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Abstract

In this paper, in order to combination of soft sets and rough sets with semigroups, the notion of
soft rough semigroup is introduced according to Feng’s idea. Roughness in semigroups with respect to
soft rough approximation spaces is studied. In particular, some basic properties of lower and upper soft
rough approximations of a subset with respect to two different soft approximation spaces are investigated.
Finally, sufficient conditions for the lower and upper soft rough approximations of an arbitrary subset of
a semigroup to be subsemigroup and (bi-, interior) ideal are provided.
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1 Introduction

In 1999, Molodtsov introduced the notion of soft sets [15] as a new approach to tackle the problems of vagueness
and uncertainty. In fact, classical methods are not always successful for modeling uncertain data, because
the uncertainties appearing in different sciences such as medical science, engineering, economics, environment,
social science, etc., may be of various types. In order to solve these problems, many mathematical tools are
available for modeling uncertainties such as probability theory, fuzzy set theory [24], rough set theory [17],
etc., but all of these theories have their inherent difficulties as pointed out in [15]. In this case, Molodtsov put
forward the concept of soft sets as a new mathematical tool for dealing with uncertainties. Soft set theory has
many application in areas such as the smoothness of functions, game theory, operations research, Riemann
integration and so on, as reported by Molodtsov [15] in his work. Later on many researchers began to focus
on the emerging theory and develop it in both theoretical study and practical application. Maji et al. [13]
discussed in detail some new operations on soft sets such as subset, union, intersection and complements of
soft sets and so on with examples and considered the application of soft set in decision making problem. Based
on the analysis of several operations on soft sets introduced in [13], Ali et al. [2] introduced some new notions
such as the restricted intersection, the restricted union, the restricted difference and the extended intersection
of two soft sets. In recent years, research works on the relationship between soft sets, rough sets and fuzzy
sets have been investigated by many authors. In 2010, Feng et al. [5] investigated the problem of combining
soft sets with fuzzy sets and rough sets and proposed three different types of hybrid models, which are called
rough soft sets, soft rough sets and soft-rough fuzzy sets. The combination of soft sets, fuzzy sets, and rough
sets was also discussed by some researchers such as [1, 7, 10, 11, 14, 16, 20, 22, 29, 30].

In recent years, the connection between algebraic structures (especially, semigroups and hemirings) and the
theories of uncertainty has been studied by many authors. Shabir and Irfan Ali [18] studied soft semigroups
and soft ideals over a semigroup which characterize generalized fuzzy ideals and fuzzy ideals with thresholds
of a semigroup. In [23], Yang gave the notations of fuzzy soft semigroups and fuzzy soft ideals, and discussed
the α-level set, union and intersection of them. Hamouda [8] introduced the notions of soft left and soft right
ideals, soft quasi-ideal and soft bi-ideal in ordered semigroups. Based on the idea in [5], Zhan et al. [26]
firstly applied rough soft sets to hemirings and described some characterizations of rough soft hemirings.
Zhan and Zhu [28], proposed a novel concept of soft rough fuzzy sets which is called Z-soft rough fuzzy set
and introduced the notion of Z-soft rough fuzzy ideals of hemirings. After that, Zhan et al. [25] introduced
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the notion of Z-soft fuzzy rough set as an important generalization of Z-soft rough fuzzy sets and presented
the application of this notion in semigroups. The notion of Z-soft fuzzy rough ideals of hemirings was also
investigated by Ma et al. [12].

In particular, the notion of soft rough set introduced by Feng et al. [5] (we call it Feng-soft rough set) has
a restricted condition, that is, the soft set must be full. Therefore, in order to strengthen this concept, a new
approach called modified soft rough set was presented by Shabir et al. [19]. Recently, Zhan et al. [21, 27]
investigated soft rough semigroups and soft rough hemirings according to Shabir’s idea. It should be noted
that the relationship between Feng-soft rough set and algebraic structures is not studied until now, therefore,
research on this topic can be interesting. For this reason, we apply Feng-soft rough set to semigroup, as the
first work in this area.

The aim of this paper is to make a connection between soft sets, rough sets and semigroups all together
according to the idea of Feng et al. [5], which leads to introduce the notion of soft rough semigroups. In fact,
we consider a soft set over a semigroup and use it instead of an equivalence relation to obtain lower and upper
soft rough approximations of a subset of semigroup. Then we study the characterizations of soft rough sets
in semigroups. In particular, we show that the lower and upper soft rough approximations of an arbitrary
subset of a semigroup can be subsemigroup and (bi-, interior) ideal under sufficient conditions. Moreover, we
consider two different soft approximation spaces over a common universe and investigate some basic properties
of lower and upper soft rough approximations of a subset with respect to these soft approximation spaces.

2 Preliminaries and Notations

In this section, we recall some basic notions and definitions related to soft sets, rough sets and semigroups.
A semigroup is a system (S, ·), where S is a non-empty set and the binary operation “·” is associative. In

what follows let S denote a semigroup.
A non-empty subset X of S is called a subsemigroup of S if XX ⊆ X. A nonempty subset X of S is

called a left (right) ideal of S if SX ⊆ X (XS ⊆ X). By two-sided ideal (simply, ideal), we mean a subset
of S, which is both a left and right ideal of S. A subsemigroup X of S is called a bi-ideal of S if XSX ⊆ X.
A subsemigroup X of S is called an interior ideal of S if SXS ⊆ X. For more details, please see [4, 9].

Definition 2.1. ([15]) Let U be the universe set, E be the set of all possible parameters with respect to U and
P (U) denotes the set of all subsets of U . A pair S = (F,A) is called a soft set over U , where A ⊆ E and F
is a set-valued mapping given by F : A −→ P (U).

As pointed out in [13], for any parameter e ∈ A, the subset F (e) ⊆ U may be considered as the set of
e-approximate elements, or as the set of e-elements in the soft set (F,A).

Definition 2.2. ([5]) A soft set (F,A) over U is called a full soft set if
⋃

a∈A
f(a) = U .

Definition 2.3. ([13]) Let (F,A) and (G,B) be two soft sets over U . (F,A) is called a soft subset of (G,B),
denoted by (F,A) ⊆ (G,B), if A ⊆ B and F (a) ⊆ G(a) for all a ∈ A.

Definition 2.4. ([2]) Let (F,A) and (G,B) be two soft sets over U . The extended union of (F,A) and (G,B)
is denoted by (F,A) ∪ (G,B) = (F ∪ G,C), which is soft set over U, where C = A ∪ B and the set-valued
mapping is given by

(F ∪G)(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A
F (e) ∪G(e) if e ∈ A ∩B

for all e ∈ C.

Definition 2.5. ([2]) Let (F,A) and (G,B) be two soft sets over U . The extended intersection of (F,A)
and (G,B) is denoted by (F,A) ∩ (G,B) = (F ∩ G,C), which is soft set over U, where C = A ∪ B and the
set-valued mapping is given by

(F ∩G)(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A
F (e) ∩G(e) if e ∈ A ∩B

for all e ∈ C.
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Definition 2.6. ([5]) A soft set (F,A) over U is called an intersection complete soft set if for any a1, a2 ∈ A,
there exists a3 ∈ A such that F (a3) = F (a1) ∩ F (a2) whenever F (a1) ∩ F (a2) 6= ∅.

Definition 2.7. ([10]) Let (F,A) be a soft set over U . If for any a, b ∈ A , there exists c ∈ A such that
f(c) = f(a) ∪ f(b), then (F,A) is called an union complete soft set (UCS-set) over U .

Definition 2.8. ([17]) Let U be a non-empty finite set and R be an equivalence relation on U . A pair (U,R)
is called an approximation space. For any subset X of U , the operations R(X) and R(X) are called the
R-lower and the R-upper approximation of X, with respect to R, respectively. If R(X) = R(X), then X is
called definible with respect to R; otherwise, X is said to be rough with respect to R.

Now, we present the notions of soft semigroups and soft (bi-, interior) ideals of semigroups.

Definition 2.9. ([18]) Let (F,A) be a soft set over S. Then (F,A) is said to be a soft subsemigroup over
S if F (a) is a subsemigroup of S for all a ∈ A with F (a) 6= ∅. Note that a soft subsemigroup also is called a
soft semigroup.

Definition 2.10. ([18]) A soft set (F,A) over S is called a soft ideal (resp. soft left ideal, soft right
ideal) over S, if F (a) is an ideal (resp. left ideal, right ideal) of S for all a ∈ A with F (a) 6= ∅.

Definition 2.11. ([3]) A soft subsemigroup (F,A) over S is called a soft bi-ideal over S, if F (a) is a bi-ideal
of S for all a ∈ A with F (a) 6= ∅.

Definition 2.12. A soft semigroup (F,A) over S is called a soft interior ideal over S, if F (a) is an interior
ideal of S for all a ∈ A with F (a) 6= ∅.

3 Soft Rough Sets and Some of Their Properties

In this section, we concentrate on some basic properties of soft rough sets and investigate lower and upper soft
rough approximations of a subset with respect to two different soft approximation spaces. We also introduce
the notion of product complete soft sets to discuss the fundamental properties of lower and upper soft rough
approximations of a subset of a semigroup. First we recall the notion of soft rough sets in [5].

Definition 3.1. ([5]) Let S = (F,A) be a soft set over U . The pair P = (U,S) is called a soft approximation
space. Based on P , the following two operations are defined:

apr
P

(X) = {u ∈ U | ∃a ∈ A [u ∈ f(a) ⊆ X]} ,

aprP (X) = {u ∈ U | ∃a ∈ A [u ∈ f(a), f(a) ∩X 6= ∅]} ,

for any subset X of U . Two sets apr
P

(X) and aprP (X) are called the lower and upper soft rough
approximations of X with respect to P , respectively. If apr

P
(X) 6= aprP (X), X is said to be soft P -rough

set, otherwise X is called a soft P -definable.

Clearly, apr
P

(X) ⊆ X and apr
P

(X) ⊆ aprP (X) for all X ⊆ U but X ⊆ aprP (X) may not hold in general
as shown in the following example.

Example 3.2. Suppose that U = {u1, u2, . . . , u8} be a universe and A = {e1, e2, . . . , e6} be subset of parameter
set. Let S = (F,A) be a soft set over U given by Table 1 and P = (U,S) be the soft approximation space.

Table 1: Tabular representation of the soft set S
u1 u2 u3 u4 u5 u6 u7 u8

e1 0 0 1 0 1 0 0 0
e2 1 0 0 0 1 0 0 0
e3 1 1 0 0 0 0 1 1
e4 0 0 1 0 1 0 0 1
e5 0 1 1 0 0 0 0 0
e6 0 0 0 0 0 1 0 1
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For X = {u2, u3, u4, u5} ⊆ U , we have apr
P

(X) = {u2, u3, u5} and aprP (X) = {u1, u2, u3, u5, u7, u8}. So,
apr

P
(X) 6= aprP (X) and X is soft P-rough set. It is easy to see that apr

P
(X) ⊆ X and apr

P
(X) ⊆ aprP (X)

but X * aprP (X).

Theorem 3.3. ([6]) Let S = (F,A) be a full soft set over U and P = (U,S) be a soft approximation space.
Then X ⊆ aprP (X), for all X ⊆ U .

From the definition of soft rough set, we have the following neat result.

Proposition 3.4. ([5, 6]) Let S = (F,A) be a soft set over U and P = (U,S) be a soft approximation space.
Then

apr
P

(X) =
⋃

f(a)⊆X
f(a) and aprP (X) =

⋃
f(a)∩X 6=∅

f(a).

Theorem 3.5. ([5, 6]) Let S = (F,A) be a soft set over U and P = (U,S) be a soft approximation space.
Then for all X,Y ⊆ U, we have

1. apr
P

(∅) = aprP (∅) = ∅;

2. apr
P

(U) = aprP (U) =
⋃

a∈A
f(a);

3. X ⊆ Y =⇒ apr
P

(X) ⊆ apr
P

(Y ) and aprP (X) ⊆ aprP (Y );

4. apr
P

(X ∩ Y ) ⊆ apr
P

(X) ∩ apr
P

(Y );

5. apr
P

(X ∪ Y ) ⊇ apr
P

(X) ∪ apr
P

(Y );

6. aprP (X ∪ Y ) = aprP (X) ∪ aprP (Y );

7. aprP (X ∩ Y ) ⊆ aprP (X) ∩ aprP (Y );

8. apr
P

(aprP (X)) = aprP (X);

9. aprP (apr
P

(X)) ⊇ apr
P

(X);

10. apr
P

(apr
P

(X)) = apr
P

(X);

11. aprP (aprP (X)) ⊇ aprP (X).

Theorem 3.6. ([5, 6])Let S = (F,A) be an intersection complete soft set over U and P = (U,S) be a soft
approximation space. Then

apr
P

(X ∩ Y ) = apr
P

(X) ∩ apr
P

(Y ).

As we know, Pawlak’s rough set is based on equivalence relations. In Feng-soft rough set, equivalence
relation is replaced by a soft set. Based on this idea, soft rough approximations and soft rough sets are
introduced. In the following, we consider two different soft approximation spaces based on a pair of soft sets
over a common universe and study some basic properties of lower and upper soft rough approximations of
a subset X of a universe with respect to these soft approximation spaces. Firstly, we introduce the notion
of soft approximation subspaces. After that, we define the intersection and union of two soft approximation
spaces. Moreover, in order to understand the obtained results, we give a practical example.

Definition 3.7. Let S = (F,A) and T = (G,B) be two soft sets over U and P = (U,S), Q = (U,T) be
two soft approximation spaces. Then P is called a soft approximation subspace of Q, if S ⊆ T. We write
P v Q.

Theorem 3.8. Let S = (F,A) and T = (G,B) be two soft sets over U and P = (U,S), Q = (U,T) be two
soft approximation spaces such that P v Q. Then for any non-empty subset X of U , aprP (X) ⊆ aprQ(X).

Proof. Let u ∈ aprP (X), then there exist a ∈ A such that u ∈ f(a), f(a) ∩X 6= ∅. Since S ⊆ T, a ∈ B and
f(a) ⊆ G(a) and so u ∈ G(a). Clearly, G(a) ∩X 6= ∅. Therefore, u ∈ aprQ(X).

It’s worth noting that the inclusion in Theorem 3.8 may be strict, as shown in the following example.
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Example 3.9. Suppose that U = {u1, u2, . . . , u6} is a universe and A = {e1, e4} and B = {e1, e2, e3, e4}
are subsets of parameter set. Let S = (F,A) and T = (G,B) be two soft sets over U given by Tables
2, 3, respectively and P = (U,S), Q = (U,T) be two soft approximation spaces. Clearly S ⊆ T. For
X = {u1, u4, u5, u6} ⊆ U , we have aprP (X) = {u1, u2, u5, u6} and aprQ(X) = {u1, u2, u3, u5, u6}. Therefore
aprP (X) ⊂ aprQ(X).

Table 2: Tabular representation of the soft set S
u1 u2 u3 u4 u5 u6

e1 1 0 0 0 0 1
e4 1 1 0 0 1 0

Table 3: Tabular representation of the soft set T
u1 u2 u3 u4 u5 u6

e1 1 0 1 0 0 1
e2 0 0 0 0 1 0
e3 0 0 0 0 0 0
e4 1 1 1 0 1 0

Remark 3.10. In Example 3.9, we have apr
P

(X) = {u1, u6} and apr
Q

(X) = {u5}. Thus, in the case of

P v Q, there is no relationship between apr
P

(X) and apr
Q

(X).

Definition 3.11. Let S = (F,A) and T = (G,B) be two soft sets over U and P = (U,S), Q = (U,T) be
two soft approximation spaces. The intersection of P and Q is the soft approximation space (U, I), where
I = S ∩ T. We write P uQ = (U, I).

Definition 3.12. Let S = (F,A) and T = (G,B) be two soft sets over U and P = (U,S), Q = (U,T) be two
soft approximation spaces. The union of P and Q is the soft approximation space (U,U), where U = S ∪ T.
We write P tQ = (U,U).

Theorem 3.13. Let S = (F,A) and T = (G,B) be two soft sets over U , P = (U,S) and Q = (U,T) be two
soft approximation spaces and X ⊆ U . Then

aprP (X) ∪ aprQ(X) ⊆ aprPtQ(X).

Proof. Note that P v P tQ, so by Theorem 3.8, aprP (X) ⊆ aprPtQ(X). Similarly, aprQ(X) ⊆ aprPtQ(X).
Therefore, aprP (X) ∪ aprQ(X) ⊆ aprPtQ(X).

Theorem 3.14. Let S = (F,A) and T = (G,B) be two soft sets over U , P = (U,S) and Q = (U,T) be two
soft approximation spaces and X ⊆ U . Then

apr
PtQ(X) ⊆ apr

P
(X) ∪ apr

Q
(X).

Proof. Let u ∈ apr
PtQ(X), then there exists c ∈ A ∪ B such that u ∈ (F ∪ G)(c) ⊆ X. By Definition

2.4, if c ∈ A − B, then c ∈ A and u ∈ (F ∪ G)(c) = F (c) ⊆ X, so u ∈ apr
P

(X) ⊆ apr
P

(X) ∪ apr
Q

(X).

Similarly, for c ∈ B − A we have u ∈ apr
Q

(X) ⊆ apr
P

(X) ∪ apr
Q

(X). Finally, if c ∈ A ∩ B, then u ∈
(F (c) ∪ G(c)) ⊆ X. Thus, u ∈ F (c) ⊆ X or u ∈ G(c) ⊆ X and so u ∈ apr

P
(X) ∪ apr

Q
(X). Therefore,

apr
PtQ(X) ⊆ apr

P
(X) ∪ apr

Q
(X).

The following example shows that the inclusion in Theorems 3.13 and 3.14 may be strict.

Example 3.15. Let U = {u1, u2, . . . , u8} be the universal set and A = {e1, e2, e3}, B = {e2, e3, e4} subsets
of parameter set. Let S = (F,A) and T = (G,B) be two soft sets over U given by Tables 4, 5 and P =
(U,S), Q = (U,T) be two soft approximation spaces. One can easy to check that (S ∪ T)(e1) = {u3, u8},
(S ∪ T)(e2) = {u1, u2, u3, u5, u6}, (S ∪ T)(e3) = {u1, u2, u4, u7, u8} and (S ∪ T)(e4) = {u5, u7}.
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(1) If we take X = {u4, u7}, then aprPtQ(X) = {u1, u2, u4, u5, u7, u8}. Since aprP (X) = {u2, u4, u7, u8}
and aprQ(X) = {u5, u7}, then aprP (X) ∪ aprQ(X) = {u2, u4, u5, u7, u8}. Therefore

aprP (X) ∪ aprQ(X) ⊂ aprPtQ(X).

(2) If we take X = {u1, u2, u3, u5, u7}, then apr
PtQ(X) = {u5, u7}. Also we have apr

P
(X) = {u1, u2, u5}

and apr
Q

(X) = {u5, u7}, so apr
P

(X) ∪ apr
Q

(X) = {u1, u2, u5, u7}. Therefore

apr
PtQ(X) ⊂ apr

P
(X) ∪ apr

Q
(X).

Table 4: Tabular representation of the soft set S
u1 u2 u3 u4 u5 u6 u7 u8

e1 0 0 1 0 0 0 0 1
e2 1 1 0 0 1 0 0 0
e3 0 1 0 1 0 0 1 1

Table 5: Tabular representation of the soft set T
u1 u2 u3 u4 u5 u6 u7 u8

e2 0 1 1 0 0 1 0 0
e3 1 0 0 0 0 0 0 1
e4 0 0 0 0 1 0 1 0

Remark 3.16. In Example 3.15, we have (S ∩ T)(e1) = {u3, u8}, (S ∩ T)(e2) = {u2}, (S ∩ T)(e3) = {u8}
and (S ∩ T)(e4) = {u5, u7}. If we take X = U − {u3}, then apr

PuQ(X) = {u2, u5, u7, u8}. Since apr
P

(X) =

{u1, u2, u4, u5, u7, u8} and apr
Q

(X) = {u1, u5, u7, u8}, aprP (X)∩apr
Q

(X) = {u1, u5, u7, u8}. Therefore, there

is no relationship between apr
PuQ(X) and apr

P
(X) ∩ apr

Q
(X), in general.

Remark 3.17. Let U = {u1, u2, . . . , u8} be the universal set and A = {e1, e2, e3}, B = {e2, e3, e4} be subsets of
parameter set. Let S = (F,A) and T = (G,B) be two soft sets over U given by Tables 4, 6 and P = (U,S), Q =
(U,T) be two soft approximation spaces. Then (S∩T)(e1) = {u3, u8}, (S∩T)(e2) = {u2}, (S∩T)(e3) = {u8}
and (S∩T)(e4) = {u5, u7}. If we take X = {u1, u2, u3, u5, u7}, then aprPuQ(X) = {u2, u3, u5, u7, u8}. Also we
have aprP (X) = U−{u6} and aprQ(X) = {u1, u2, u5, u6, u7, u8}, so aprP (X)∩aprQ(X) = {u1, u2, u5, u7, u8}.
Therefore, there is no relationship between aprPuQ(X) and aprP (X) ∩ aprQ(X), in general.

Table 6: Tabular representation of the soft set T
u1 u2 u3 u4 u5 u6 u7 u8

e2 0 1 0 0 0 1 0 0
e3 1 0 0 0 0 0 0 1
e4 0 0 0 0 1 0 1 0

In order to illustrate the results presented above, consider the following example.

Example 3.18. Let H = {h1, h2, h3, h4, h5, h6, h7} be the set of seven houses as the universe and E =
{e1, e2, e3, e4, e5, e6, e7, e8} be the set of possible parameters. For i = 1, 2, ..., 8, the parameters xi stand for
“cheap”, “beautiful”, “close to subway”, “comfortable”, “modern”, “wooden”, “in good repair” and “in the
green surroundings”, respectively. Let “Dm1” and “Dm2” are two decision makers and they consider the set
of parameters A = {e1, e2, e4, e7, e8} ⊂ E and B = {e1, e2, e3, e5, e7} ⊂ E, respectively, to evaluate the houses.
After evaluation, “Dm1” and “Dm2” construct the two soft sets S = (F,A) and T = (G,B), respectively,
which are representing in Tables 7, 8. Now, Assume that Mr. X wants to buy a house from the set H and
he may think the set of houses X = {h1, h3, h5, h6} are suitable for purchase. Let us choose P = (H,S) and
Q = (H,T) as the two soft approximation spaces. By definition we have apr

P
(X) = {h1, h3}, aprP (X) =
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{h1, h2, h3, h5}, aprQ(X) = {h3, h5}, aprQ(X) = {h2, h3, h5, h6, h7}. We also have apr
PuQ(X) = {h3, h5},

aprPuQ(X) = {h2, h3, h5, h6}, aprPtQ(X) = {h3, h5}, aprPtQ(X) = H − {h4}. With respect to Theorems

3.13 and 3.14, it can be seen that the houses h3 and h5 are more suitable than h1 for Mr. X to purchase and
the houses h2, h6 and h7 may be suitable.

Table 7: Tabular representation of the soft set S
h1 h2 h3 h4 h5 h6 h7

e1 0 0 1 0 0 0 0
e2 1 0 1 0 0 0 0
e4 0 1 0 0 1 0 0
e7 0 0 0 0 0 0 0
e8 0 1 1 0 0 0 0

Table 8: Tabular representation of the soft set T
h1 h2 h3 h4 h5 h6 h7

e1 0 0 1 0 1 0 0
e2 0 1 0 0 1 0 0
e3 0 1 0 0 0 1 0
e5 0 0 0 0 1 0 0
e7 0 0 1 0 0 0 1

Definition 3.19. Let S = (F,A) be a soft set over S. If for any a, b ∈ A , there exists c ∈ A such that
f(c) = f(a)f(b), then S is called a product complete soft set (PCS-set) over S.

Example 3.20. Let (S, ·) be a semigroup where S = {a, b, c, d, e} and “ ·” is defined with the following Cayley
table:

· a b c d e
a a a a a a
b a a a a a
c a a c c e
d a a d d e
e a a c c e

Let S = (F,A) be a soft set over S, where A = {e1, e2, e3, e4} and F (e1) = {a}, F (e2) = {c, d}, F (e3) = {e}
and F (e4) = {c}. Let P = (S,S) be the corresponding soft approximation space. By simple calculations, we
can see that (F,A) is a PCS-set over S.

Theorem 3.21. Let S = (F,A) be a PCS-set over S, P = (S,S) be the corresponding soft approximation
space and X, Y any two non-empty subsets of S. Then
1) aprP (X)aprP (Y ) ⊆ aprP (XY ),
2) apr

P
(X)apr

P
(Y ) ⊆ apr

P
(XY ).

Proof. 1) Let m ∈ aprP (X)aprP (Y ), so m = xy, where x ∈ aprP (X) and y ∈ aprP (Y ). Then there exist
a, b ∈ A such that x ∈ f(a), f(a)∩X 6= ∅ and y ∈ f(b), f(b)∩ Y 6= ∅. Since S is a PCS-set, there exist c ∈ A
such that f(c) = f(a)f(b) and so xy ∈ f(c). Clearly, f(c) ∩XY 6= ∅. Therefore, xy ∈ aprP (XY ).

2) Let m ∈ apr
P

(X)apr
P

(Y ), so m = xy, where x ∈ apr
P

(X) and y ∈ apr
P

(Y ). Then there exist a, b ∈ A
such that x ∈ f(a) ⊆ X and y ∈ f(b) ⊆ Y and so xy ∈ f(a)f(b) ⊆ XY . Since S is a PCS-set, there exist
c ∈ A such that f(c) = f(a)f(b) and so xy ∈ f(c) ⊆ XY . Therefore, xy ∈ apr

P
(XY ).

The following example shows that the inclusion in Theorem 3.21 may be strict.
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Example 3.22. Consider the soft set S = (F,A) in Example 3.20.
(1) If we take X = {a, c, e} and Y = {a, b, d}, then apr

P
(X) = {c, e}, apr

P
(Y ) = {a} and so apr

P
(X)apr

P
(Y )

= {a}. Also we have XY = {a, c} and so apr
P

(XY ) = {a, c}. Therefore,

apr
P

(X)apr
P

(Y ) ⊂ apr
P

(XY ).

(2) If we take X = {b, d} and Y = {b, c, e}, then aprP (X) = {c, d} and aprP (Y ) = {c, d, e}. Thus
aprP (X)aprP (Y ) = {c, d, e}. Now, XY = {a, d, e} and so aprP (XY ) = {a, c, d, e}. Therefore,

aprP (X)aprP (Y ) ⊂ aprP (XY ).

4 Characterizations of Soft Rough Semigroups

In this section, we characterize the lower and upper soft rough approximations of a subset of a semigroup.
First, we introduce the notion of soft rough semigroups.

Definition 4.1. Let S = (F,A) be a soft set over S and P = (S,S) be the corresponding soft approximation
space. Let X be a soft P-rough subset of S. Then X is called lower (upper) soft rough semigroup, if
apr

P
(X) (aprP (X)) is a subsemigroup of S. Moreover, X is called soft rough semigroup, if apr

P
(X) and

aprP (X) are subsemigroup of S.

Example 4.2. Consider the semigroup (Z12,�). Let S = (F,A) be a soft set over Z12, where A =
{e1, e2, e3, e4, e5} and F (e1) = {2, 4, 6}, F (e2) = {0, 8}, F (e3) = {3, 7, 9}, F (e4) = {4} and F (e5) =
{0, 2, 8, 10}. Let P = (Z12,S) be the corresponding soft approximation space. If we take X = {0, 1, 4, 5, 8, 11},
then apr

P
(X) = {0, 4, 8} and aprP (X) = {0, 2, 4, 6, 8, 10}, which are subsemigroup of Z12. Therefore, X is a

soft rough semigroup over Z12.

Theorem 4.3. Let S = (F,A) be an intersection complete soft set over S and P = (S,S) the corresponding
soft approximation space. Let X and Y be lower soft rough semigroups of S. Then X ∩ Y is a lower soft
rough semigroup of S.

Proof. Let x, y ∈ apr
P

(X ∩ Y ). By Theorem 3.5 (3), x, y ∈ apr
P

(X) and so xy ∈ apr
P

(X). Similarly,
xy ∈ apr

P
(Y ). Thus xy ∈ apr

P
(X) ∩ apr

P
(Y ). By Theorem 3.6, we deduce that xy ∈ apr

P
(X ∩ Y ).

Therefore, X ∩ Y is a lower soft rough semigroup of S.

The following example shows that if X and Y are upper soft rough semigroup of S, then X ∩ Y is not an
upper soft rough semigroup of S in general.

Example 4.4. Consider the semigroup (S, ·) in Example 3.20. Let A = {e1, e2, e3, e4} be a subset of parameter
set. We define the soft set S = (F,A) over S such that F (e1) = {c, d}, F (e2) = {a}, F (e3) = {d, e} and
F (e4) = {c}. Let P = (S,S) be the corresponding soft approximation space. If we take X = {a, b, d, e} and
Y = {b, c, e}, then aprP (X) = {a, c, d, e} and aprP (Y ) = {c, d, e}, which are subsemigroups of S. Thus X
and Y are upper soft rough semigroups of S. But aprP (X ∩Y ) = aprP ({b, e}) = {d, e} is not a subsemigroup
of S.

Moreover, X∪Y is neither lower nor upper soft rough semigroup of S, if X and Y are soft rough semigroup
of S. Consider the following example.

Example 4.5. Consider the semigroup (S, ·), where S = {a, b, c, d, e, f} and “·” in defined by the following
Cayley table:

· a b c d e f
a a a a d a a
b a b b d b b
c a b c d e e
d a a d d d d
e a b c d e e
f a b c d e f
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Let S = (F,A) be a soft set over S, where A = {e1, e2, . . . , e6} and F (e1) = {c}, F (e2) = {c, d}, F (e3) = {a},
F (e4) = {b, e}, F (e5) = {f} and F (e6) = {f, d}. Let P = (S,S) be the corresponding soft approximation
space. If we take X = {c} and Y = {a, f}, then apr

P
(X) = {c}, aprP (X) = {c, d}, apr

P
(Y ) = {a, f} and

aprP (X) = {a, d, f}, which are subsemigroups of S. Therefore, X and Y are soft rough semigroups of S. But
apr

P
(X ∪Y ) = {a, c, f} and aprP (X ∪Y ) = {a, c, d, f}, which are not subsemigroups of S. Therefore, X ∪Y

is not lower (upper) soft rough semigroup of S.

Theorem 4.6. Let S = (F,A) be an UCS-semigroup over S and P = (S,S) be the corresponding soft
approximation space. If X is any non-empty subset of S, then apr

P
(X) is a subsemigroup of S.

Proof. Let x, y ∈ apr
P

(X), then there exist a, b ∈ A such that x ∈ f(a) ⊆ X and y ∈ f(b) ⊆ X and so
x, y ∈ f(a) ∪ f(b) ⊆ X. Since S is a UCS-set, there exists c ∈ A such that f(c) = f(a) ∪ f(b) and so
x, y ∈ f(c) ⊆ X. Since S is a soft semigroup over S, xy ∈ f(c) ⊆ X. This means that xy ∈ apr

P
(X).

Therefore, apr
P

(X) is a subsemigroup of S.

Theorem 4.7. Let S = (F,A) be an UCS-semigroup over S and P = (S,S) be the corresponding soft
approximation space. If X is any non-empty subset of S, then aprP (X) is a subsemigroup of S.

Proof. Let x, y ∈ aprP (X), then there exist a, b ∈ A such that x ∈ f(a), f(a) ∩ X 6= ∅ and y ∈ f(b),
f(b) ∩X 6= ∅. Since S is a UCS-set, there exists c ∈ A such that f(c) = f(a) ∪ f(b) and so x, y ∈ f(c). Since
S is a soft semigroup over S, xy ∈ f(c). Clearly, f(c) ∩X 6= ∅. This means that xy ∈ aprP (X). Therefore,
aprP (X) is a subsemigroup of S.

Note that in Theorems 4.6 and 4.7, the requirement of (F,A) be an UCS-semigroup over S is not a
necessary condition as shown in the following example.

Example 4.8. Suppose that S = {a, b, c, d, e} is a semigroup with the following Cayley table.

· a b c d e
a a a a a a
b a a a b c
c a b c a a
d a a a d e
e a d e a a

Let (F,A) be a soft set over S such that A = {e1, e2, e3, e4} and F (e1) = {a}, F (e2) = {a, b, d}, F (e3) = {a, d}
and F (e4) = {b}. It is obvious that (F,A) is neither union complete nor soft semigroup. Let P = (S,S) be
the corresponding soft approximation space. If we take X = {a, b, e} then apr

P
(X) = {a, b} and aprP (X) =

{a, b, d}, which are subsemigroup of S.

Theorem 4.9. Let S = (F,A) be an UCS-ideal over S and P = (S,S) be the corresponding soft approxima-
tion space. If X is any non-empty subset of S, then apr

P
(X) is an ideal of S.

Proof. According to Theorem 4.6, we have apr
P

(X) is a subsemigroup of S. Now, let x ∈ apr
P

(X) and
s ∈ S. Then there exists a ∈ A such that x ∈ f(a) ⊆ X. Since S is a soft ideal over S, xs ∈ f(a) ⊆ X and
sx ∈ f(a) ⊆ X. This means that xs, sx ∈ apr

P
(X). Therefore, apr

P
(X) is an ideal of S.

Theorem 4.10. Let S = (F,A) be an UCS-ideal over S and P = (S,S) be the corresponding soft approxi-
mation space. If X is any non-empty subset of S, then aprP (X) is an ideal of S.

Proof. According to Theorem 4.7, we have aprP (X) is a subsemigroup of S. Now, let x ∈ aprP (X) and s ∈ S.
Then there exists a ∈ A such that x ∈ f(a), f(a) ∩X 6= ∅. Since S is a soft ideal over S, xs, sx ∈ f(a) and
f(a) ∩X 6= ∅. This means that xs, sx ∈ aprP (X). Therefore, aprP (X) is an ideal of S.

The following example shows that, in Theorems 4.9 and 4.10, the requirement of (F,A) be an UCS-ideal
over S is not a necessary condition.
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Example 4.11. Suppose that S = {x, y, z, t} be a semigroup with the following Cayley table.

· x y z t
x x x x x
y x y z x
z x x x x
t x t x x

Let (F,A) be a soft set over S, where A = {e1, e2, e3, e4} and F (e1) = {x}, F (e2) = {x, t}, F (e3) = {y} and
F (e4) = {z}. Then (F,A) is not an UCS-ideal of S. Let P = (S,S) be the corresponding soft approximation
space. If we take X = {x, z}, then apr

P
(X) = {x, z} and aprP (X) = {x, z, t}, which are ideals of S.

Theorem 4.12. Let S = (F,A) be an UCS-bi-ideal over S and P = (S,S) be the corresponding soft approx-
imation space. If X is any non-empty subset of S, then apr

P
(X) is a bi-ideal of S.

Proof. According to Theorem 4.6, we have apr
P

(X) is a subsemigroup of S. Now, let x, y ∈ apr
P

(X) and
s ∈ S, then there exist a, b ∈ A such that x ∈ f(a) ⊆ X and y ∈ f(b) ⊆ X and so x, y ∈ f(a) ∪ f(b) ⊆ X.
Since S is a UCS-set, there exists c ∈ A such that f(c) = f(a) ∪ f(b) and so x, y ∈ f(c) ⊆ X. Since S is a
soft bi-ideal over S, xsy ∈ f(c) ⊆ X. This means that xsy ∈ apr

P
(X). Therefore, apr

P
(X) is a bi-ideal of

S.

Theorem 4.13. Let S = (F,A) be an UCS-bi-ideal over S and P = (S,S) be the corresponding soft approx-
imation space. If X is any non-empty subset of S, then aprP (X) is a bi-ideal of S.

Proof. According to Theorem 4.7, we have aprP (X) is a subsemigroup of S. Now, let x, y ∈ aprP (X) and
s ∈ S, then there exist a, b ∈ A such that x ∈ f(a), f(a) ∩X 6= ∅ and y ∈ f(b), f(b) ∩X 6= ∅. Since S is a
UCS-set, there exists c ∈ A such that f(c) = f(a) ∪ f(b) and so x, y ∈ f(c). Since S is a soft bi-ideal over
S, xsy ∈ f(c). Clearly, f(c) ∩X 6= ∅. This means that xsy ∈ aprP (X). Therefore, aprP (X) is a bi-ideal of
S.

It is noteworthy that in Theorems 4.12 and 4.13, the condition of being (F,A) an UCS-bi-ideal over S is
not a necessary condition. In order to illustrate this fact, we consider the following example.

Example 4.14. Consider the semigroup (S, ·) in Example 3.20. Let A = {e1, e2, e3, e4} be a subset of
parameter set. We define a soft set (F,A) over S such that f(e1) = {a}, F (e2) = {c, e}, F (e3) = {b, c}
and F (e4) = {e}. Then (F,A) is not an UCS-bi-ideal over S. Let P = (S,S) be the corresponding soft
approximation space. If we take X = {a, b, d, e}, then apr

P
(X) = {a, e} and aprP (X) = {a, b, c, e}, which are

bi-ideals of S.

Theorem 4.15. Let S = (F,A) be an UCS-interior ideal over S and P = (S,S) be the corresponding soft
approximation space. If X is any non-empty subset of S, then apr

P
(X) is an interior ideal of S.

Proof. According to Theorem 4.6, we have apr
P

(X) is a subsemigroup of S. Now, let x ∈ apr
P

(X) and
s, t ∈ S. Then there exists a ∈ A such that x ∈ f(a) ⊆ X. Since S is a soft interior ideal over S,
sxt ∈ f(a) ⊆ X. This means that sxt ∈ apr

P
(X). Therefore, apr

P
(X) is an interior ideal of S.

Theorem 4.16. Let S = (F,A) be an UCS-interior ideal over S and P = (S,S) be the corresponding soft
approximation space. If X is any non-empty subset of S, then aprP (X) is an interior ideal of S.

Proof. According to Theorem 4.7, we have aprP (X) is a subsemigroup of S. Now, let x ∈ aprP (X) and
s, t ∈ S. Then there exists a ∈ A such that x ∈ f(a), f(a) ∩X 6= ∅. Since S is a soft interior ideal over S,
sxt ∈ f(a) and f(a) ∩ X 6= ∅. This means that sxt ∈ aprP (X). Therefore, aprP (X) is an interior ideal of
S.

The following example shows that in Theorems 4.15 and 4.16, the requirement of being (F,A) an UCS-
interior ideal over S is not a necessary condition.
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Example 4.17. Let S = {a, b, c, d, e} be a semigroup with the following Cayley table and A = {e1, e2, e3, e4}
be a subset of parameter set.

· a b c d e
a a b c d e
b b b b b b
c c b c c b
d d b d d b
e e e e e e

Let (F,A) be a soft set over S, where F (e1) = {b}, F (e2) = {c, d, e}, F (e3) = {b, c} and F (e4) = {e}. Then
(F,A) is not an UCS-interior ideal over S. Let P = (S,S) be the corresponding soft approximation space. If
take X = {a, b, d, e}, we have apr

P
(X) = {b, e} and aprP (X) = {b, c, d, e}. Thus apr

P
(X) and aprP (X) are

interior ideals of S.
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