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Abstract

One of the main objectives of geophysical seismic analysis is to determine the Earth’s structure. Usually,
to determine this structure, geophysicists supplement the measurement results with additional geophysical
assumptions. An important question is: when is it possible to reconstruct the Earth’s structure uniquely
based on the measurement results only, without the need to use any additional assumptions? In this
paper, we show that for this, one needs to use large-N arrays – 2-D arrays of seismic sensors. To actually
perform this reconstruction, we need to use differences between measurements by neighboring sensor and
we need to apply wavelet analysis to the corresponding seismic signals.
c©2018 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

The main objective of geophysical seismic analysis is to determine the mechanical properties of the Earth
based on the observed seismic waves – waves generated both by actual earthquakes and by test explosions;
see, e.g., [1].

Usually, in addition to data, we use a large number of additional assumptions [1]. A fundamental question
is: when can we reconstruct the mechanical structure directly from data, without the need to involve additional
geophysical assumptions?

2 Wave Propagation is Isotropic Solids: Reminder

Seismic waves propagate in the solid matter; most of the Earth materials can be safely assumed to be isotropic.
Thus, the propagation of seismic waves can be described by the equations of wave propagation in isotropic
solids.

In general, a wave in a solid body is described by the displacement ui of each particle in comparison to
this particle’s original position. The change of displacement with time is described by the Newton’s second
law, which, in this case, takes the form

ρ · üi = σji,j , (1)

where:

• ȧ means time derivative ȧ
def
=

∂a

∂t
,

• a,j means derivative over the j-th spatial coordinate a,j
def
=

∂a

∂xj
,

• σij is the Cauchy’s stress tensor (describing force per unit area), and
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• repeating index means summation, so that, e.g., σji,j
def
=
∑3
j=1 σji,j .

When we simply shift or rotate the solid body as a whole, no stress appears. Stress is caused by changes
that go beyond shifts and rotations. Such changes are described by the strain tensor

εij
def
=

1

2
· (ui,j + uj,i). (2)

In general – with the exception of large displacements – we can safely assume that the dependence of the
stress on strain is linear. This assumption constitutes a well-known Hooke’s law:

σij = Cijkl · εkl. (3)

The set of the corresponding coefficients Cijkl are known as the stiffness tensor.
In the isotopic case, the stiffness tensor takes the form

Cijkl = K · δij · δkl + µ ·
(
δik · δjl + δil · δjk −

2

3
· δij · δkl

)
, (4)

where δ11 = δ22 = δ33 = 1 and δij = 0 for i 6= j.
The coefficient K is known as the bulk modulus, and µ is known as the shear modulus. Substituting the

formula (4) into the expression (3), we conclude that

σij = λ · δij · εkk + 2µ · εij , (5)

where

λ
def
= K − 2

3
· µ

is known as Lamé’s first parameter. Due to (2), we have

σij = λ · δij · uk,k + µ · (ui,j + uj,i). (6)

Substituting the expression (6) for εij into the formula (1), we get the final equation:

ρ · üi = λ,i · uk,k + λ · uk,ki + µ,j · (ui,j + uj,i) + µ · (µi,jj + uj,ij). (7)

Comment. Instead of λ and µ, practitioners often use Young’s modulus

E
def
=

µ · (2λ+ 2µ)

λ+ µ
(8)

and Poisson ratio

ν
def
=

λ

2(λ+ µ)
. (9)

Vice versa, if we know the Young’s modulus K and the Poisson’s ratio ν, we can determine λ and µ by using
the following formulas:

λ =
E · ν

(1 + ν) · (1− 2ν)
, µ =

E

2 + 2ν
. (10)

3 Analysis of the Problem and the Resulting Recommendation

What are the unknowns. The equation (7) involves three quantities: the density ρ and the Lamé’s
parameters λ and µ. In general, the values of each of these three parameters ρ, λ, and µ change from one
spatial location to another. Thus, to fully determine the mechanical properties of the Earth, we need to find
three functions of three spatial variables: ρ(x, y, z), λ(x, y, z), and µ(x, y, z). These three functions are the
unknowns.
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Comment. In geophysics, it is often assumed that the density ρ can be described in terms of the P-wave
velocity VP as ρ = α · V βp , where β = 0.25. The velocity VP can be described in terms of λ and µ as

VP =

√
λ+ 2µ

ρ
. (11)

This relation was first discovered by G. H. F. Gardner and L. W. Gardner in [5] and is thus known as the
Gardner’s relation.

Due to this relation, we conclude that

ρ = α ·
(
λ+ 2µ

ρ

)1/8

, (12)

hence ρ9/8 = α · (λ+ 2µ)1/8 and

ρ = α8/9 · (λ+ 2µ)1/9. (13)

Thus, if we assume Gardner’s relation, the density ρ can be described in terms of λ and µ, so we get only two
unknown functions of three variables.

In general, when can we uniquely reconstruct all the unknowns from measurements? Each
measurement result is a relation between the unknown quantities. Thus, after n measurements, we have n
equations to reconstruct all the unknown quantities.

It is is known that to be able to uniquely determine all the unknowns, we need to have at least as many
equations as there are unknowns – otherwise, the corresponding system of equations will be under-determined.

Let us apply this general idea to our case.

How many measurements do we need to uniquely determine all the desired mechanical char-
acteristics. If we assume that each spatial variable has N possible values, then we have N3 possible com-
binations of three spatial variables. Thus, to uniquely reconstruct a function of three variables, we need to
determine N3 values. To uniquely reconstruct two or three functions of three variables, we thus need to have
k ·N3 values, where k is either 2 or 3.

So, to uniquely reconstruct two or three functions of three variables, we thus need to have at least k ·N3

measurements.
For an area of 100 km size, we would like to have information with the accuracy of at least 1 km – and

ideally, even better. Thus, we have N ≈ 100.

What information do we have to determine these unknowns and why this is usually not enough.
If we have a single sensor, then we measure the displacement ui (or strain εij) at the location of this sensor
at different moments of time. As a result, we get a function of one variable – time. By knowing the value of
this function at all N moments of time, we thus get N measurement results.

After we observe several (s) seismic events, we get several functions of one variable, so we get s · N
measurement results. It is easy to see that even when we have observed dozens of earthquakes, we still have
s ·N � k ·N3. Thus, having a single sensor is not enough to uniquely reconstruct the mechanical structure
of the Earth – we need additional geophysical assumptions.

In seismic experiments, when we set an artificial explosion and measure the seismic waves generated by
this explosion, we usually set up a large number of sensors along a line. These sensors come closely after one
another, so, in effect, what we have after the measurements is a function of two variables:

• one variable is the time, and

• another variable is the distance along this line.

As a result, after each measurement, we get N2 values. This is much larger than s ·N , but still much smaller
than the desired number k ·N3. Thus, with the traditional seismic experiments, we are still unable to uniquely
determine the Earth’s structure.

Need to large-N arrays. To uniquely determine the Earth’s structure, we need the measurement results
to form a function of three variables. Since each sensor provided a function of two variables, we thus need
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to have sensors forming a 2-D structure. In other words, we need sensors forming not a 1-D array but a 2-D
array.

Such an arrangement has indeed been recently actively used under the name of the large-N array; see,
e.g., [4, 6] and references therein. Thus, large-N arrays are indeed needed to uniquely reconstruct the Earth’s
structure.

Are large-N arrays sufficient? We have shown that without the large-N arrays, we cannot uniquely
determine the Earth’s structure, so large-N arrays are necessary. But are they sufficient?

To find three unknowns, we need at least 3 equations, but, of course, not all systems of 3 equations have
a unique solution. Similarly here, the fact that we have at least as many equations as unknowns does not
necessarily mean that we can uniquely determine all the unknowns.

We are optimistic, however, since, as many papers – including our own – have shown, a lot of things can
be determined based on the large-N array measurements [2, 4, 6].

How can we actually reconstruct the Earth’s structure? In the corresponding partial differential
equation (7), we use derivatives – which assume that we known the values of the corresponding functions
for all possible values of t, x, y, and z. In practice, we only have a discrete set of sensors, so we know the
values of the displacements ui only at finitely many spatial locations. Similarly, we only know the values ui
corresponding to several discrete moments of time.

So, to solve the corresponding partial differential equation, we need to approximate the corresponding
derivatives based on the available discrete data.

With respect to spatial derivatives – we have few points, so the best we can do is to use numerical
differentiation

u′ ≈ u(x+ ∆x)− u(x)

∆x

as a reasonable approximation for the corresponding spatial derivative u′. In other words, we need to consider
differences u(x + ∆x) − u(x) between the signals measured by the neighboring sensors. This is exactly
what we did in our paper [2] to detect the location of the fault based on the corresponding large-N seismic
measurements.

With respect to time derivatives, we have much more points, and these points are much closer related. As
a result, the difference u(t+ ∆t)− u(t) between the displacements at two neighboring moments of time t and
t+∆t is so small that it is usually much smaller than the noise. As a result, if we use numerical differentiation
and simply take the differences between the values measured at neighboring moments of time, we get noise
instead of meaningful data. To get meaningful data, we need to filter a signal. For this filtering, we need
to represent the signal in the vicinity of given point. The functions used for such local representation are
known as wavelets, so what we need to get a reasonable approximation to time derivatives is to use wavelet
analysis. It is worth mentioning that wavelet techniques has indeed been used successfully in seismic analysis;
see, e.g., [3].

Conclsion. To uniquely recoinstruct Earth’s structure from seismic information, we need to use large-N
arrays, and we need to use differences between signals measured by neighboring sensors and to use wavelet
techniques to process the signals measured by different sensors.
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