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Abstract

This study deals with the optimization methodology in hybrid uncertain decision-making systems and
develops a new equilibrium two-stage programming, in which both possibility and probability distribu-
tions are used to characterize uncertain parameters. The decision process is divided into two stages. The
first-stage decision should be taken before knowing the realizations of uncertain parameters, while the
second-stage decision must be taken after knowing the outcome of embedded objective uncertainty. On
the basis of the proposed dynamic decision scheme, the second-stage problem is built via credibilistic
optimization methods, and the objectives in the first-stage problem are constructed via stochastic op-
timization methods. For single objective equilibrium two-stage programming problem and bi-objective
equilibrium two-stage programming problem, we define their wait-and-see solution, here-and-now solution
and expected value solution, respectively. Two important indexes, the expected value of perfect random
information (EVPRI) and the value of equilibrium recourse solution (VERS), are introduced, and their
relations are illustrated via numerical examples.
©2018 World Academic Press, UK. All rights reserved.
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1 Introduction

In literature, the recourse problem of stochastic programming has been studied extensively (see[I] [6] 29]), and
has been applied to many real world decision problems, especially decision problems involving risk [5]. For a
unit commitment problem with uncertain wind power output, Wang et al. [31] presented model includes both
the two-stage stochastic program and the chance-constrained stochastic program features. Li and Chen [§]
found risk-averse optimal ordering decisions in supply contracts problem with random demand by two-stage
bi-objective stochastic optimization method. In order to provide an effective response and use resources effi-
ciently, Moreno et al. [22] modelled uncertainty regarding demand, incoming supply, and availability of routes
via a finite set of scenarios and presented an effective two-stage stochastic model to optimize location, trans-
portation, and fleet sizing decisions. To design cost-optimal distributed energy systems under uncertainty,
Mavromatidis et al. [2I] presented a two-stage stochastic programming using multiple criteria. In a supply
chain context, considering demand uncertainties with regard to product specifications and volumes and in-
tegrating the selection of new product designs and processing technologies, Stefansdottir and Grunow [25]
presented a two-stage stochastic mixed integer linear programming model. The first-stage model selected the
processing technologies, and the second-stage model took the detailed product designs and the production
volumes as recourse actions. To maximize the profit under rent warehouse incentives decreasing over time and
price-sensitive demands, Lin and Wang [10] proposed a two-stage stochastic optimization model, which firstly
decided the optimal warehouse location for multiple markets and determining warehouse configuration design
against stochastic demands, then designed an appropriate inventory policy with owned and rented warehouses
for deteriorating items. For water resources management problem under uncertainty, an extended two-stage
stochastic programming with fuzzy variables was developed in [24].
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The recourse problem of fuzzy programming was studied first by Liu [II]. He built a two-stage fuzzy
expected value model. Liu and Zhu [20] presented a class of two-stage fuzzy minimum risk model for a
location and allocation problem based on credibility theory. In 2009, Liu and Tian [I9] presented a class of
two-stage fuzzy programming with minimum-risk criteria in the sense of Value-at-Risk. These models take
credibility theory as the theoretical foundation, the uncertain parameters in the model are fuzzy variables
characterized by possibility distribution functions. Liu and Bai [I5] studied two-stage fuzzy minimum risk
problem and two-stage fuzzy value-at-risk problem, established the interconnections between their optimal
objective values, and discussed the relations between their optimal solutions. As a consequence, it would be
possible to solve one two-stage optimization problem indirectly by solving its counterpart.

Now the recourse problem of fuzzy programming has also been applied to many optimization problems.
To reduce risks in location decisions from imprecise information, Wang et al. [33] proposed a two-stage fuzzy
zero-one integer programming model with value-at-risk for an uncertain facility location problem. Yuan [36]
developed a two-stage fuzzy optimization method to solve the multi-product multi-period production planning
problem with fuzzy market demands and inventory costs. Sun et al. [27) 28] assumed the uncertain material
demand, the spot market material unit price and the spot market material supply quantity to be fuzzy
variables with known possibility distributions, and presented two-stage fuzzy material procurement planning
models with minimum-risk criteria. Considering the uncertain customer demands, transportation costs and
resource capacities, Yang and Liu [34] developed a mean-risk two-stage fuzzy optimization method for supply
chain network design problem. In the proposed model, the standard semivariance is suggested to gauge
the risk resulted from fuzzy uncertainty. They defined the value of fuzzy solution in the sense of mean-
risk as the difference between the here-and-now solution and the expected value solution to demonstrate
the advantages of the proposed optimization method. Characterizing the future returns of risky security by
possibility distributions, Chen and Wang [3] studied a two-period portfolio selection problem with transaction
costs and formulated it as a two-stage fuzzy programming model. The analytical optimal solution of the
two-stage model is obtained.

Randomness and fuzziness coexist in many real-life fields. For instance, when measuring the depth of a lake,
Negoita and Ralescu [23] assumed that the location was random and the measurement results were fuzzy. The
demands of customers were assumed to have simultaneous randomness and fuzziness [38]. The uncertain travel
times considered in [35] included both randomness and fuzziness simultaneously. The return rates of assets
were characterized by joint normal distribution, and the parameters were fuzzy [30]. The uncertain demands
for each commodity were also assumed to follow normal distribution with fuzzy mathematical expectation
and covariance matrix in [37]. Chen et al. [2] used fuzzy random variables to characterize the lifetimes of
components in some standby redundancy systems.

Motivated by two-stage stochastic programming and fuzzy programming with recourse problems, based
on equilibrium chance theory [I7, 18], two classes of fuzzy random optimization problem called two-stage
fuzzy random programming or fuzzy random programming with recourse were first presented in [I3] [14], and
a class of random fuzzy programming with recourse was presented in [16]. These two-stage hybrid uncertain
optimization methods had been applied to model some realistic optimization problems. For example, Wang
and Watada [32] presented a recourse-based fuzzy random facility location model with fixed capacity. Zhai
et al. [37] developed a two-stage uncapacitated hub location problem with recourse, in which uncertain
parameters were characterized by both probability and possibility distributions. When demands were the only
uncertain parameters, the proposed two-stage uncapacitated hub location model was equivalent to a static
optimization problem subject to equilibrium constraint. Li et al. [9] modelled the uncertain demand by both
probability distribution and possibility distribution, and developed a two-stage expected value optimization
model for a supply contract problem. In the first decision-making stage, the distributor signed an options-
futures contract with the supplier to determine the futures and options ordering quantities. After knowing
the realization of uncertain demand, the distributor took the signed options as the recourse decision in the
second stage.

In the fuzzy random programming with recourse and random fuzzy programming with recourse from
literature, some uncertain parameters are characterized by known possibility and probability distributions.
The first-stage decisions must be taken before the outcome of hybrid uncertain parameters are revealed and
thus must be based on the knowledge of the distribution of the parameters only. After outcomes of all random
fuzzy parameters or fuzzy random parameters have been observed, the second-stage decisions as some recourse
(or corrective) actions may be taken. If there is an opportunity to adjust the decision, it is reasonable that
the decision maker always hopes to make the recourse decision as soon as possible to reduce the loss. In some
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cases, the recourse decision must be made when partial information is unknown. The later the problem is
solved, the higher the cost will be. To the best of our knowledge, the existing optimization methods can not
solve this dynamic optimization problem. The aim of this paper is to develop a new two-stage equilibrium
optimization method to deal with this class of dynamic optimization problem.

The main contributions of this study can be summarized as follows. First, integrating two different op-
timization methods into an optimization framework, this paper develops a new equilibrium optimization
method with recourse. The first-stage decision should be taken before knowing the realizations of uncertain
parameters. The second-stage decision must be taken after knowing the outcome of objective uncertainty
embedded in uncertain parameters while before knowing the outcome of subjective uncertainty. On the basis
of this dynamic decision scheme, the objectives and constraints in the first-stage are constructed via stochastic
optimization methods, and the objective and constraints in the second-stage are built via credibilistic opti-
mization methods. Second, we define three solution concepts, the wait-and-see solution, here-and-now solution
and expected value solution, for single objective equilibrium two-stage programming problem and bi-objective
equilibrium two-stage programming problem, respectively. Two indexes, the expected value of perfect random
information (EVPRI) and the value of equilibrium recourse solution (VERS), are also introduced. Finally, we
illustrate the relations among the wait-and-see solution, here-and-now solution and expected value solution
via numerical examples.

The material is arranged into five sections. First, in Section [2] we give an equilibrium single objective
programming model with recourse, and define its wait-and-see solution, here-and-now solution and expected
value solution. The intent of Section [3] is to present an equilibrium bi-objective programming model with
recourse, and define its three basic solution concepts. Section [d] discusses the method to solve the equilib-
rium two-stage programming problems. Numerical examples are covered in Section [5| to illustrate the three
solutions’ relations.

2 An Equilibrium Single Objective Model
2.1 Model Formulation

We consider the following problem:

min 'z + q(w,v)Ty

st. Ax =19
T(w,v)z + W(w,7)y = h(w,7)
x>0,y 20,

where some components of ¢(w,?), h(w,7), T(w,7y) and W(w,7) are fuzzy random variables defined on a
probability space (2, X, Pr). We assume that the decision scheme is the following

decision on x in fuzzy random environment

4

observation of random event w

4

decision on y in fuzzy environment.

According to this scheme, we present a new equilibrium optimization problem with recourse, in which there
are two optimization problems to be solved. Assuming & and w to be fixed, we formulate the second-stage
problem (or the recourse problem) as the following credibilistic programming model

min - E,[q(w,7)"y]

st.  Cr{W(w,v)y > h(w,y) —T(w,y)x} > « (1)
y=>0.

Suppose that the decision vector « has to satisfy the following deterministic constraints:

Ax=0b, x>0.
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We introduce additional constraint K on &, which facilitates the discussion on the solution of problem .
Let K be the set of all those & vectors for which problem is feasible for almost every possibly realized
random event w. If we define the second-stage value function as

Qz, {(w, 7))
[ min{E,[q(w,7)Ty] | Cr{W (w,7)y > h(w,7) — T(w,y)x} > a,y > 0}, if there is a feasible solution y
"] oo, if there is no a feasible solution v,

then K can be expressed as
K= {:B | z e R, Pri{w|Q(z,&{(w,)) < oo} = 1}7

where £ is the fuzzy random vector obtained by piecing together the fuzzy random components of the second-
stage problem data ¢(w,?), h(w,7), W(w,7) and T(w, 7).

The constraint € K is called induced constraint. For convenience, in the rest of the paper, we will denote
the second-stage value function Q(zx,£(w)) by Q(x,w).

The first-stage problem is formulated as follows

sup 'z + E,[Q(x,w)]

xr

st. Ax=0b (2)
x>0
x e K,

where the expected second-stage value function E, [Q(x,w)] is called the recourse function, E,, is the expected
value operator with respect to random vector w.
Combining problems (L)) and (2)), an equilibrium optimization with recourse problem can be built as

min ¢’z + E,[Q(z,w))

T

x>0
xr e K,
where
Q@,w) =min  E,[q(w,)"y]
st. Cr{W(w,y)y > h(w,v) —T(w,y)x} > « (4)
y > 0.

The problem f is equivalent to the following programming problem:

min 'z + E, |min E, [¢(w,7)Ty]
x y
st. Ax=05b
CY{W(%’Y)ZI > h(wav) - T(wa’)/)w} 2>«
x>0,y >0.

As the above discussion, a distinction is made between the first stage and the second stage. The first-stage
decision is represented by an n; x 1 vector «, while the second-stage decision is represented as an ny X 1 vector
y. In the second stage, a number of random events w € €2 may realize, the second-stage problem data g, h,
W and T are fuzzy matrices. Then the second-stage decision y must be taken in fuzzy environment.

Example 1. Assume that the equilibrium two-stage programming problem is

min 21’1 + 3SU2 + Ew [Q(wi)]

@

s.t. xr1 + X9 = 1 (5)
x>0
x e K,
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where
Qz,w) = myin 2y1 +y2
s.t. Cr{y; > q(w,y) — 21 — 22} > 0.8 (6)
y1t+y2=>1—x1
y1,y2 > 0.

In model @-@, the fuzzy random parameter is defined as

(w,7) = X1 with probability 0.25
T =\ X, with probability 0.75

Xy~ ( ) , Xo ~ (
Find its solution.

Note that the credibility level 0.8 > 0.5, then we have

where

= O

Ut Qo
—
ik O
W= O
— =
Wi DN
N——

Cr{y1 > X1 —x —1‘2} 208<:>y1 >4
for given q(w,~) = X1 and feasible x,
Cr{iy1 > Xo —21 —22} > 08 <= y1 > 1

for given q(w,~) = Xo and feasible x.
We have Q(x,w) = 8 with probability 0.25, and Q(x,w) = 2 with probability 0.75. Hence model (@-(@ 18
rewritten as
min 2x1 4+ 3x2 + %
x
st. x1+ax2=1
x > 0.

The optimal solution is x1 = 1,29 = 0. The optimal value is 11/2.

2.2 The Value of Information for the Equilibrium Single Objective Model
Wait-and-See Solution

In the fuzzy random programming, the uncertainty is described by fuzzy random vector £. For each realization
&(@) of fuzzy random vector £, an optimization problem associated with this particular realized value £(w) is
defined as follows
min  2(z,0) = ¢’z + min E,[q(©,7)" 9]
st. Ax=0b (7)
Cr{W (@, v)y = h(@,7) - T(@, v)z} = o
x>0,y >0.

We assume that for all the realized values £(&) of fuzzy random vector £, there is at least one x such that
z(x,) < 400 . This assumption ensures the existence of optimal solution to problem under &. Let Z(®)
denote the corresponding optimal solution. We are interested in finding out all solutions Z(w) of problem
(7) and the associated optimal objective values z(Z(w),w). We assume that these decisions Z(w) and their
objective values z(Z(w),w) can be found. Therefore, in this assumption, we can calculate the expected value
of the optimal value. We call

WS =E, [main z(z,w)] = Ey[2(Z(w), w)].

as the wait-and-see solution since decision z is made after the realized value of w is known. WS is also called
as the distribution solution since the distributions of both w and z(Z(w),w) with respect to w can be found.
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Here-and-Now Solution

Let
RP = m:gn E,[z(z,w)].

Since the first-stage decision x is made before the realized values of w are known, RP is called as the here-
and-now solution, also the equilibrium recourse solution, corresponding to the equilibrium recourse problem

formulated as — .

Expected Value Solution

Replacing the random parameter w with its expected value @, the corresponding problem is called the expected
value problem or mean value problem. Let

EV = Irgnz(m,@). ()

Let us denote by Z(®) an optimal solution to model . Using Z(@), the expected result is defined as
EEV = E, [2(Z(®), w)].

The quantity EEV, called the expected value solution, measures how Z(@) performs in the sense of mean.
Generally, the values of WS, RP, and EEV are different, and their relations are expressed in the following
proposition.

Proposition 1. For any fuzzy random programming problem (@7, we have WS < RP < EEV.
Proof. For any realization @ of w, one has
min z(z,0) < z(z,0), V.
xT
Taking the expected value in w on both sides of the above inequality, the following result

E, [ngn z(z,w)] < Eylz(z,w)], Vo

imply that
Ew[magnz(x,w)] < ma%nEw[z(%w)].

As a consequence, WS < RP.
Since
mminEw[z(ac,w)] < E,lz(z,w)]

for any x, this inequality holds for Z(@). Then
ngnEw[z(x,w)] < E,[2(Z(®),w)],

ie. RP < EEV.
The proof is complete.

Proposition 2. Ifw is discrete, and takes values @y, o9, ..., wnN, then
miin 2(Z(w;),w;) < WS < m?xz(f(obi),@i).
Proof. According to the definition of the wait-and-see solution,
WS =E, [H%Bm z(x,w)].
For any realization @ of w, one has

Iniin 2(Z(04), @) < 2(T(@y), ;) < m?xz(f(cbi),cbi).
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Therefore,

miin 2(Z(@;),w;) < Zz(ﬁc(d;z),djz) < m?xz(i(wi),d;i),

min z(Z(&;),w;) < WS < max 2(T(&;), w;).
The proof is complete.

Definition 1. The ezpected value of perfect random information (EVPRI) is defined as the difference between
RPand WS, i.e., EVPRI = RP — WS.

The EVPRI measures the maximum amount that a decision maker would be ready to pay in return for
complete random information about the future.

Definition 2. The value of the equilibrium recourse solution (VERS) is defined as the difference between
EEVand RP, i.e., VERS = EEV — RP.

By Proposition [1 it is easy to know that EVPRI > 0 and VERS > 0.

3 An Equilibrium Bi-objective Model

3.1 Equilibrium Optimization Model

In many dynamic decision problems, a decision maker may want to optimize multiple objectives. For example,
in portfolio selection problems, an investor want to maximize the return and minimize the risk. According to
the decision scheme in above section, we can formulate an equilibrium bi-objective programming model with
recourse. In the following, an equilibrium bi-objective programming model @D— is given as an example.

min 'z + E,[Q(z,w))
€T
min AT+ p[Q(,w)
€T
st. Ax=0b (9)
x>0
x e K,

where Q(x,w) denote the second-stage value function, that is to say,
Q@,w) = min  B,[g(w,)"y]

st. Cr{W(w,y)y > h(w,y) — T(w,y)z} > « (10)
y > 0.

The problem @7 is equivalent to the following programming problem:

mogn Tz +E, rr%ginEy[q(w,'y)Ty]

min dz+ p, myinEy[q(wm)Ty]

st. Az =0b
Cr{W(w,7)y > h(w,7) — T(w, )z} > «
x>0,y>0.

In model @—, the constraint @ € K is the induced constraint, x is called the equilibrium recourse
solution, y is called the recourse decision, E,, is the expected value operator with respect to random vector
w, and p,, is some measurement index, such as variance operator, with respect to random vector w.
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3.2 The Value of Information for Equilibrium Bi-objective Model

We denote
z1(x,w) = Tz +E, [Q(z,w)],

2(r,w) = d 'z + pu[Q(z, W),

and
X ={x|Az =b,xz > 0,x € K}.

For vector function z = (z1; 22), we denote z! < z? if and only if z(x!) is less than z(2?), i.e., Vi = 1,2,
zi(z') < z;(2?), and 35 =1 or 2, z;(z') < zj(2?). We denote ' < 2% if Vi = 1,2, z;(z') < z;(2?),

Definition 3. A solution z* € X is said to be Pareto optimal in X if and only if there exist no x € X such
that x < x*.

Definition 4. For a given bi-objective programming with feasible region X, its Pareto optimal set P* is
defined as P* = {x € X|Px € X,z < x}. The mapping in the objective space of all solutions in the Pareto
optimal set is called the Pareto front, denoted as PF*.

We cannot find the ideal optimal solution to problem (9)-(10), and usually obtain its Pareto optimal
solutions [4]. In this case, we can employ multi-objective optimization methods such as weighting method,

constraint method and goal programming [26]. In this section, we adopt the weighting method to turn problem
@— into single objective model:

min Ac"e + Eu[Q(@,w)]) + (1= N (d"@ + pu[Q(z,w)]) } an

s.t. xe X,
where X is weight coefficient, and Q(x,w) denote the second-stage value function, that is to say,

Qz,w) =min  E,[g(w,7)"y]
st. Cr{W(w,y)y > h(w,y) — T(w,y)z} > « (12)
y > 0.

According to the results in Section [2] we can find the wait-and-see solution, here-and-now solution and

expected value solution of model -.

Definition 5. The wait-and-see solution, here-and-now solution and expected value solution of model —
(@, denoted as WSy, RPy and EEV, are called as the Pareto wait-and-see solution, Pareto here-and-now
solution and Pareto expected value solution under weighted coefficient A of model @7(@), respectively.

Similarly, EVPRI and VERS for model (11)-(12)) are called as EVPRI and VERS under weighted coefficient
A for model @7, respectively. This two indexes can measure the expected value of perfect random
information and the value of equilibrium recourse solution.

4 Solving Method

One key of solving problem (3)—(4) is to solve the second-stage programming problem (4)). This section will
deal with this issue in two cases.

4.1 Translating into Equivalent Deterministic Programming

For any realization w, we assume that W(w,~), T(w,~) and ¢(w, ) in model are 1 X ng, 1 xny and ny x 1
fuzzy vectors, respectively. The components of W (w, ), T(w,~) and h(w, ) are independent fuzzy variables.
The components of ¢(w,~y) are also independent fuzzy variables. Hence, the credibility constraint

Cr{W(w,7)y > h(w,7) = T(w,y)z} > @



232 Y. Chen and Y. Liu: A New Equilibrium Optimization Method for Hybrid Uncertain Decision-Making System

is equivalent to
ng ni
Cr{z Wi(w, v)y; — h(w,y) + ZT(w,’y)xi >0} > a.
i=1 i=j

Since o > 0.5, the credibility constraint is further equivalent to

Z(Wi(w, )ing (2 = 20)yi + (=h(w,7))inf (2 — 2) + Z(Tj (@ ¥))ing (2 = 2a)z; > 0,

where (-)ins(83) denotes 5 pessimistic value of fuzzy variable.

Objective function
E, [g(w,7)"y]

is equivalent to
n2
> By gk (w, 1)y
k=1
Therefore the second-stage programming problem is translated into the following model

Q(@,w) = min Sz By law(w, )]k

st 2im (Wilw, 1))ing (2 = 20)y; + (—h(w,7) )ing (2 — 200) (13)
+ 20 (T (w,7))ing (2 = 20) x5 > 0
y=0.

It is a deterministic programming. So, problem 7 is translated into a two-stage stochastic programming
problem 7 equivalently. The equivalent two-stage stochastic programming problem can be solved by
some traditional solution methods, such as Bender’s decomposition method.

If the random parameter w is discrete and takes finite number of values, then the derived two-stage
stochastic programming can usually be reduced equivalently to a deterministic programming model.

4.2 Hybrid Intelligent Algorithm

If the second-stage programming problem cannot be translated into a deterministic programming, then
approximation techniques, credibility simulation and expected value simulation will be used to evaluate the
optimal value Q(x,w) of the second-stage problem. We adapt the SAA method to evaluate the recourse
function E, [Q(x,w)].

More precisely, let M be the number of the sample size, and @1, ws,...,w) the independent identically
distributed sample of M realizations of random parameter w. As a result, we can turn the original recourse
function E, [Q(x,w)] into SAA recourse function

M
ar Z Q(m7 ‘Dl) :
M=
So, we can turn the original two-stage programming problem 7 into its associated SAA model

min Tz + 4 Zgl Qx, ;)

€T
s.t. A:B = b (14)
x>0
x e K,
where
Q(CC,(Z}l) = Hlinl E’Y[Q(d}wr}/)Ty]
st Cr{W (&, )y > h(@;,y) — T(@;,y)z} > « (15)

y > 0.

For simplicity, we denote fuzzy event {W(w;,v)y > h(w;,v) — T(&s,v)x} as {g(&(&;)) > 0}, and denote
q(@i,v) Ty as f(£(@;)). For any random realization &; and x, we approximate the continuous fuzzy vector
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&(w;) by a sequence {(,(@;)} of discrete fuzzy vectors [12]. Let the discretization ¢, (w;) takes on J values

¢ (@;) with possibility vj, j = 1,2,...,J. The approximating programming problem of model is as

follows
Q&) =min - Ey[f (G (@:))
st Cr{g(Ca(@)) >0} > a (16)
y > 0.

In order to check the credibilistic constraint in model , it is required to compute the credibility

Cr{g(Cn(@:)) = 0}.

Then

L= 5 (14 max{ulg(@) > 0} — max{y;lg(&) < 0}) = Orfg(Gu(@1)) > 0} (7)

is the estimation value of
Cr{W (@;,7)y > h(@i, ) — T(@i, )z}

for any decision y > 0. It is easy to know that y > 0 is feasible if L > «. Otherwise, y is unfeasible.

For any feasible decision y, we estimate its objective value to obtain Q(=,w;). Write f; = f (@l (@;)) for
j =1,2,...,J. Rearrange the subscript j of v; and f; such that f1 < fo < .- < f;. For j =1,2,...,J,
calculate the weights

1

1
= — | max v; — max v; |+ —=| max v; — max v; i=1,2,...,J
Pi=35 (jSiSJ b jI<i<u4l ’) o i T o ) I T S

with vy = vy41 = 0. After that, the expected value E,[f({,(@;))] is calculated by the formula

J
Py =Y pif- (18)
j=1

Consequently, one can estimate the expected value E,[f(£(@;))] by formula provided n is sufficiently
large.

Based on the above discussion, the solution process of the equilibrium two-stage programming can be
summarized as Algorithm 1. About Particle Swarm Optimization, the interested reader can refer to [7].

Algorithm 1: Hybrid Particle Swarm Optimization Algorithm for equilibrium two-stage programming
Step 1 Set the initial parameters.

Step 2 Randomly generate the initial feasible Pop particles (solutions).

Step 3 Randomly generate independent identically distributed sample @1, @s, ..., 0y of M
realizations of random parameter w. The SAA model — is obtained.

Step 4 For any selected feasible solution «, go to Step 5.

Step 5 For any realization &;, generate the discretization ¢, (@;) which takes on .J values 7 (&;)
with possibility v;, j =1,2,...,J.

Step 6 Solve the approximating two-stage programming based on and .

Step 7 Repeat Step 5 to Step 6 for M cycles and obtain Q(x,w;), t =1,2,..., M.

Step 8 Repeat Step 4 to Step 7 for Pop cycles.

Step 9 For each particle, compare the current objective value with that of its pbest. If the current

objective value is smaller than that of pbest, then renew pbest and its objective value with
the current position and objective value.

Step 10 Find the best particle of the current swarm with the smallest objective value. If the
objective value is smaller than that of gbest, then renew ghest and its objective value with
the position and objective value of the current best particle.

Step 11 Repeat Step 4 to Step 10 for a given number of cycles.

Step 12 Return the gbest and its objective value as the optimal solution and the optimal value.
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5 Numerical Example

This section will give Example [2] in which EVPRI # 0 and VERS = 0, Example [3] in which EVPRI = 0 and
VERS # 0, and Example [4] in which there are two objective functions.

Example 2. Assume that the equilibrium two-stage programming problem is

min 2z + 922 + E,[Q(x, w)]

4

st x1+3x2=7 (19)
x>0
x e K,
where
Qla,w) =min B, lg(w,7)y]
st. Cr{W(w,Y)y > z1} > « (20)
y > 0.

In model (19)-(20), the credibility level oo = 0.8, the uncertain parameters q(w, ) = (1,2,3)+w and W (w,y) =
w(2,3,4) are triangular fuzzy random variables, where

12
v 03 07 )

Find the wait-and-see solution, here-and-now solution and expected value solution.
Note that the credibility level « = 0.8 > 0.5 and W(w,~) = w(2,3,4), we have

Cr{W(w,y)y > 21} > a <= 21 < (4 — 20)wy

for any given w > 0 and y > 0. Also, we have E,[q(w,7)y] = (2 + w)y since q(w,v) = (1,2,3) + w.
If w=1, then model @-@ can be rewritten as

min 2z1 + 925 + 3y

z,y
s.t. x1+3x2=7
Y Z 4f§a
x>0,y>0
x e K.
It is obviously that
3$1
1) = .
Q. l) =15,

Therefore, under scenario w = 1, the optimal value of equilibrium two-stage model is

T
7
0, - 1| =21
If w =2, model @—(@) s rewritten as

min 2z; + 922 + 4y

Y
s.t. x1+3x2=7
Y Z Sfila

xz>0,y>0

x e K.

It is easy to know that
x1
Qz,2) =
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Consequently, corresponding to scenario w = 2, the optimal value of equilibrium two-stage model is
119
2 ((7, O)T,z) ==
6

In summary, according to the definition, the wait-and-see solution is
1211
WS = E,[min z(z,w)] = Eu[2(Z(w),w)] = 50

€T

Based on the definition
RP = msgn E,[z(z,w)],

we have
RP = mmin 2x1 4+ 922 + 0.3Q(x, 1) + 0.7Q(x, 2)

s.t. x1+3x2=7
x>0

with the optimal solution x1 =7, xo = 0. Accordingly the here-and-now solution is

497
RP=—.
24

Substituting © = 1.7 into model (@—(@, then we have the expected value problem

min  2x1 4 95 + 3.7y

€T
s.t. X1 + 31’2 = 7 (21)
Y2 5ini
x> 0.

The optimal solution of model (21)) is T(w) = (7,0)7.
For (@) = (7,0)T, model (19 -(@ can be rewritten as

min 14 + E,[Q(Z(®),w)] (22)
where
Q(E(@),w) = min (2 +w)y
st oy> 5o (23)
y > 0.

It is obviously that the optimal values of @— under different scenarios are

21 L 28
WL 2(z(@),2) =14+ —

4.8
According to the definition EEV = E,,[2(Z(®),w)], the expected result is

EEV = 0.32(z(w), 1) + 0.72(2(0),2) = %.

2(z(w),1) =14+

Example 3. Assume that the equilibrium two-stage programming problem is

min  x; + 4z + E, [Q(z, w)]

T

s.t. xr1+ T = 1 (24)
x>0
xeK,
where
Qlz,w) = mz}n Ev[% + 11y; + 20y2 — 1021 + 2022 — 10g(w, )]
s.t. Cr{—z1+2z2+y1 +y2 + g >q(w,7)} >« (25)
0<y1 <2

y2 > 0.
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In model —(@, the credibility level o = 0.8, the uncertain parameters q(w,y) = (w — 1l,w,w + 2) is
triangular fuzzy random variables, where w ~ U(1,3) Find the here-and-now solution, wait-and-see solution
and expected value solution.

Note that the credibility level o = 0.8 > 0.5, then we have

6
Cr{—21+2z2 +y1 + Y2 + ¢

5 > q(w,7)} 208 <= y1 +y2 > w+x1 — 222

for any given w € [1,3] and * > 0. Introducing surplus variable y3 > 0, this credibilistic constraint is
equivalently rewritten as
Y1+ Y2 — Y3 =w+ a1 — 220

We also have
E,[4 + 11y; + 20y2 — 1031 + 2022 — 10g(w, )] = y1 + 10y2 + 10ys.

Then the equilibrium two-stage programming problem — is translated into the following two-stage
stochastic programming problem
mwin 1 + 4xo + E, [Q(x, w)]
s.t. xr1+ T = 1 (26)
x>0
x e K,

where
Qz,w) = min g1 + 10y, + 10ys

s.t. Y1 +y2 — Y3 =w +£C1 — 2$2 (27)
0<y <2
y2,93 = 0.

Substituting w = 2 mto model % (l we have Z(©) = (0,1)T and EV = 4.

Using #(w) = (0,1)T in model one has
min 4+ E,[Q(z,w)] (28)

where

Qx,w) = myiﬁ y1 + 10y2 + 10ys3

st o1ty —ys=w—2 (29)
0<y1 <2
Y2,y3 = 0.
The optimal value of model (28)-(29) is z(Z(@),w) = 24 — 10w when w € [1,2], and 2(Z(©),w) = w + 2
when w € [2,3]. Hence the expected value solution of model — is
27

EEV = —.
4

Model @- is simplified as

min 4 —3z; + E,|Q(x,w
y L EQ, ) )
st. 0<xz1 <1
where
Qz,w) = myin y1 + 10y2 + 10y3
St Y1 +yY2—yYs=w—24+ 31 (31)
0<y1 <2
y2,y3 = 0.

In the first case of x1 € [0,1/3], the optimal value of is 10(—w +2 — 3x1) for w € [1,2 —3x1], and the
optimal value of is w— 2+ 3z for w € [2—3x1,3].

In the second case of 1 € [1/3,1], the optimal value of is w — 2+ 3x1 for w € [1,4 — 3x4], and the
optimal value of is 10w — 38 + 30z for w € [4 — 321, 3].
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Now model (@/— can be decomposed into two subproblems, in which only use 0 < 1 < 1/3 and
1/3 < a1 <1 to replace 0 < x1 < 1, respectively. The subproblems are equivalent to

. 9942 —66x, 427

min ZATPTiTEl 47“1+
z 1

st. 0<x < 35

and

4

min 81z? 54z, +25
xT
st F<az <L

Therefore, we have the optimal solution xi = 1/3, and the here-and-now solution
RP =4.
For any realization of w, model @— s rewritten as

min  —3z1 +y1 + 10y2 + 10y3 + 4

Y

st =31+ yi+y2—yYs =w—2
0<z, <1 (32)
0<y1 <2
y2,y3 > 0.

Solving model (39) for any realization of w, we have the optimal value w+ 2. Hence, the wait-and-see solution
of model (24)- is
WS = 4.

Example 4. Assume that the two-stage problem is defined as

min 5z + E,[Q(z,w)]

x

min  V,[Q(z,w)]

x (33)
st. >0
r € K,
where Q(x,w) denotes the second-stage value function, that is to say,
Qz,w) =min B, [q(w,7)"y]

s.t. Cr{y <T(w,y)} >0.8 (34)
Cr{y > h(w,vy) + 2z} > 0.9
y>0.

In model -, Pr{iw =w; =1} =04, Pr{w = ws =2} = 0.6, q(w,v) = (0,1,2)w, T(w,7y) =w+ (5,6,7)
and h(w,v) = (2,3.5,4,5) — w are trapezoidal fuzzy random variables.

The objective function in the second-stage problem is rewritten as E,[q(w,v)Ty] = wy. The constraint
Cr{y < T(w,v)} > 0.8 is equivalent to y < 5.4 + w, constraint Cr{y > h(w,vy) + x} > 0.9 is equivalent to
y>4.8 —w+x.

When w1 =1, we have y < 6.4 and y > 3.8+ x. When wy = 2, we have y < 7.4 andy > 2.8+ x. As a
consequence,

K = {z|z < 2.6}.

For any given x and wy = 1, the optimal value in the second-stage is
Q(z,wy) = 3.8+ z.
Similarly, for any given x and we = 2, the optimal value in the second-stage problem is
Q(z,w2) = 5.6 + 2z.

Consequently,
E,[Q(z,w)] = 04Q(z,w1) + 0.6Q(z,w2) = 4.88 + 1.6z.
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Vo, [Q(z,w)] = 0.4(1.08 + 0.62)* + 0.6(0.72 + 0.4z)*.

The equivalent static programming problem is

min 4.88 + 6.6x
X

min  0.4(1.08 + 0.6z)? 4 0.6(0.72 + 0.4z)?
€T

s.t. 0<z<2.6.

Under different values of parameter X, we solve the following programming problem

min  A(4.88 + 6.62) + (1 — A)(0.4(1.08 + 0.62) + 0.6(0.72 + 0.42)?)
st. 0<z<26.

We get the Pareto here-and-now solutions RPy under weighted coefficient X, some of them are shown in Table
1.

Table 1: The solution results under different weighted coefficient A

A WS RP EEV,
0.0 0 0.7776 0.7776
0.1 0.488 1.18784 1.18784
0.2 0.976 1.59808 1.59808
0.3 1.464 2.00832 2.00832
0.4 1.952 2.41856 2.41856
0.5 2.44 2.8288 2.8288
0.6 2.928 3.23904 3.23904
0.7 3.416 3.64928 3.64928
0.8 3.904 4.05952 4.05952
0.9 4.392 4.46976 4.46976
1.0 4.88 4.88 4.88

Since the expected value of random parameter w is @ = 1.6, the expected value problem is

min bz + 1.6y
€T

s.t. 0<x<26
y>32+«x
0<y<T.

Submitting its optimal solution T(w) = 0 into model -, we have the following problem

mxin E, [Q(O»W)]
min Vo[Q(,)

where
Q(0,w) =min wy
Y
st. y<bHd+4w

y>48—w
y>0.

Since Q(0,w1) = 3.8 and Q(0,wy) = 5.6, the Pareto expected value solution under weighted coefficient \ is
EEV) = 0.7776 + 4.1024\, some of them are shown in Table 1.
Finally, since
z(x,wy) = rnyin S5r 4y

st 384+x<y<64
0<az<26,
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and
z(x,ws) = min bz + 2y
y
s.t. 28+x<y<74
0<x <26,

then z(x,w1) = 3.8 and z(z,w2) = 5.6. As a consequence, the Pareto wait-and-see solution under weighted
coefficient \ is WSy = 4.88X, some of them are shown in Table 1.

6 Conclusions

The major new results in this study can be summarized as follows:

Based on credibility theory and probability theory, a new single objective equilibrium programming model,
called equilibrium two-stage programming, was proposed. The wait-and-see solution, here-and-now solution
and expected value solution were defined, respectively. A new bi-objective equilibrium programming model
was also developed. The model’s Pareto wait-and-see solution, Pareto here-and-now solution and Pareto
expected value solution under weighted coefficient were defined, respectively. The proposed optimization
methodology can address twofold uncertainty arisen in hybrid uncertain decision-making systems.

The relations among the wait-and-see solution, here-and-now solution and expected value solution were
discussed (Proposition . The wait-and-see solution is the smallest, and the expected value solution is the
largest. These results illustrate the expected value of perfect random information and the value of equilibrium
recourse solution. Some numerical examples were provided to illustrate the relations.
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