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Abstract

Differential evolution (DE) algorithm has remarkable performance in dealing with global optimization
problems, but its performance is highly dependent on its mutation operator and control parameters (muta-
tion factor and crossover rate). In this paper, we introduce a modified version of GPDE (one outstanding
variant of DE with Gaussian mutation and dynamic parameter) with adaptive parameter strategy, and
denote it as AGPDE. Compared to GPDE, AGPDE adopts an individual-dependent parameter based on
the individual’s fitness information and an individual-independent macro-control rule to set the values of
mutation factor and crossover rate, and introduces a decreasing function to adjust the variance of Gaussian
mutation operator. In addition, in AGPDE, a more concise rule is applied to coordinate the two adopted
mutation operators. To show the effectiveness of the proposed AGPDE, it compares with seven existing
DE algorithms on CEC 2014 contest test functions, and the experiments results show that AGPDE obtains
the best performance among the eight DE algorithms.
c⃝2018 World Academic Press, UK. All rights reserved.
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1 Introduction

Over the last two decades, global optimization problems have attracted a great interest of researchers and
many nature-inspired intelligent algorithms have been developed, such as genetic algorithm [7], differential
evolution [16], particle swarm optimization [11], ant colony optimization [5], artificial bee colony optimiza-
tion [10], biogeography-based optimization [15] and joint operations algorithm [20]. These algorithms have
been used to deal with many real-life optimization problems, such as operations research, computer science
and engineering design [3, 9, 18, 23, 25]. Among the proposed intelligent algorithms, DE has shown significant
success in solving different numerical optimization problems. However, the choice of the mutation strategies
or control parameters plays a key role in the performance of DE algorithms. Many related works improve the
performance of DE significantly. We only briefly review some papers in the following paragraph, the other
recent research about DE can be found in the literature reviews [1, 4] and the references therein.

DE usually has three main operators: mutation, crossover and selection, and three important control
parameters: population size, mutation factor and crossover rate. In fact, most of the existing variants of DE
only focus on setting the mutation operator, mutation factor and crossover rate. It is generally recognized
that mutation operator reflects the core essence of DE and has the greatest influence on the performance
of DE, hence lots of research work concentrate on proposing novel mutation operators or combining some
different kinds of mutation operators together. For example, in SADE [14], the authors adopted four different
mutation operators, and the selection strategy for each individual is according to the success rate of each
mutation operator; a new mutation operator called “DE/current-to-pbest” is proposed in JADE [27], which
based on a concept of “pbest” individual (randomly chosen from the top 100∗p% individuals set); in GDE [8],
two mutation operators with different characteristics are respectively designated into two disparate groups,
and an adaptive tuning strategy based on the well-known 1/5th rule is used to dynamically reassign the
size of the two groups; in MGBDE [24], the authors proposed a new kind of Gaussian mutation strategy
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and combined it with a classical mutation operator to handle optimization problems. Mutation factor is an
important component of mutation operator and crossover rate is the key parameter of crossover operator,
they both have important influence on the performance of DE. Therefore, many researchers pay attention to
optimize the setting of those two control parameters. The existing strategies of the control parameters can
be briefly divided into two classes according to the generated method of their values: based on a pre-given
fixed rule or depended on some valuable information during the optimization process. Liu and Lampinen [13]
applied a fuzzy logic controller to adapt the mutation factor and crossover rate. Brest et al. [2] proposed a
parameters setting method that the values of mutation factor and crossover rate are randomly chosen within
a certain range, and the parameters are updated only if satisfying the pre-given probability constraints. Draa
et al. [6] used two sine functions to dynamically adjust the values of mutation factor and crossover rate,
respectively. The aforementioned three DE variants belong to the first class. Some DE variants applied the
information of successful experience to control mutation factor and crossover rate, such as SADE, JADE, and
an improved variant of the JADE algorithm called SHADE [21]. Some other DE variants adopted the fitness
information of individual to adjust mutation factor and crossover rate, such as ADE [26], IDE [22], IDDE [19]
and so on. In fact, for the control parameters setting, using the valuable information becomes more and more
popular.

In this paper, a modified version of GPDE [17], which is one of our previous work, is proposed. In GPDE,
a new kind of Gaussian mutation operator and one modified mutation operator called “DE/rand-worst/1”
are used to generate mutant vector, and a cosine function and Gaussian function are adopted to adjust
the mutation factor and crossover rate, respectively. In addition, a cooperative rule based on the historical
success rate and the current success rate of each mutation operator to coordinate the two proposed mutation
operators. Compared to GPDE, the modified version (denoted by AGPDE) proposed in this paper mainly has
three different points. First, a decreasing control parameter is embedded into the Gaussian mutation operator
in GPDE, which can provide a better balance between the exploration ability and exploitation ability during
the optimization routine. Second, two adaptive parameter tuning strategies based on different combinations of
an individual-dependent parameter and an individual-independent macro-control parameter are used to adjust
the mutation factor and crossover rate. Third, a more concise cooperative rule based on the accumulated
success rate is applied to coordinate the two adopted mutation operators. To judge the effectiveness of the
proposed AGPDE algorithm, one well known set of test functions (from the IEEE CEC 2014 [12] competition
problem sets) and seven excellent DE variants are used to carry out the comparison experiment.

The remainder of this paper is organized as follows. Section 2 briefly introduces the basic operators
of classical DE algorithm. Section 3 provides a detailed description of the proposed AGPDE algorithm.
Section 4 presents the comparison between AGPDE and seven compared DE algorithms. Section 5 draws the
conclusions.

2 Classical DE

The classical DE algorithms are briefly presented in this section. DE is a population-based stochastic search
algorithm. It starts with an initial population, which consists of NP D-dimensional real-valued vectors
xi = [xi,1, xi,2, · · · , xi,D], i = 1, 2, . . . ,NP, where NP is the population size and D is the problem’s dimension.
Usually, the initial individuals are randomly generated via the following formula,

xi,j = xj,min + randi,j [0, 1] ·
(
xj,max − xj,min

)
, (1)

where randi,j [0, 1] represents a uniformly distributed number generated between 0 and 1. There are three
main operations in the classical DE: mutation, crossover, and selection, which willbe described in detail in
the following subsections.

2.1 Mutation Operation

For each target vector xi, DE employs a mutation operation to create a corresponding mutant vector
vi =

[
vi,1, vi,2, · · · , vi,D

]
based on the current parent population. The following are five well-known and

widely used mutation strategies.

1) DE/rand/1
vi = xr1 + F · (xr2 − xr3). (2)
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2) DE/best/1
vi = xbest + F · (xr1 − xr2). (3)

3) DE/current-to-best/1

vi = xi + F · (xbest − xr1) + F · (xr2 − xr3). (4)

4) DE/best/2
vi = xbest + F · (xr1 − xr2) + F · (xr3 − xr4). (5)

5) DE/rand/2
vi = xr1 + F · (xr2 − xr3) + F · (xr4 − xr5). (6)

The indices r1, r2, r3, r4 and r5 are mutually different random integers randomly chosen from the set {1, 2, . . . ,
NP} and all are different from the base index i. F is the mutation factor, which is used to control the difference
vectors. The vector xbest = (xbest,1, xbest,2, · · · , xbest,D) is the best individual in the current population.

2.2 Crossover Operation

Generally, after the mutation operation, a crossover operation is employed on the target vector xi and its cor-
responding mutant vector vi to generate a trial vector ui =

[
ui,1, ui,2, · · · , ui,D

]
, and the crossover operation

can be described as

ui,j =

{
vi,j , if

(
j = jrand or randi,j [0, 1] ≤ CR

)
xi,j , otherwise

(7)

where parameter CR ∈ (0, 1) is the predefined crossover rate, and jrand is a random index chosen from the
set {1, 2, . . . , D}.

2.3 Selection Operation

After the crossover operation, a selection operation is used to determine whether the trail vector or the target
vector can be saved into the next iteration according to their fitness values f(·). The selection operation for
solving minimization problems is performed as follow:

xi =

{
ui, if f(ui) ≤ f(xi)

xi, otherwise.
(8)

3 Description of AGPDE

In this section, we firstly review the Gaussian mutation operator in GPDE and then describe its modified
version. Secondly, we review the DE/rand-worst/1 adopted in GPDE, and introduce a new adaptive strategy
for the mutation factor. Thirdly, we describe the cooperative rule between the two mutation operators. Lastly,
we summarize the overall procedure of AGPDE.

3.1 Gaussian Mutation Operator

Since the 3-σ rule of Gaussian distribution (denoted by N(µ, σ2)) provides a wonderful chance to control the
hunting zone, in GPDE [17], a novel mutation operator, which combined the crossover operator (7), is pro-
posed to directly produce the new trial vector

(
denoted by ug

i =
(
ug
i,1, u

g
i,2, · · · , u

g
i,D

))
for the i-th individual,

i = 1, 2, . . . ,NP,

ug
i,j =

 N
(
xr1,j ,

(
xr2,j − xr3,j

)2)
, if

(
j = jrand or randi,j [0, 1] ≤ CRi

t

)
,

xi,j , otherwise,
(9)

where the indices r1, r2, r3 are randomly generated from the set {1, 2, . . . ,NP} and r1 ̸= r2 ̸= r3 ̸= i. It should
be point out that the novel Gaussian mutation operator always takes the r1-th individual (the best one
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among the three randomly selected individuals) as the base vector, which means that the Gaussian mutation
operator always focuses on exploit the most promising region around the r1-th individual, and the range of
the searching region is controlled by the distance |xr2,j − xr3,j |. In order to enhance the exploitation ability
of Gaussian mutation operator (9) in GPDE, we bring a decreasing function F g

t to gradually shrinkage the
searching region. The modified Gaussian mutation operator can be described as follow:

ug
i,j =

 N
(
xr1,j ,

(
F g
t ×

(
xr2,j − xr3,j

))2)
, if

(
j = jrand or randi,j [0, 1] ≤ CRi

t

)
,

xi,j , otherwise,
(10)

where F g
t = (Ft)

2 and Ft = (T − t + 1)/T . The indexes t and T represent the current and the maximum
allowable generation, respectively. It is easy to see that the value of F g

t is decreased from 1 to 1/T 2 during
the optimization process. In addition, the Gaussian mutation operator will only be executed when meeting
the triggering condition

(
j = jrand or randi,j [0, 1] ≤ CRi

t

)
.

For the i-th individual, the corresponding value of crossover rate (CRi
t) in the t-th generation can be

computed by

CRi
t =

√
0.5× (Ft × Ft + (1− Ft)× Iit), i = 1, 2, . . . ,NP, t = 1, 2, . . . , T, (11)

where Iit = (Fi − Fw)/(Fw − Fb + ε). The symbols Fi, Fw, Fb respectively represent the fitness values of the
i-th individual, the worst individual and the best individual in the current population, and ε indicates a very
small number, which is used to avoid the case of Fw −Fb = 0 and is set to 1.0× 10−99 in our paper. Actually,
Iit reflects the fitness value’s state of the i-th individual in the current population. Crossover rate (CRi

t)
in formula (11) implies three meanings: 1) its value is determined by an individual-dependent parameter
Iit and an individual-independent macro-control parameter Ft; 2) its value mainly depends on the macro-
control parameter Ft in the earlier stage, but mainly depends on the individual-dependent parameter Iit in
the later stage; 3) the crossover rate of different individuals only have minor variation in the earlier stage, but
the variation becomes more and more large during the running process. In fact, the above-mentioned three
phenomena just are the reasons that why we take the form of formula (11) to compute the crossover rate of
each individual. Generally speaking, in the earlier stage of the searching process, although the individuals
have different fitness value, we don’t know which one can produce the most competitive offspring, hence the
crossover rate of different individuals should have no considerable difference, but in the later stage, the better
individuals should have minor change and the worse ones should have major changes, which can provide a
better balance between the solution’s precision and the population diversity.

3.2 DE/rand-worst/1

Based on the existing knowledge about the base vector and difference vector, GPDE modified one of the
most popular mutation operator (DE/rand/1) and proposed a new mutation operator (denoted by DE/rand-
worst/1). In GPDE, the proposed DE/rand-worst/1 and crossover operator (7) are combined to directly
produce the new trial vector (denoted by um

i =
(
um
i,1, u

m
i,2, . . . , u

m
i,D

)
, i = 1, 2, . . . ,NP

)
of each individual, the

corresponding formula can be described as follow,

um
i,j =

{
xr′1,j

+ F i
t · (xr′2,j

− xr′3,j
), if

(
j = jrand or randi,j [0, 1] ≤ CRi

t

)
,

xi,j , otherwise,
(12)

where the indices r′1, r
′
2 and r′3 are randomly chosen from the set {1, 2, . . . ,NP} and r′1 ̸= r′2 ̸= r′3 ̸= i.

Moreover, the r′3-th individual is the worst one among the three randomly selected individuals. In addition,
note that the mutation operator DE/rand-worst/1 in formula (12) has the same triggering condition with the
modified Gaussian mutation operator in formula (10).

For each individual, the value of its current mutation factor F i
t can be calculated via the following formula,

F i
t =

Ft + Iit
2

. (13)

Obviously, the value of mutation factor F i
t also depends on the individual-dependent parameter Iit and the

individual-independent macro-control parameter Ft. From the formula (13), we can see that in the earlier
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stage, every individual has a relatively large mutation factor, leading to that the population has more powerful
exploration ability, but all of the individuals have relatively small mutation factor in the later stage, resulting
in that the population has more powerful exploitation ability at that moment. Furthermore, in the same
generation, the better individuals always have smaller mutation factor than the worse ones, which implies the
better individuals mainly are in charge of the exploitation work and the worse individuals mainly hold the
post of exploration work.

3.3 Cooperative Rule

In AGPDE, we will adopt the modified Gaussian mutation operator and DE/rand-worst/1 to produce the
new trial vector, but for one specific individual, the first confronting problem is that how to choose the
two mutation operators. Therefore, it is imperative to set an appropriate cooperative rule between the two
mutation operators. It’s a natural selection that setting the cooperative rule based on the two mutation
operators’ historical success rate. More specifically, we take the modified Gaussian mutation operator (10)
as an example, until to the t-th generation, the current historical success rate of Gaussian mutation operator
(denoted by SRg

t ) is equal to Sg
t /R

g
t , where S

g
t and Rg

t represent the cumulative success times and cumulative
run times. Meanwhile, we adopt SRm

t = Sm
t /Rm

t to compute the historical success rate of DE/rand-worst/1.
At the beginning of the optimization process, we set all the initial values of Sg

0 , R
g
0, S

m
0 and Rm

0 to 1. During
the running process, for each given individual, if it adopts the Gaussian mutation operator to produce its
offspring, then executing Rg

t = Rg
t + 1, otherwise executing Rm

t = Rm
t + 1; if the generated offspring via

Gaussian mutation operator is better than its parent, then executing Sg
t = Sg

t + 1, and if the offspring is
better than the best individual, executing Sg

t = Sg
t + 1 again. The same rule is also implemented to the

DE/rand-worst/1. As a result, at the beginning of the t-th generation, the value of a parameter involved in
cooperative rule can be derived in terms of the two mutation operators’ historical success rate, which can be
calculated by,

SRt =
SRg

t

SRg
t + SRm

t

, (14)

where parameter SRt is applied to control the selection probability of Gaussian mutation operator in the next
generation. Furthermore, the detailed cooperative rule can be described as follows,

ui =

{
ug
i , if randi[0, 1] < SRt,

um
i , otherwise.

(15)

The cooperative rule (14) shows that the chance of executing the adopted two mutation operators relies on
their own historical success rate, and the one with higher cumulative success rate has the more chance to
produce the trial vectors. After the new trial vector ui produced, comparing the two fitness values of ui and
its target vector xi, then determining the offspring via the selection operator (8).

3.4 The Overall Procedure of AGPDE

We have provided a detailed description of Gaussian mutation operator, DE/rand-worst/1, and the cooperative
rule between them. Now we summarize the overall procedure of AGPDE into Algorithm 1.

4 Experimental Setup and Results

4.1 Benchmark Functions

In order to verify the performance of AGPDE algorithm, a test bed of well-known 30 benchmark functions
are used in the following experiments. These functions are presented for IEEE CEC 2014 competition.
Among these benchmark functions, f1 − f3 are unimodal functions with only one minima; f4 − f16 are simple
multimodal functions with many local minima; f17 − f22 are hybrid functions, which have many different
sub-functions with different properties; f23 − f30 are composition functions, which are constructed by many
different basic functions. The detail description of these functions can be found in [12].



Journal of Uncertain Systems, Vol.12, No.4, pp.256-266, 2018 261

Algorithm 1 The overall procedure of AGPDE

1: Set the values of parameters NP and T ;
2: Initialize NP individuals with random positions via the formula (1);
3: for (t = 1; t <= T ; t++), do
4: Compute the value of parameter SRt in the t-th generation via the formula (14);
5: Find out the best individual and the worst individual in the current population;
6: for (i = 1; i <= NP; i++), do
7: For the i-th individual, compute its current crossover rate CRi

t via the formula (11);
8: if rand[0, 1] < SRt then
9: Generate the new trial vector via the formula (10) included modified Gaussian mutation operator;

10: else
11: Generate the new trial vector via the formula (12) contained DE/rand-worst/1;
12: end if ;
13: Update the i-th individual via the selection operator (8);
14: Replace the best individual xbest by the new individual xi if xi is better than xbest;
15: Update the success rates SRg

t and SRm
t of the two adopted mutation operators;

16: end for
17: end for
18: Output the position of the best individual as the global optimal solution.

4.2 Comparison to State-of-the-art DE Variants

In this section, we compare AGPDE with GPDE [17] and six other existing DE variants: SADE [14],
JADE [27], GDE [8], MGBDE [24], SinDE [6] and SHADE [21]. It should be pointed out that for all the
aforementioned compared algorithms, except the population sizes NP = D = 30, the other involved control
parameters keep the same with their corresponding literature. In our experiments, we respectively report the
average error (denoted by “Mean”) function values

(
f
(
xbest

)
− f

(
x∗)), the corresponding standard deviation

(Std.) and the statistical conclusion of comparative results based on 50 independent runs, where xbest is the
best solution found by the algorithm in one run and x∗ is the global optimum of test function. In addition, for
all the compared algorithms, the maximum allowable function evaluation are set to 10000×D for all the test
functions, which means the maximum allowable generation are set to 10000, and Wilcoxon’s rank sum test
at a 0.05 significance level is conducted on the experimental results to have statistically sound conclusions.
The symbols “=”, “−” and “+” in the following tables separately means the result of AGPDE equals to,
worse than and better than the corresponding comparison algorithms. The achieved results is reported in
Tables 1–2, and the best results are shown in boldface. The comparison results among AGPDE and the
other seven algorithms are summarized in the last row of the Table 2. Furthermore, we apply Figures 1–2 to
shows the performance graphs of the compared algorithms.

Based on the results reported in Tables 1-2, we can see that our proposed AGPDE achieves better results
than other algorithms on the majority of test functions. In details, compared to SADE, JADE, GDE, MGBDE,
SinDE, SHADE and GPDE, AGPDE outperforms them on 23, 21, 21, 24, 12, 17 and 12 test functions, similar
as them on 1, 2, 5, 1, 11, 5 and 11 test functions, and slightly worse than them on 6, 7, 4, 5, 7, 8 and 7
test functions. In addition, AGPDE obtains 13 best results and takes the first place, SinDE and SHADE are
tied for second with scores of 9 best results. It should be mentioned that AGPDE has no losing on 16 test
functions (f6, f9, f11 − f16, f19, f22 − f26 and f28), but it is intersting that AGPDE has no winning on 3 test
functions (f1, f4 and f29).

In summary, compared with GPDE, AGPDE has a better performance on multimodal functions and com-
position functions, but has an unsatisfactory performance on unimodal functions and hybrid functions (which
usually take one unimodal functions as a subcomponent). Figures 1–2 show that AGPDE exhibits a medium
convergence speed among the compared algorithms and converges slower than GPDE on most functions, but
AGPDE exhibits a continuous improvement characteristic during the whole optimization routine, maybe that
is why AGPDE has different performance on different categories of test functions.
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Figure 1: Convergence graphs (mean curves) for the involved eight algorithms on functions f2, f3, f9, f12, f14
and f15 over 50 independent runs
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Figure 2: Convergence graphs (mean curves) for the involved eight algorithms on functions f18, f19, f20, f22, f27
and f30 over 50 independent runs
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Table 1: Comparative results on functions f1 − f15

Func. Metric SADE JADE GDE MGBDE SinDE SHADE GPDE AGPDE
Mean 3.22e+04 3.76e+04 6.85e+03 5.57e+03 1.92e+06 5.83e+02 5.21e+04 2.17e+06

f1 Std. 2.17e+04 3.66e+04 6.41e+03 3.45e+03 1.11e+06 2.24e+03 3.51e+04 1.15e+06
+/=/– − − − − = − − −−
Mean 4.84e-20 3.08e-20 3.06e-22 3.92e-15 2.90e-24 2.06e-22 1.35e-23 1.21e-22

f2 Std. 2.39e-19 9.38e-20 3.80e-22 1.95e-14 1.01e-23 1.69e-22 2.17e-22 1.69e-22
+/=/– + + + + − + = −−
Mean 9.82e-10 1.34e-01 3.56e-03 2.08e-18 2.18e-12 2.29e-26 5.42e-25 5.07e-24

f3 Std. 4.91e-09 6.05e-01 9.98e-03 9.54e-18 9.18e-12 1.03e-25 1.83e-24 2.00e-23
+/=/– + + + + + − − −−
Mean 1.39e+01 1.94e+01 5.48e+00 9.95e-05 1.43e+01 2.76e+00 2.99e+00 1.63e+01

f4 Std. 2.72e+01 3.09e+01 1.89e+01 4.48e-04 2.28e+01 1.30e+01 1.49e+01 2.66e+01
+/=/– − − − − = − − −−
Mean 2.04e+01 2.00e+01 2.09e+01 2.02e+01 2.06e+01 2.00e+01 2.00e+01 2.01e+01

f5 Std. 4.74e-02 3.99e-03 1.48e-01 3.92e-02 4.77e-02 9.03e-03 6.53e-06 1.80e-01
+/=/– + − + + + = − −−
Mean 8.93e+00 1.14e+01 8.25e+00 2.22e+01 1.93e-02 6.77e+00 1.33e+00 2.26e-01

f6 Std. 2.03e+00 1.75e+00 2.85e+00 3.64e+00 9.27e-02 1.90e+00 1.16e+00 4.91e-01
+/=/– + + + + = + + −−
Mean 1.89e-02 2.69e-02 1.30e-02 1.12e-02 0.00e+00 1.13e-02 2.17e-03 2.17e-03

f7 Std. 2.10e-02 2.17e-02 1.75e-02 1.44e-02 0.00e+00 1.67e-02 4.17e-03 3.58e-03
+/=/– + + + + − + = −−
Mean 4.78e+00 3.98e-02 6.38e+01 1.29e+02 4.70e-01 2.84e-16 9.79e+00 6.96e+00

f8 Std. 2.54e+00 1.99e-01 1.58e+01 3.17e+01 5.69e-01 8.39e-16 3.72e+00 2.22e+00
+/=/– − − + + − − + −−
Mean 4.59e+01 4.97e+01 7.46e+01 1.56e+02 3.58e+01 3.66e+01 3.46e+01 2.88e+01

f9 Std. 1.09e+01 8.71e+00 2.74e+01 2.95e+01 7.51e+00 7.79e+00 9.26e+00 6.92e+00
+/=/– + + + + + + + −−
Mean 3.40e+00 6.98e+00 1.80e+03 1.25e+03 9.31e+00 1.27e-01 1.25e+02 3.15e+01

f10 Std. 2.09e+00 2.40e+01 6.43e+02 7.96e+02 4.77e+00 2.30e-01 9.65e+01 4.62e+01
+/=/– − − + + − − + −−
Mean 2.42e+03 2.04e+03 5.06e+03 2.85e+03 2.35e+03 1.78e+03 1.97e+03 1.57e+03

f11 Std. 5.45e+02 2.43e+02 1.60e+03 6.29e+02 4.08e+02 3.47e+02 4.71e+02 4.16e+02
+/=/– + + + + + = + −−
Mean 5.91e-01 1.28e-01 1.77e+00 3.36e-01 8.04e-01 1.27e-01 1.49e-01 1.56e-01

f12 Std. 8.56e-02 2.61e-02 8.70e-01 3.67e-02 1.24e-01 2.65e-02 7.84e-02 7.24e-02
+/=/– + = + + + = = −−
Mean 2.80e-01 3.09e-01 3.64e-01 4.40e-01 2.06e-01 2.78e-01 2.40e-01 1.92e-01

f13 Std. 5.43e-02 5.90e-02 7.23e-02 7.72e-02 5.27e-02 6.42e-02 6.84e-02 4.18e-02
+/=/– + + + + = + + −−
Mean 2.41e-01 2.50e-01 2.95e-01 2.58e-01 2.42e-01 2.38e-01 2.22e-01 2.04e-01

f14 Std. 4.47e-02 1.01e-01 9.12e-02 5.78e-02 2.60e-02 4.78e-02 3.40e-02 3.75e-02
+/=/– + + + + + + + −−
Mean 4.57e+00 1.23e+01 8.12e+00 1.33e+01 4.81e+00 3.55e+00 3.75e+00 3.37e+00

f15 Std. 1.31e+00 6.69e+00 2.95e+00 2.37e+00 9.80e-01 1.35e+00 9.44e-01 8.34e-01
+/=/– + + + + + = = −−

5 Conclusions

In this paper, to improve the performance of GPDE, we propose an adaptive parameter adjustment strategy
based on an individual-dependent parameter and an individual-independent macro-control rule to set the
values of mutation factor and crossover rate at the individual-level. In fact, two user-specified constants,
which is used to produce the concrete values of mutation factor and crossover rate during the optimization
routine in GPDE, are eliminated by using the new adaptive parameter adjustment strategy. Furthermore, we
introduce a decreasing function to the Gaussian mutation operator to enhance the accuracy of the optimal
solution, meanwhile adopt a more simple and efficient rule based on each mutation operator’s successful
experiences to coordinate the selection decision of the two adopted mutation operator for every individual.
Numerical experiments on 30 benchmark functions in the CEC 2014 special session have been conducted. The
performance of AGPDE is also compared with seven popular state-of-the-art DE variants, and it is concluded
that AGPDE outperforms all of the other DE variants.
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Table 2: Comparative results on functions f16 − f30

Func. Metric SADE JADE GDE MGBDE SinDE SHADE GPDE AGPDE
Mean 1.03e+01 1.02e+01 1.10e+01 1.07e+01 1.00e+01 9.51e+00 9.64e+00 8.05e+00

f16 Std. 4.16e-01 3.56e-01 1.12e+00 6.49e-01 5.22e-01 5.70e-01 7.85e-01 7.06e-01
+/=/– + + + + + + + −−
Mean 5.95e+03 6.29e+04 1.91e+04 1.71e+03 1.25e+05 1.45e+03 3.84e+03 1.28e+05

f17 Std. 4.17e+03 6.21e+04 3.03e+04 7.57e+02 1.20e+05 5.04e+02 3.53e+03 1.45e+05
+/=/– − − − − = − − −−
Mean 8.34e+02 7.06e+02 7.43e+01 1.03e+02 5.15e+02 2.30e+02 2.16e+01 3.96e+01

f18 Std. 1.22e+03 9.62e+02 1.90e+02 3.60e+01 6.94e+02 5.21e+02 9.20e+00 2.28e+01
+/=/– + + = + + + − −−
Mean 4.23e+00 1.11e+01 4.73e+00 2.33e+01 3.71e+00 8.96e+00 3.45e+00 2.99e+00

f19 Std. 1.23e+00 1.66e+01 1.20e+00 2.55e+01 7.18e-01 1.18e+01 1.18e+00 7.95e-01
+/=/– + + + + + + = −−
Mean 1.08e+02 1.37e+03 2.88e+01 7.80e+01 2.57e+01 1.43e+02 1.71e+01 1.37e+01

f20 Std. 1.42e+02 2.06e+03 2.19e+01 4.38e+01 2.85e+01 6.21e+01 1.12e+01 3.45e+00
+/=/– + + + + = + = −−
Mean 4.84e+03 5.74e+03 3.29e+03 8.50e+02 9.23e+03 8.36e+02 3.63e+03 2.04e+03

f21 Std. 4.42e+03 7.17e+03 5.36e+03 3.90e+02 7.52e+03 2.60e+02 4.61e+03 1.91e+03
+/=/– + + = − + − = −−
Mean 1.55e+02 2.10e+02 4.82e+02 7.17e+02 7.25e+01 2.03e+02 2.90e+02 8.26e+01

f22 Std. 8.61e+01 7.94e+01 2.09e+02 2.74e+02 6.28e+01 1.09e+02 1.41e+02 7.18e+01
+/=/– + + + + = + + −−
Mean 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02

f23 Std. 1.38e-13 3.48e-13 6.13e-13 1.21e-12 1.24e-13 1.77e-13 1.04e-13 2.32e-13
+/=/– = = = = = = = −−
Mean 2.28e+02 2.30e+02 2.35e+02 2.42e+02 2.23e+02 2.38e+02 2.27e+02 2.10e+02

f24 Std. 5.41e+00 3.87e+00 7.27e+00 1.18e+01 8.57e-01 6.05e+00 4.51e+00 1.10e+01
+/=/– + + + + + + + −−
Mean 2.10e+02 2.12e+02 2.04e+02 2.20e+02 2.04e+02 2.08e+02 2.04e+02 2.04e+02

f25 Std. 2.07e+00 1.47e+00 1.19e+00 6.22e+00 6.64e-01 3.93e+00 7.80e-01 7.96e-01
+/=/– + + = + = + = −−
Mean 1.12e+02 1.56e+02 1.00e+02 1.56e+02 1.00e+02 1.20e+02 1.08e+02 1.00e+02

f26 Std. 3.31e+01 5.05e+01 9.32e-02 5.04e+01 3.99e-02 4.07e+01 2.76e+01 3.60e-02
+/=/– + + + + = + + −−
Mean 4.36e+02 4.29e+02 4.28e+02 8.61e+02 3.02e+02 4.96e+02 3.34e+02 3.13e+02

f27 Std. 5.74e+01 6.28e+01 5.93e+01 3.11e+02 7.08e+00 8.00e+01 3.49e+01 2.35e+01
+/=/– + + + + − + + −−
Mean 9.12e+02 9.19e+02 9.56e+02 2.60e+03 7.94e+02 9.52e+02 7.93e+02 7.88e+02

f28 Std. 4.37e+01 6.51e+01 6.23e+01 7.61e+02 3.23e+01 1.23e+02 2.60e+01 3.82e+01
+/=/– + + + + = + = −−
Mean 6.83e+02 7.84e+02 4.80e+02 7.18e+02 1.32e+03 7.43e+02 6.32e+02 1.54e+03

f29 Std. 2.64e+02 2.69e+02 2.73e+02 1.26e+02 2.39e+02 9.24e+01 1.96e+02 3.18e+02
+/=/– − − − − − − − −−
Mean 1.96e+03 2.05e+03 1.11e+03 2.14e+03 8.10e+02 2.05e+03 1.62e+03 1.48e+03

f30 Std. 6.22e+02 5.50e+02 3.00e+02 7.18e+02 1.69e+02 8.74e+02 7.04e+02 7.40e+02
+/=/– + + = + − + = −−

Sum +/=/– 23/1/6 21/2/7 21/5/4 24/1/5 12/11/7 17/5/8 12/11/7 −−
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