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Abstract

In many practical situations, we know the exact form of the objective function, and we know the
optimal decision corresponding to each values of the corresponding parameters xi. What should we do if
we do not know the exact values of xi, and instead, we only know each xi with uncertainty – e.g., with
interval uncertainty? In this case, one of the most widely used approaches is to select, for each i, one
value from the corresponding interval – usually, a midpoint – and to use the exact-case optimal decision
corresponding to the selected values. Does this approach lead to the optimal solution to the interval-
uncertainty problem? If yes, is selecting the midpoints the best idea? In this paper, we provide answers
to these questions. It turns out that the selecting-a-valued-from-each-interval approach can indeed lead
us to the optimal solution for the interval problem – but not if we select midpoints.
c©2018 World Academic Press, UK. All rights reserved.
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1 Formulation of the Practical Problem

Often, we know the ideal-case solution. One of the main objectives of science and engineering is to
provide an optimal decision in different situations. In many practical situations, we have an algorithm that
provides an optimal decision based under the condition that we know the exact values of the corresponding
parameters x1, . . . , xn.

In practice, we need to take uncertainty into account. In practice, we usually know xi with some
uncertainty. For example, often, for each i, we only know an interval [xi, xi] that contains the actual (unknown)
value xi; see, e.g., [7].

A problem. In the presence of such interval uncertainty, how can we find the optimal solution?
One of the most widely used approaches uses the fact that under interval uncertainty, we can implement

decisions corresponding to different combinations of values xi ∈ [xi, xi]. Is this indeed a way to the solution
which is optimal under interval uncertainty? If yes, which values should we choose?

Often, practitioners select the midpoints, but is this selection the best choice? These are the questions
that we answer in this paper.

2 Formulation of the Problem in Precise Terms

Decision making: a general description. In general, we need to make a decision u = (u1, · · · , um) based
on the state x = (x1, · · · , xn) of the system. According to decision theory, a rational person selects a decision
that maximizes the value of an appropriate function known as utility; see, e.g., [1, 4, 5, 8].

We will consider situations when or each state x and for each decision u, we know the value of the utility
f(x, u) corresponding to us choosing u. Then, when we know the exact state x of the system, the optimal
decision uopt(x) is the decision for which this utility is the largest possible:

f(x, uopt(x)) = max
u

f(x, u). (1)
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Decision making under interval uncertainty. In practice, we rarely know the exact state of the system,
we usually know this state with some uncertainty. Often, we do not know the probabilities of different possible
states x, we only know the bounds on different parameters describing the state.

The bounds mean that for each i, instead of knowing the exact values of xi, we only know the bounds xi
and xi on this quantity, i.e., we only know that the actual (unknown) value xi belongs to the interval [xi, xi].
The question is: what decision u should we make in this case?

We also assume that the uncertainty with which we know x is relatively small, so in the corresponding
Taylor series, we can only keep the first few terms in terms of this uncertainty.

Decision making under interval uncertainty: towards a precise formulation of the problem.
Because of the uncertainty with which we know the state x, for each possible decision u, we do not know the
exact value of the utility, we only know that this utility is equal to f(x, u) for some xi ∈ [xi, xi]. Thus, all we
know is that this utility value belongs to the interval[

min
xi∈[xi,xi]

f(x1, · · · , xn, u), max
xi∈[xi,xi]

f(x1, · · · , xn, u)

]
. (2)

According to decision theory (see, e.g., [2, 3, 4]), if for every action a, we only know the interval
[f−(a), f+(a)] of possible values of utility, then we should select the action for which the following com-
bination takes the largest possible value:

α · f+(a) + (1− α) · f−(a), (3)

where the parameter α ∈ [0, 1] describes the decision maker’s degree of optimism-pessimism:

• the value α = 1 means that the decision maker is a complete optimist, only taking into account the
best-case situations,

• the value α = 0 means that the decision maker is a complete pessimist, only taking into account the
worst-case situations, and

• intermediate value α ∈ (0, 1) means that the decision maker takes into account both worst-case and
best-case scenarios.

Resulting formulation of the problem. In these terms our goal is:

• given the function f(x, u) and the bounds x and x,

• to find the value u for which the following objective function takes the largest possible value:

α · max
xi∈[xi,xi]

f(x1, · · · , xn, u) + (1− α) · min
xi∈[xi,xi]

f(x1, · · · , xn, u)→ max
u

. (4)

Comment. The simplest case when the state x is characterized by a single parameter and when a decision u
is also described by a single number, was analyzed in [6].

3 Analysis of the Problem

We assumed that the uncertainty is small, and that in the corresponding Taylor expansions, we can keep only
a few first terms corresponding to this uncertainty. Therefore, it is convenient to describe this uncertainty
explicitly.

Let us denote the midpoint (xi + xi)/2 of the interval [xi, xi] by x̃i. Then, each value xi from this interval

can be represented as xi = x̃i + ∆xi, where we denoted ∆xi
def
= xi− x̃i. The range of possible values of ∆xi is

[xi − x̃i, xi − x̃i] = [−∆i,∆i],

where we denoted

∆i
def
=

xi − xi
2

.
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The differences ∆xi are small, so we should be able to keep only the few first terms in ∆xi.
When all the values xi are known exactly, the exact-case optimal decision is uopt(x). Since uncertainty is

assumed to be small, the optimal decision u = (u1, · · · , um) under interval uncertainty should be close to the

exact-case optimal decision ũ = (ũ1, · · · , ũm)
def
= uopt(x̃) corresponding to the midpoints of all the intervals.

So, the difference ∆uj
def
= uj − ũj should also be small. In terms of ∆uj , the interval-case optimal value uj

has the form uj = ũj + ∆uj . Substituting xi = x̃i + ∆xi and uj = ũj + ∆uj into the expression f(x, u) for
the utility, and keeping only linear and quadratic terms in this expansion, we conclude that

f(x, u) = f(x̃+ ∆x, ũ+ ∆u)

= f(x̃, ũ) +

n∑
i=1

fxi ·∆xi +

m∑
j=1

fuj ·∆uj +
1

2
·

n∑
i=1

n∑
i′=1

fxixi′ ·∆xi ·∆xi′

+

n∑
i=1

m∑
j=1

fxiuj
·∆xi ·∆uj +

1

2
·

m∑
j=1

m∑
j′=1

fujuj′ ·∆uj ·∆uj′ , (5)

where we denoted

fxi

def
=

∂f

∂xi
(x̃, ũj), fuj

def
=

∂f

∂uj
(x̃, ũ), fxixi′

def
=

∂2f

∂xi∂xi′
(x̃, ũ),

fxiuj

def
=

∂2f

∂xi∂uj
(x̃, ũ), fujuj′

def
=

∂2f

∂uj∂uj′
(x̃, ũ).

To find an explicit expression for the objective function (4), we need to find the maximum and the minimum
of this objective function when u is fixed and xi ∈ [xi, xi], i.e., when ∆xi ∈ [−∆i,∆i]. To find the maximum
and the minimum of a function of an interval, it is useful to compute its derivative. For the objective function
(5), we have

∂f

∂xi
= fxi +

n∑
i′=1

fxixi′ ·∆xi′ +

m∑
j=1

fxiuj ·∆uj . (6)

In general, the value fxi is different from 0; possible degenerate cases when fxi = 0 seem to be rare. On a
simple example – when the state is described by a single quantity x = x1 and the decision u is also described
by a single quantity u = u1 – let us explain why we believe that this degenerate case can be ignored.

4 Explaining Why, in General, We Have fxi 6= 0

Simple case. Let us assume that the state x is the difference x = T −Tideal between the actual temperature
T and the ideal temperature Tideal. In this case, T = Tideal + x.

Let u be the amount of degree by which we cool down the room. Then, the resulting temperature in the
room is T ′ = T − u = Tideal + x− u. The difference T ′ − Tideal between the resulting temperature T ′ and the
ideal temperature Tideal is thus equal to x− u.

It is reasonable to assume that the discomfort D depends on this difference d: D = D(d). The discomfort is
0 when the difference is 0, and is positive when the difference is non-zero. Thus, if we expand the dependence
D(d) in Taylor series and keep only quadratic terms in this expansion D(d) = d0 + d1 · d + d2 · d2, we
conclude that d0 = 0, that d1 = 0 (since the function D(d) has a minimum at d = 0), and thus, that
D(d) = d2 · d2 = d2 · (x− u)2, for some d2 > 0.

So the utility – which is negative this discomfort – is equal to f(x, u) = −d2 · (x− u)2.
In this case, for each state x, the exact-case optimal decision is uopt(x) = x. Thus, at the point where

x = x0 and u = u0 = uopt(x) = x0, we have

fx =
∂f

∂x
= −2d2 · (x0 − u0) = 0.

So, we have exactly the degenerate case that we were trying to avoid.

Let us make the description of this case slightly more realistic. Let us show that if we make the
description more realistic, the derivative fx is no longer equal to 0.
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Indeed, in the above simplified description, we only took into account the discomfort of the user when the
temperature in the room is different from the ideal. To be realistic, we need to also take into account that
there is a cost C(u) associated with cooling (or heating).

This cost is 0 when u = 0 and is non-negative when u 6= 0, so in the first approximation, similarly to how
we described D(d), we conclude that C(u) = k · u2, for some k > 0. The need to pay this cost decreases the
utility function which now takes the form

f(x, u) = −d2 · (x− u)2 − k · u2.

For this more realistic utility function, the value uopt(x) that maximizes the utility for a given x can be found
if we differentiate the utility function with respect to u and equate the derivative to 0. Thus, we get

2d2 · (u− x) + 2k · u = 0,

hence (d2 + k) · u− d2 · x = 0, and

uopt(x) =
d2

d2 + k
· x.

For x = x0 and u = u0 = uopt(x0) = x0 · d2/(d2 + k), we thus get

fx =
∂f

∂x
= 2(x0 − u0) = 2

(
x0 −

d2
d2 + k

· x0
)

=
2k

d2 + k
· x0 6= 0.

So, if we make the model more realistic, we indeed get a non-degenerate case fx 6= 0 that we consider in
our paper.

5 Analysis of the Problem (continued)

We consider the non-degenerate case, when fxi
6= 0. Since we assumed that all the differences ∆xi and ∆uj

are small, a linear combination of these differences is smaller than |fxi |. Thus, for all values ∆xi from the

corresponding intervals ∆xi ∈ [−∆i,∆i], the sign of the derivative
∂f

∂xi
is the same as the sign sxi

def
= sign(fxi)

of the midpoint value fxi .
Hence:

• when fxi > 0 and sxi = +1, the function f(x, u) is an increasing function of xi; its maximum is attained
when xi is attained its largest possible values xi, i.e., when ∆xi = ∆i, and its minimum is attained
when ∆xi = −∆i;

• when fxi
< 0 and sxi

= −1, the function f(x, u) is an decreasing function of xi; its maximum is attained
when xi is attained its smallest possible values xi, i.e., when ∆xi = −∆i, and its minimum is attained
when ∆xi = ∆i.

In both cases, the maximum of the utility function f(x, u) is attained when ∆xi = sxi
·∆i and its minimum

is attained when ∆xi = −sxi
·∆i. Thus,

max
xi∈[xi,xi]

f(x1, · · · , xn, u) = f(x̃1 + sx1 ·∆1, · · · , x̃n + sxn ·∆n, ũ+ ∆u)

= f(x̃, ũ) +

n∑
i=1

fxi · sxi ·∆i +

m∑
j=1

fuj ·∆uj +
1

2
·

n∑
i=1

n∑
i′=1

fxixi′ · sxi · sxi′ ·∆i ·∆i′

+

n∑
i=1

m∑
j=1

fxiuj
· sxi

·∆i ·∆uj +
1

2
·

m∑
j=1

m∑
j′=1

fujuj′ ·∆uj ·∆uj′ , (7)

and

min
xi∈[xi,xi]

f(x1, · · · , xn, u) = f(x̃1 − sx1 ·∆1, · · · , x̃n − sxn ·∆n, ũ+ ∆u)
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= f(x̃, ũ)−
n∑

i=1

fxi · sxi ·∆i +

m∑
j=1

fuj ·∆uj +
1

2
·

n∑
i=1

n∑
i′=1

fxixi′ · sxi · sxi′ ·∆i ·∆i′

−
n∑

i=1

m∑
j=1

fxiuj
· sxi

·∆i ·∆uj +
1

2
·

m∑
j=1

m∑
j′=1

fujuj′ ·∆uj ·∆uj′ . (8)

Therefore, our objective function (4) takes the form

α · max
xi∈[xi,xi]

f(x1, · · · , xn, u) + (1− α) · min
xi∈[xi,xi]

f(x1, · · · , xn, u)

= f(x̃, ũ) + (2α− 1) ·
n∑

i=1

fxi · sxi ·∆i +

m∑
j=1

fuj ·∆uj +
1

2
·

n∑
i=1

n∑
i′=1

fxixi′ · sxi · sxi′ ·∆i ·∆i′

+(2α− 1) ·
n∑

i=1

m∑
j=1

fxiuj
· sxi

·∆i ·∆uj +
1

2
·

m∑
j=1

m∑
j′=1

fujuj′ ·∆uj ·∆uj′ . (9)

To find the interval-case optimal value ∆umax
j = uj− ũj for which the objective function (4) attains its largest

possible value, we differentiate the expression (9) for the objective function (4) with respect to ∆uj and equate
the derivative to 0. As a result, we get:

fuj
+ (2α− 1) ·

n∑
i=1

fxiuj
· sxi

·∆i +

m∑
j′=1

fujuj′ ·∆u
max
j′ = 0. (10)

To simplify this expression, let us now take into account that for each x = (x1, · · · , xn), the function
f(x, u) attains its maximum at the known value uopt(x). Differentiating expression (5) with respect to ∆uj
and equating the derivative to 0, we get:

fuj
+

n∑
i=1

fxiuj
·∆xi +

m∑
j′=1

fujuj′ ·∆
optuj′ = 0, (11)

where we denoted ∆optuj
def
= uoptj − uj .

For x = x̃, i.e., when ∆xi = 0 for all i, this maximum is attained when u = ũ, i.e., when ∆uj = 0 for all
j. Substituting ∆xi = 0 and ∆uj = 0 into the formula (11), we conclude that fuj

= 0 for all j. Thus, the
formula (10) takes a simplified form

(2α− 1) ·
n∑

i=1

fxiuj · sxi ·∆i +

m∑
j′=1

fujuj′ ·∆u
max
j′ = 0. (12)

In general, we can similarly expand uoptj (x) in Taylor series and keep only a few first terms in this expansion:

uoptj (x1, . . . , xn) = uoptj (x̃1 + ∆x1, · · · , x̃n + ∆xn) = ũj +

n∑
i=1

uj,xi
·∆xi, (13)

where we denoted

uj,xi

def
=

∂uoptj

∂xi
.

Thus, for the exact-case optimal decision,

∆uoptj = uoptj (x)− ũj =

n∑
i=1

uj,xi
·∆xi. (14)

Substituting this expression for ∆uoptj into the formula (11), we conclude that

n∑
i=1

fxiuj
·∆xi +

n∑
i=1

m∑
j′=1

fujuj′ · uj′,xi
·∆xi = 0,
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i.e., that
n∑

i=1

∆xi ·

fxiuj
+

m∑
j′=1

fujuj′ · uj′,xi

 = 0

for all possible combinations of ∆xi. Thus, for each i, the coefficient at ∆xi is equal to 0, i.e.,

fxiuj
+

m∑
j′=1

fujuj′ · uj′,xi
= 0

for all i and j, so

fxiuj
= −

m∑
j′=1

fujuj′ · uj′,xi
. (15)

Substituting the expression (15) into the formula (12), we conclude that

−(2α− 1) ·
n∑

i=1

m∑
j′=1

fujuj′ · uj′,xi
· (sxi

·∆i) +

m∑
j′=1

fujuj′ ·∆
max
j′ = 0,

i.e., that
m∑

j′=1

fujuj′ ·

(
∆umax

j′ − (2α− 1) ·
n∑

i=1

uj′,xi
· (sxi

·∆i)

)
= 0.

This equality is achieved when

∆umax
j′ = (2α− 1) ·

n∑
i=1

uj′,xi
· (sxi

·∆i) (16)

for all j′. So, the interval-case optimal values

umax
j = ũj + ∆umax

j

can be described as

umax
j = ũj + (2α− 1) ·

n∑
i=1

uj,xi
· (sxi

·∆i). (17)

In general, as we have mentioned earlier (formula (13)), we have

uoptj (x̃1 + ∆x1, · · · , x̃n + ∆xn) = ũj +

n∑
i=1

uj,xi ·∆xi. (18)

By comparing the formulas (17) and (18), we can see that umax
j is equal to uoptj (s) when we take

sj = x̃j + (2α− 1) · sxi
·∆i,

i.e., that
umax
j = uoptj (x̃1 + (2α− 1) · sx1 ·∆1, · · · , x̃n + (2α− 1) · sxn ·∆n). (19)

Here, sxi
is the sign of the derivative fxi

. We have two options:

• If fxi
> 0, i.e., if the objective function increases with xi, then sxi

= 1, and the expression

si
def
= x̃i + (2α− 1) · sxi ·∆i

in the formula (19) takes the form

si =
xi + xi

2
+ (2α− 1) · xi − xi

2
= α · xi + (1− α) · xi. (20)
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• If fxi
< 0, i.e., if the objective function decreases with xi, then sxi

= −1, and the expression

si = x̃i + (2α− 1) · sxi
·∆i

in the formula (19) takes the form

si =
xi + xi

2
− (2α− 1) · xi − xi

2
= α · xi + (1− α) · xi. (21)

So, we arrive at the following recommendation.

6 Solution to the Problem

Formulation of the problem: reminder. We assume that we know the objective function f(x, u) that
characterizes our gain in a situation when the actual values of the parameters are x = (x1, · · · , xn) and we
select an alternative u = (u1, · · · , um).

We also assume that for every state x, we know the exact-case optimal decision uopt(x) for which the
objective function attains its largest possible value.

In a practical situation in which we only know that each value xi is contained in an interval [xi, xi], we need
to find the alternative umax = (umax

1 , · · · , umax
m ) that maximizes the Hurwicz combination of the best-case and

worst-case values of the objective function.

Description of the solution. The solution to our problem is to use the exact-case optimal solution uopt(s)
corresponding to an appropriate state s = (s1, · · · , sn).

Here, for the variables xi for which the objective function is an increasing function of xi, we should select

si = α · xi + (1− α) · xi, (22)

where α is the optimism-pessimism parameter that characterizes the decision maker.

For the variables xi for which the objective function is a decreasing function of xi, we should select

si = α · xi + (1− α) · xi. (23)

Comment. Thus, the usual selection of the midpoint s is only interval-case optimal for decision makers for
which α = 0.5; in all other cases, this selection is not interval-case optimal.

Discussion. Intuitively, the above solution is in good accordance with the Hurwicz criterion:

• when the objective function increases with xi, the best possible situation corresponds to xi, and the worst
possible situation corresponds to xi; thus, the Hurwicz combination corresponds to the formula (22);

• when the objective function decreases with x, the best possible situation corresponds to xi, and the worst
possible situation corresponds to xi; thus, the Hurwicz combination corresponds to the formula (23).

This intuitive understanding is, however, not a proof – Hurwicz formula combines utilities, not parameter
values.
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