix, a part of them may invoke and apply additional 
statistical data in a form of probabilistic measures. Probability-based criteria aiming at maximizing expected utility 
(minimizing expected losses) perform poorly when statistical observations are insufficient (because then probabilistic 
measures are unreliable) [25, 31, 33, 47]. The performance is poorer when the decision function changes through a set 
of metastates [5, 29, 37] (see Figure 1).

Figure 1: A three-dimensional sketch of the decision function depending on its third variable which is metastate

Metastates are generated due to uncertain evaluation of ordinary situations (couples of a decision and an ordinary 
state), or influence of the time course [7, 28]. For instance, entries of a common decision flat matrix in analyzing 
consumer preferences [10, 43, 46] change after market volatilities, inflation, competitions, etc. Similarly, risk 

* Corresponding author. 
Email: romanukevadimv@gmail.com (V.V. Romanuke).



V.V. Romanuke: Decision Making Criteria Hybridization for Finding Optimal Decisions’ Subset 

 
 

280 

decision matrices in developing occupational health and safety and environment policy are influenced by the 
changing standards and technologies [32, 40, 41]. This creates slices of the decision matrix, which are called 
metastates. On the other hand, continuous metastates can be used for converting ordinary situations which are 
evaluated as intervals [15, 23] into meta-situations whose evaluations then become real-valued points [21]. Then, 
nonetheless, efficient decisions must be made as over states and metastates, as well as under a lot of criteria. This 
factually addresses a ubiquitous problem of unification in decision making theory. 

 
2 Background 
 
A question of regarding multiple states of a decision making problem was considered in [15, 16, 23, 26, 37]. An issue 
of multiple criteria applicable to solve the problem was also considered in [2, 12, 18, 24, 37, 42]. An approach for 
reducing the multiple state decision making problem along with regarding multiple criteria by their hybridization was 
developed in [37]. Nevertheless, an algorithm of reducing a finite series of decision making problems to a single 
problem suggested in [37] relies on additional statistics. Without statistical data, the algorithm is consistent only if 
there is a nonempty intersection of the optimal decisions’ subsets for the metastates. 

Hybridization of multiple criteria for decision making lies in finding an appropriate combination of them [4, 12]. 
Such combination is a weighted sum of normalized expected utilities calculated for criteria [1, 4, 21, 22, 35, 36, 38, 
39]. Greater weights correspond to more important criteria. Expected utilities for deficient or unreliable criteria are 
summed with lesser weights. As the expected utility is a function of the single variable (decision), then there is an 
open question of how to come to such a function from the function of three variables (Figure 2). Expectations shall be 
found over both states and metastates. So what should be eliminated first? Or does an order of the elimination not 
matter? These questions are to be answered unambiguously. 

 

 
Figure 2: An open question of unambiguously mapping the function of three variables (Figure 1) into a function of 
the single variable (decision) 

 
Moreover, finding the expected utility can be done in two ways: 
1. Straightforwardly, without standardization (normalization) of the decision function [14, 17]. The expected 

utility is normalized subsequently (Figure 3). 
2. With preliminarily standardizing the decision function, whereupon the expected utility, if necessary, is 

normalized (Figure 4). Despite this method seems one stage longer, it allows to compare aftermaths of criteria before 
normalization (see, e. g., [20, 34]). Comparisons of criteria can be used to correct their weights [2, 27, 42, 48]. For 
instance, if a criterion gives a more equable curve of the expected utility (like the third one in Figure 4), then its 
weight should be decreased [13, 30]. 
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Figure 3: A sketch of straightforward calculation of the normalized expected utility

Figure 4: A sketch of calculating the normalized expected utility after the decision function is preliminarily
standardized
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We cannot compare expected utilities with calculating them straightforwardly. Calculation of the normalized 
expected utility, however, must be a common routine. Any options are unwanted. After all, absence of unambiguity is 
the main issue of the modern decision making theory [9, 27, 45]. Uniqueness of an optimal decision is not the only 
desired objective. Calculation of the normalized expected utility and hybridization of multiple criteria must also be 
unique [6, 19, 37]. The latter must help in arranging/sorting decisions unambiguously, which is even a wider problem 
than just searching for the mentioned optimal decision uniqueness. 

 
3 Goal 
 
Due to unclear ways of hybridizing criteria over decisions along with states and metastates, the goal is to formulate a 
hybridization rule for finding an optimal decisions’ subset. This rule should allow regarding that an ordinary decision 
function may change. The changing is metastated (i.e., described as this function changes through a set of metastates). 

For achieving the goal, the following tasks are going to be fulfilled: 
1. Preliminary convention of the utility notion and denotations. 
2. Substantiation of a common routine showing how the normalized expected utility is calculated. 
3. Formulae for combining criteria. 
4. Numerical experiments for validating the substantiated routine and criteria combination formulae. 
 

4 Preliminary Convention 
 
Although the conception of utility is the center of decision making theory, decision making problems operate with 
real utility rarely. Usually, utility represents income, benefit, win, gain, etc., but it is easier to deal with another 
measure of utility which is loss or risk. At least, loss functions are widespread objects with a purpose of minimization. 

Thus, let us define the utility function as follows. Denote a set of decisions by ,X  a set of states by ,S  and a set 

of metastates by .M  If these sets are finite then { } 1

N
i i

X x
=

= , { } 1
,

Q
j j

S s
=

=  { } 1

K
k k

M m
=

= , by ,N X=  { }\ 1 ,N ∈  

,Q S=  { }\ 1 ,Q∈  ,K M=  { }\ 1 .K ∈  An ordinary decision (utility) function, defined commonly on a set 
X S×  at some ,m M∈  changes as m  is changed. 

In the situation 

 { }, ,x s m   by  ,x X∈   ,s S∈   ,m M∈  (1) 

which is a meta-situation, a real value ( ), ,u x s m  is an evaluation of utility. Therefore, the loss function ( ), ,u x s m  

defined on the set X S M× ×  is to be minimized with respect to decisions X . If function ( ), ,u x s m  represents 
benefit, then it is to be maximized with respect to decisions X . 

Now, let us define a probabilistic measure. Denote by ( ), ,p x s m  a nonnegative function which is a 
probabilistic measure over ordinary states for each decision x X∈  and each metastate m M∈ . The function 
( ), ,p x s m  is defined on the set S  with a Lebesgue measure ( )S sµ , so its condition of unit normalization is [8, 42, 

44] 

 ( ) ( ), , 1S

S

p x s m d sµ =∫   x X∀ ∈   and  .m M∀ ∈  (2) 

Value ( ), ,p x s m  is proportional to a probability of that situation (1) happens. 
On the other hand, metastates have their own probabilistic measure. This measure should not depend on 

decisions and ordinary states. Let a nonnegative function ( )w m  be a probabilistic measure over metastates. Value 

( )w m  is proportional to a probability of that metastate m  happens. The function ( )w m  is defined on the set M  

with a Lebesgue measure ( )M mµ , so its condition of unit normalization is 

 ( ) ( ) 1.M

M

w m d mµ =∫  (3) 
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Theoretically, sets of states and metastates may appear such, that integrals (2) and (3) come non-summable. But, 
without losing generality, in practice, these sets can always be supplemented artificially so that integrals (2) and (3) 
might exist. Clearly, a transition to Riemann integrals is intuitively easily fulfilled, where it is possible. 

 
5 Normalized Expected Utility 
 
Expected utility by the minimax (minimaximax) principle is 

 ( ) ( )max max , , .
s S m M

a x u x s m
∈ ∈

=  (4) 

Obviously, those maximization operators in (4) can be swapped: 

 ( ) ( )max max , , .
m M s S

a x u x s m
∈ ∈

=  (5) 

Generally, operators of extremization over sets S  and M  are identical, so the swap can always be applied (if the 
order of extremization matters for calculation speed). 

When the set S  is finite, the product criterion (rule) for a positive function ( ), ,u x s m  gives 

 ( ) ( )max , , .
m M

s S

a x u x s m
∈

∈

= ∏  (6) 

When the set M  is finite, the product rule gives 

 ( ) ( )max , , .
s S

m M

a x u x s m
∈

∈

= ∏  (7) 

If they both are finite, then 

 ( ) ( ) ( ), , , , .
s S m M m M s S

a x u x s m u x s m
∈ ∈ ∈ ∈

= =∏∏ ∏∏  (8) 

If a probabilistic measure for calculating expected utility is invoked, then a one extremization operator remains. 
This is maximization for the loss function. Then expected utility is either 

 ( ) ( ) ( ) ( )max , , , , Sm M
S

a x p x s m u x s m d s
∈

= µ∫  (9) 

or 

 ( ) ( ) ( ) ( )max , , Ms S
M

a x w m u x s m d m
∈

= µ∫  (10) 

for knowing the measures over states or a measure over metastates, respectively. If all probabilistic measures are 
available, then 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , .S M

M S

a x w m p x s m u x s m d s d m= µ µ∫ ∫  (11) 

Therefore, the expected utility is obtained from the function of three variables (Figure 2) by eliminating both 
states and metastates. The elimination is realized with extremization, (or/and) multiplication, integration. The 
integration over finite sets is substituted with summation [8, 11, 35, 36, 38, 39, 42]. Multiplication, if any, always 
precedes extremization. The integration, if any, always precedes extremization as well. 

Expected utilities by formulae (4)–(11) and similar ones to them have absolutely different units of measurement. 
This is why, for comparing them and subsequently combining them, the function ( )a x  must be normalized—just like 
in the rightmost part of Figures 3 and 4. But suppose that the utility function is standardized preliminarily (Figure 4). 
For instance, a common routine for such standardization is 
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 ( )
( ) ( )

( ) ( )
, , min min min , ,

, ,
max max max , , min min min , ,

y X t S n M

y X t S n My X t S n M

u x s m u y t n
u x s m

u y t n u y t n
∈ ∈ ∈

∈ ∈ ∈∈ ∈ ∈

−
=

−
  (12) 

that gives ( ) [ ], , 0; 1 .u x s m ∈  Hence, situations (1) evaluated with (12) by various criteria are comparable. However, 
if weights of criteria are known beforehand, then this standardization is useless. Besides, for applying the product rule, 
standardization (12) does not fit because it requires that ( ) ( ], , 0; 1u x s m ∈  shall be. Furthermore, when probability-
based criteria are applied (like Germeyer’s or maximum probability criterion), standardization (12) is needless. That 
all implies the most common routine for calculating the normalized expected utility lies in the straightforward 
calculation shown in Figure 3. 
 
6 Formulae for Combining Criteria 
 
Suppose we have altogether H  criteria to be hybridized. Formally, { }\ 1 .H ∈  Denote by ( )ha x  the expected 

utility by the h -th criterion, 1, .h H=  Then the normalized expected utility by this criterion is [14, 29, 37, 38] 

 ( )
( ) ( )
( ) ( )

min

max min
h hy X

h
h hy Xy X

a x a y
a x

a y a y
∈

∈∈

−
=

−
   x X∀ ∈   at  1, ,h H=  (13) 

if only 

 ( ) ( )max min .h hy Xy X
a y a y

∈∈
≠  (14) 

Normalization (13) implies that, for every h -th criterion, 0x X∃ ∈  such that ( )0 0ha x =  and 1x X∃ ∈  such that 

( )1 1,ha x =  i.e. ( ) [ ]0; 1 .ha x ∈  If condition (14) is violated, i.e. 

( ) ( )max min ,h hy Xy X
a y a y

∈∈
=  

then the expected utility by the h -th criterion is constant and thus it does not make any sense. That criterion is 
excluded from hybridization. 

Note that some of functions ( ){ } 1

H
h h

a x
=

 may reflect benefits instead of losses, even working with a loss function 

( ), , .u x s m  This is like when the minimum variance criterion is applied to a gain function. So let H−  be a subset of 

indices of criteria which correspond to losses, and H+  be a subset of indices of criteria which correspond to gains. 

Here we have { }1, .H H H− + =  Then the criteria are combined as 

 ( ) ( )* arg min h h h hx X
h H h H

X a x a x
− − + +

− − + +

∈
∈ ∈

 
 = λ − λ
 
 
∑ ∑   (15) 

with the h -th criterion weight hλ , where 

1

1
H

h h h
h h H h H

− +

− − + += ∈ ∈

λ = λ + λ =∑ ∑ ∑  

by 

 ( )0; 1hλ ∈   1, .h H∀ =  (16) 



Journal of Uncertain Systems, Vol.12, No.4, pp.279-291, 2018                                                                                                           
 

 
 

285 

Weights (16) determining importance of criteria are deduced empirically, with expert estimation procedures. If 
these weights are unknown or cannot be given, then the hybridization rule (15) is simplified to: 

 ( ) ( )* arg min .h hx X
h H h H

X a x a x
− +

− − + +

∈
∈ ∈

 
 = −
 
 
∑ ∑   (17) 

Formula (17) is the easiest way for combining criteria. This way is the most used as it does not need any additional 
information, including weights (16). 
 
7 Numerical Experiments for Validating the Substantiated Routine and 

Criteria Combination Formulae 
 
Consider an example, where the loss function ( ), ,u x s m  is a 4 3 3× ×  decision matrix 

( ) ( ) ( ) ( )( )1 2 34 3 3 4 3 4 3 4 3
, ,ijk ij ij iju u u u

× × × × ×
= =U  

by { }4

1
,i i

X x
=

=  { }3

1j j
S s

=
= , { }3

1k k
M m

=
= : 

4 2 2 3 3 1 2 5 2
3 1 4 4 1 4 2 3 5

, , .
5 1 2 3 5 1 4 4 2
2 2 3 1 4 2 3 5 2

      
      
      =       
             

U  

Probabilistic measures ( ){ }{ }, ,
m M x X

p x s m
∈ ∈

 over ordinary states constitute a 4 3 3× ×  stochastic matrix 

( )4 3 3
:ijkp

× ×
=P  

( ) ( ) ( ) ( )( )1 2 34 3 3 4 3 4 3 4 3
, ,ijk ij ij ijp p p p

× × × × ×
= =P  

0.4 0.3 0.3 0.1 0.4 0.5 0.4 0.3 0.3
0.2 0.6 0.2 0.2 0.7 0.1 0.4 0.4 0.2

, ,
0.1 0.7 0.2 0.2 0.1 0.7 0.3 0.3 0.4
0.3 0.4 0.3 0.4 0.2 0.4 0.6 0.2 0.2

      
      
      =       
             

. 

The probabilistic measure ( )w m  over those three metastates is just 

( ) [ ]1 3
0.1 0.3 0.6 .kw

×
= =W   

Expected losses by minimaximax (4) or (5) are 

( ){ } { }4
1 1

5, 5, 5, 5 .i i
a x

=
=  

Clearly, this criterion of the ultimate pessimism is useless here as *
1 .X X=  Expected losses by the product criterion 

in (8) are 

( ){ } { }4
2 1

2880, 5760, 4800, 2880i i
a x

=
=  

which give two optimal decisions: { }*
2 1 4, .X x x=  Expected losses by (9) are 
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( ){ }
4

3
4

3 1 1, 3
1 1

maxi ijk ijki k
j i

a x p u
= =

= =

  =  
  

∑  

{ } { } { } { }{ }
{ }

1, 3 1, 3 1, 3 1, 3
max 2.8, 2, 2.9 , max 2, 1.9, 3 , max 1.6, 1.8, 3.2 , max 2.3, 2, 3.2

2.9, 3, 3.2, 3.2
k k k k= = = =

=

=
 

which give { }*
3 1 .X x=  An unexpected solution is obtained with another criterion by (10) exploiting probabilities of 

metastates: 

( ){ }
43

4
4 1 1, 3

1 1

maxi k ijki j
k i

a x w u
= =

= =

  =  
  

∑  

{ } { } { } { }{ }
{ }

1, 3 1, 3 1, 3 1, 3
max 2.5, 4.1, 1.7 , max 2.7, 2.2, 4.6 , max 3.8, 4, 1.7 , max 2.3, 4.4, 2.1

4.1, 4.6, 4, 4.4
j j j j= = = =

=

=
 

whereupon { }*
4 3 .X x=  The fifth version of the optimal decisions’ subset is obtained by calculating expected losses as 

(11), that reminds the full Bayes—Laplace criterion: 

( ){ }
4

3 3
4

5 1
1 1 1

i k ijk ijki
k j i

a x w p u
=

= = =

  =  
  
∑ ∑  

{2.8 0.1 2 0.3 2.9 0.6, 2 0.1 1.9 0.3 3 0.6,= ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅  

                                      }1.6 0.1 1.8 0.3 3.2 0.6, 2.3 0.1 2 0.3 3.2 0.6⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅  

{ }2.62, 2.57, 2.62, 2.75=  

whereupon { }*
5 2 .X x=  

None of those five criteria gives an acceptable solution to the being considered decision making problem. Thus, 
hybridization is necessary. The first criterion is excluded as condition (14) is violated. After normalization of 
expected losses, 

( ){ }4
2 1

20, 1, , 0 ,
3i i

a x
=

 =  
 



     
( ){ }4

3 1

10, , 1, 1 ,
3i i

a x
=

 =  
 

  

( ){ }4
4 1

1 2, 1, 0, ,
6 3i i

a x
=

 =  
 



   
( ){ }4

5 1

5 5, 0, , 1 ,
18 18i i

a x
=

 =  
 

  

where { }2, 5H− =  and ,H+ = ∅  we get an optimal decisions’ subset by (17): 

 ( ) { }
5

*
1, 1, 4 , 1, 4

2

4 7 35 8arg min arg min , , , .
9 3 18 3i i

h ix i x i
h

X a x x
−

−

= =
=

    = = =     
∑   (18) 

Despite { }*
2 1 4,X x x=  by the product criterion in (8), here decision 4x  is the worst due to (18). Besides, { }*

4 3X x=  

and { }*
5 2 ,X x=  although decisions 3x  and 2x  are almost as poor as decision 4.x  So, this is an example of that 

standalone criteria may give inconsistent and contradictory results until they are combined into a single hybridized 
criterion. However, apart from the useless minimaximax, here the best decision { }*

1X x=  is given also by the 
product criterion and expected losses by (9). 

More general examples are obtained by numerical experiments formed on a base of pseudorandom numbers 
drawn from the standard uniform distribution on the open interval ( )0;1 .  For instance, the decision matrix 
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 ( ) ( )10 , , 5ijk N Q K
u N Q K

× ×
= = ⋅Θ +U  (19) 

by a function ( ), ,N Q KΘ  returning a pseudorandom N Q K× ×  matrix drawn from the standard uniform 
distribution on the open interval ( )0;1 .  Stochastic matrix ( )ijk N Q K

p
× ×

=P  and probabilities ( )1k K
w

×
=W  of 

metastates are formed similarly. Figure 5 shows a sample of montaged histograms of single-criterion decisions (in 
light color, for the five criteria used in the 4 3 3× ×  example above) and positions of the hybridized-criterion decision 
(in black color). It is well seen that the case when the best decision (by the hybridized criterion) does not coincide 
with any of the standalone criteria is rare. Nonetheless, the case when the best decision does not coincide with the 
highest bar occurs much more frequently. In particular, Figure 6 shows that the number of coincidences with the most 
frequent standalone-criterion decision for 10 10N × ×  matrices decreases as the size increases. The number of 
coincidences with any of the standalone criteria decreases also, although a little bit slower. 

 

 
Figure 5: A sample of montaged histograms for 10 10N × ×  matrices by { }6, 8,10,12,14,16,18, 20, 22, 24, 26N ∈  
(results for these eleven sizes are given row-wise, five versions for every size, descending as the size increases) 
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Figure 6: The number of coincidences with the most frequent standalone-criterion decision and the number of
coincidences with any of the standalone criteria for 5000 10 10N × × matrices (at each point)

Apparently, the said coincidence numbers depend on the number of states and metastates also. The decreasing 
dependence is similar to that in Figure 6. This is revealed in Figures 7 and 8 whose meshes are plotted for 50000
N Q Q× × matrices (having the same numbers of states and metastates, for simplification) at each node.

Figure 7: The decreasing number of coincidences with any of the standalone criteria
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Figure 8: The faster decreasing number of coincidences with the most frequent standalone-criterion decision

The shown results of numerical experiments validate the substantiated routine for straightforwardly calculating 
the normalized expected utility (Figure 3) and criteria combination formulae (13)–(17). The main aspect of the 
validation is that standalone-criteria decisions are badly scattered (they do not have a “direction”), while the 
hybridized-criterion decision is almost always single. Standalone-criteria and hybridized-criterion decisions coincide 
less for bigger sizes of decision matrices. Besides, non-coincidence with the most frequent decision decreases faster.

8 Conclusion

Decision making criteria hybridization by (15) or (17) is intended for combining criteria of various natures, and so 
straightforward calculation of normalized expected utility is preferable. Variety of their natures may be also expressed 
with that how severely the ordinary decision function changes through metastates, that is differently perceived by 
diverse criteria (for instance, by those who operate with a probabilistic measure over metastates and by those who do 
not). Standardization (12) does make its sense only when weights (16) determining importance of criteria are to be 
deduced. The deduction is accomplished with comparing magnitude and smoothness of the expected utility curves.

Before hybridizing, normalization (13) is accomplished by condition (14). Criteria violating that condition are 
excluded and not taken into hybridization. Even if some methods of eliminating states and metastates are 
controversial, or not all changes of the decision function are regarded appropriately, hybridization of a great number 
of criteria must expectedly disregard such controversies. This reminds an effect of the law of large numbers.
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