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Abstract

In this paper, we provide a theoretical explanation for many aspects of interval and fuzzy uncertainty:
Why boxes for multi-D uncertainty? What if we only know Hurwicz’s optimism-pessimism parameter with
interval uncertainty? Why swarms of agents are better than clouds? Which confidence set is the most
robust? Why µp in fuzzy clustering? How do degrees of confidence change with time? What is a natural
interpretation of Pythagorean and fuzzy degrees of confidence?
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1 Formulation of the Problem

Uncertainty is ubiquitous. When we process data, this data comes either from measurement, or from
expert estimates. Measurements are never 100% accurate, so there is always a difference ∆x = x̃−x between
the measurement result x̃ and the actual (unknown) value x of the measured quantity; see, e.g., [17].

Simplest case: interval uncertainty. For measuring instruments, manufacturers usually provide an upper
bound ∆ on the absolute value of the measurement error ∆x: |∆x| ≤ ∆. If this is the only information that
we have about the measurement uncertainty, then, based on the measurement result x̃, the only conclusion
that we can make about the actual (unknown) value x of the measured quantity is that x belongs to the

interval [x, x]
def
= [x̃−∆, x̃+ ∆]. Because of this fact, such uncertainty is known as interval uncertainty; see,

e.g., [7, 11, 13].

Probabilistic and fuzzy uncertainty. In addition to the upper bound on the measurement error ∆x, we
often also have additional information about different possible values of ∆x.

• Sometimes, we know the frequencies (probabilities) of different values ∆x; this is the case of probabilistic
uncertainty.

• Sometimes, we do not know the actual frequencies, but we have the expert’s estimates of how possible
it is to have different values. This case is known as fuzzy uncertainty; see, e.g., [1, 8, 12, 15, 16, 20].

What we do in this paper. In this paper, we deal with foundational aspects of interval, probabilistic, and
fuzzy uncertainty.
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What are the foundational problems of interval, probabilistic, and fuzzy uncertainty? The
ultimate goal of all data processing, of all the attempts to understand better how the world functions, is to
make the world a better place. Based on the results of analyzing the data, we make an appropriate decision
– to select an engineering design, to better control a vehicle, to make a more productive financial investment.
From this viewpoint, it is important not just to process uncertain data, but also to make decisions under the
corresponding uncertainty.

If we know the exact consequences of each action, then we can estimate the utility u(a) of each alternative,
and thus, we can select the alternative with the largest value of this utility; see, e.g., [4, 5, 10, 14, 18]. In case of
uncertainty, we know, at best, an interval [u(a), u(a)] of possible values of utility. How can we make decisions
in this situations? In such case, decision theory recommends to maximize the value α · u(a) + (1− α) · u(a),
where α ∈ (0, 1) reflects the degree of the decision maker’s optimism or pessimism; see, e.g., [6, 9, 10].

To use this idea, we must know the exact value of α. However, in situations of interval uncertainty, we can
only expect to know α also with interval uncertainty. How can we then make a decision? This is the problem
that we consider in Section 2.

Interval uncertainty means that for each quantity, we have an interval of possible values. For data process-
ing, we are interested not only in possible values of each quantity xi, but also in possible values of the whole
tuple x = (x1, · · · , xn). What n-dimensional sets should we consider? In interval computations, practitioners
usually consider boxes [x1, x1]× · · · × [xn, xn], since boxes often lead to efficient results. But why? This is a
problem that we consider in Section 3.

In Sections 4 and 5, we consider situations when, in addition to intervals, we have information about
frequencies – i.e., the case of probabilistic uncertainty. In Section 4, we consider the problem of decision
making under probabilistic uncertainty. Specifically, our analysis of decision making under probabilistic
uncertainty explains why the swarm of agents performs better than the cloud of agents. In Section 5, we
analyze how to translate probabilistic uncertainty – which often comes, as with normal distributions, without
explicit bounds – into such bounds, i.e., into interval and set uncertainty. The corresponding sets are known
as confidence sets. In this chapter, we analyze how to select confidence sets so that they will be the most
robust, i.e., the least dependent on the corresponding uncertainty.

Finally, in Sections 6–8, we consider the case of fuzzy uncertainty. Many fuzzy techniques have been
thoroughly analyzed, and most of them have a solid theoretical foundations, but some things still remain
heuristic. One of the main such things is the empirical success of functions µp in fuzzy clustering. In Section
6, we describe a theoretical foundation for this empirical success.

In the traditional fuzzy logic, we describe the expert’s degree of confidence in each statement by a single
number – a number that does not change with time. Of course, in real life, people are reluctant to describe
their fuzzy ideas in terms of precise numbers. A more adequate description involves using an interval of
possible values such degrees; this is analyzed in Section 6. And, of course, people’s opinions change; this is
analyzed in Section 7.

2 What if We Only Know Hurwicz’s Optimism-Pessimism Param-
eter with Interval Uncertainty?

Formulation of the problem. In many practical situations, we do not know the exact consequences of each
possible action. As a result, instead of a single utility value u, we can characterize each possible action by the
interval [u, u] of possible utility values. In such situations, decision theory recommends to select an alternative
for which the following combination is the largest: α ·u+ (1−α) ·u = u+α · (u−u), where the parameter α –
known as Hurwicz’s optimism-pessimism parameter – may be different for different people. The value α = 1
corresponds to absolute optimists, the value α = 0 describes a complete pessimist, and values between 0 and
1 describe reasonable decision makers.

The parameter α needs to be determined based on a person’s preferences and decisions. Often, however, in
different situations, the decisions of the same person correspond to somewhat different values α. As a result,
instead of a single value α, we have the whole range [α, α] of possible values. In this case, how should we
make decisions?

Our solution. For each α ∈ [α, α], the interval [u, u] is equivalent to u + α · (u − u). This expression
is monotonic in α, so in general, the original interval [u, u] is equivalent to the following range of possible
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values [u1, u1] = [u + α · (u − u), u + α · (u − u)]. Similarly, the new interval is equivalent to [u2, u2] =
[u1 + α · (u1 − u1), u1 + α · (u1 − u1)], etc. At each step, the width of the original intervals decreases by the
factor α− α; thus, uk − uk = (α− α)k · (u− u). In the limit, the intervals [uk, uk] tend to a single point

u = u+ α · (u− u) + α · (u− u) · (α− α) + α · (u− u) · (α− α)2 + · · ·

The corresponding geometric progression adds to u+ α · (u− u) for α = α/(1− (α− α)). This is the desired
equivalent value of α for the case when we know α with interval uncertainty – and this is how we should make
decisions in this case.

3 Why Boxes for Multi-D Uncertainty?

Formulation of the problem. In practice, we often do not have a complete information about the values
of several quantities x1, . . . , xn: several possible tuples x = (x1, · · · , xn) are consistent with our knowledge.
How can we describe the set of possible values of x? In many practical applications, approximating this set
by a box [x1, x1]× · · · × [xn, xn] leads to reasonable estimates. Why boxes? Why not other families of sets?

What are reasonable properties of the corresponding family F of approximating sets? Usually,
we know some bounds on all xi, so each set S should be bounded.

It is reasonable to require that each set S ∈ F is closed: indeed, if a = lim an for an ∈ S, then for any
measurement accuracy, a is indistinguishable from some possible an ∈ S and thus, we will never be able to
tell that a is not possible.

Similarly, the family F should be closed.
Also, often, the observed tuple consists of two independent components xi = yi + zi; so, if the set Y of

all y’s and the set Z of all z’s are possible, then the Minkowski sum Y + Z
def
= {y + z : y ∈ Y, z ∈ Z} is also

possible. So, F should be closed under Minkowski sum.
Finally, the numerical values of each quantity xi change if we change the starting point and/or measuring

unit: xi → ai + bi · xi. These changes do not change what is possible and what is not, so the family F should
be closed under these transformations.

Our result: Every family F that satisfies these properties contains all the boxes.

Discussion. Thus, the boxes form the simplest possible approximating family.

Idea of the proof. For each set S, we can take S1 = S, Sk+1 = 0.5 · (Sk + Sk), etc. In the limit, we get a
convex hull of S.

By appropriate re-scaling xi → bi ·xi, we can shrink this set S in all directions except one i0. In the limit,
we get an interval parallel to the i0-th axis. By shifting and re-scaling, we get all possible intervals parallel
to this axis.

For n intervals [xi, xi] each of which is parallel to the i-th axis and has all other coordinates 0s, their
Minkowski sum is the box [x1, x1] × . . . × [xn, xn]. Thus, each family F satisfying the above properties
contains all the boxes. (Also, it is easy to prove that the class of all boxes satisfies these properties.)

4 Why Swarms of Agents are Better than Clouds?

Formulation of the problem. Expert estimates are often very crude and approximate. It is known,
however, that if we ask several independent experts to estimate a quantity, and then average the resulting
estimates, we often get a reasonably accurate estimate. This is the main idea behind crowd intelligence.

It was recently discovered that if we first divide the experts into small groups (“swarms”), let each group
combine their estimates into a single value, and only average the group results, we get a much more accurate
estimate of the quantity of interest; see, e.g., [19]. But why does this more complicated swarm intelligence
lead to better results than the crowd intelligence?

Our explanation. Let x1, . . . , xn be estimates of different experts, and let ρ(x) denote the probability
density function that describes the probabilities of different values of the expert’s approximation error. Then,

ideally, we should select an estimate a with the largest possible likelihood L
def
=

n∏
i=1

ρ(xi − a).
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It is known that when ρ(x) is a normal distribution, maximum likelihood estimate is indeed the arithmetic
average a = (

∑n
i=1 xi)/n. However, for other distributions, the maximum likelihood estimate is different from

the arithmetic average – which explains why the crowd intelligence results are not perfect.
When we allow agents from each swarm s to come to an agreement between themselves, it is reasonable

to assume that within each swarm, the agents will come up with a maximum likelihood (ML) estimate a(s)
for which the value

∏
i∈s

ρ(xi − a(s)) is the largest. It is known that when the number of combined estimates

is reasonably large, the ML estimates a(s) are approximately normally distributed. Thus, to combine values
corresponding to different swarms, we can use the method which is optimal for normal distributions – i.e.,
taking the arithmetic average.

So, the estimate provided by swarm intelligence is asymptotically equal to the maximum likelihood one
and is, thus, (asymptotically) optimal.

5 Which Confidence Set is the Most Robust?

Formulation of the problem. Once we have a probability distribution, then for each confidence level α,
we can form a confidence set S, i.e., a set S for which P (S) = α. There are many such sets, which one should
we choose?

It is reasonable to select S to be connected. For each connected confidence set, we can define the degree
of robustness by finding out how much the probability changes if we change the set slightly around some
point x on the border ∂S of the set S. If we add or subtract a small piece of volume ∆V , then the change in

probability ∆P can be found from the definition of the probability density function (pdf) ρ(x)
def
= lim

∆V→0

∆P
∆V ,

as ∆P = ρ(x) ·∆V + o(∆V ). Thus, for fixed (and small) ∆V , this change is proportional to ρ(x).
The value of ρ(x) is, in general, different for different points x ∈ ∂S. As a measure of robustness of the

given set S, it is reasonable to select the worst-case value r(S)
def
= max

x∈∂S
ρ(x). How can we select the confidence

set with the smallest possible value of r(S)?

Solution. We show that the smallest possible value is attained when ρ(x) is constant on ∂S. This means
that for usual distributions like Gaussian, the corresponding confidence set is S = {x : ρ(x) ≥ ρ0} for some
ρ0.

Discussion. For Gaussian distributions, such an ellipsoid is indeed usually selected as a confidence set.

Idea of the proof. If the function ρ(x) is not constant, then we can expand S slightly in the vicinity of
points x0 for which ρ(x0) ≈ max

x
ρ(x) – thus making the border value of ρ(x) smaller, and at the same time

shrink S slightly near all other points x ∈ ∂S, to compensate for the increase in P (S) caused by expanding.
After this shrinking, the border values of ρ(x) at the corresponding points x will increase – but if we shrink
a little bit, these values will still be smaller than max

x
ρ(x). This way, we will get a new confidence set for

which max
x

ρ(x) is slightly smaller.

Thus, for the set S at which r(S) is the smallest, the values of pdf cannot be non-constant on the border.
So, for the optimal (most robust) confidence set, we indeed have ρ(x) = const for all x ∈ ∂S.

6 Why µp in Fuzzy Clustering?

Formulation of the problem. One of the main algorithms for clustering n given d-dimensional points selects
K “typical” values ck and assignments k(i) for each i from 1 to n so as to minimize the sum

∑
i

(xi − ck(i))
2.

This minimization is usually done iteratively.

• First, we pick ck and assign each point xi to the cluster k whose representative ck is the closest to xi.

• Then, we freeze k(i) and select new typical representatives ck by minimizing the objective function.
This leads to ck being an average of all the points xi assigned to the k-th cluster.

• Then, the procedure repeats again and again – until the process converges.
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In practice, for some objects, we cannot definitely assign them to a single cluster. In such cases, it is
reasonable to assign, to each object i, degrees µik of belongs to different clusters k, so that

∑
k

µik = 1. In this

case, it seems reasonable to take each term (xi−ck)2 with the weight µik, i.e., to find the values µik and ck by
minimizing the expression

∑
i,k

µik · (xi − ck)2. However, this expression is linear in µik, and the minimum of a

linear function under linear constraints is always at a vertex, i.e., when one value µik is 1 and the rest are 0s.
To come up with truly fuzzy clustering, with 0 < µik < 1, we need to replace the factor µik with a non-linear
expression f(µik), i.e., to minimize

∑
i,k

f(µik) · (xi− ck)2. In practice, the functions f(µ) = µp works the best;

see, e.g., [2]. Why?

Our explanation. The weights µik are normalized so that their sum is 1. So, if we delete some clusters
or add more clusters, we need to re-normalize these values. A usual way to do it is to multiply them by a
normalization constant c. It is therefore reasonable to require that the relative quality of different clustering
ideas not change is we simply re-scale. This implies, e.g., that if f(µ1) · v1 = f(µ2) · v2, then after re-scaling
µi → c · µi, we should have f(c · µ1) · v1 = f(c · µ2) · v2. We show that this condition implies that f(µ) = µp.

Indeed,
f(c · µ2)

f(c · µ1)
=
v1

v2
=
f(µ2)

f(µ1)
,

thus

r
def
=

f(c · µ1)

f(µ1)
=
f(c · µ2)

f(µ2)

for all µ1 and µ2. Thus, the ratio r does not depend on µ: r = r(c), and f(c · µ) = r(c) · f(µ). It is known
that the only continuous solutions of this functional equations are f(µ) = C · µp.

Why? We can rather easily solve the equation f(c · µ) = r(c) · f(µ) when f(µ) is differentiable. Indeed,
since f(µ) is differentiable, the ratio r(c) = f(c · µ)/f(µ) is also differentiable. If we differentiate both sides of

the equation with respect to c, we get µ·f ′(c·µ) = r′(c)·f(µ). For c = 1, we get µ· df
dµ

= p·f , where p
def
= r′(1).

If we move all the terms containing f to one side and all others to another, we get
df

f
= p · dµ

µ
. Integrating,

we get ln(f) = p · ln(µ) + c1. If we apply exp to both sides, we get f(µ) = C · µp, where C = exp(c1).
Minimization is not affected if we divide the objective function by C and get f(µ) = µp.

7 How do Degrees of Confidence Change with Time?

Formulation of the problem. Situations change. As a result, our degrees of confidence in statements
based on past experience decrease with time. How can we describe this decrease? If our original degree of
confidence was a, what will be our degree of confidence dt(a) after time t?

It is clear that dt(a) should be increasing in a and decreasing in t, but there are many such functions.

Our idea. Let f&(a, b) be an “and”-operation, i.e., a function that transforms degrees of confidence a and b
in statements A and B into an estimate for our degree of confidence in A&B. There are two ways to estimate
our degree of confidence in A&B after time t:

• we can apply the function dt to both a and b, and then combine them into f&(dt(a), dt(b)),

• or we can apply dt directly to f&(a, b), resulting in dt(f&(a, b)).

It is reasonable to require that these two expressions coincide: f&(dt(a), dt(b)) = dt(f&(a, b)).

Simplest case. If f&(a, b) = a · b, then the above equality becomes dt(a · b) = dt(a) · dt(b). It is known that
all monotonic solutions to this equation have the form dt(a) = ap(t) for some p(t).

The dependence on t can be found if we take into account that the decrease during time t = t1 + t2 can
also be computed in two ways:

• directly, as ap(t1+t2),
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• or by first considering decrease during t1 (a → a′ = ap(t1)), and then a decrease during time t2:

a′ → (a′)p(t2) =
(
ap(t1)

)p(t2)
= ap(t1)·p(t2).

It is reasonable to require that these two expressions coincide, i.e., that p(t1 + t2) = p(t1) · p(t2). The only
monotonic solutions to this equation are p(t) = exp(α · t), so we get dt(p) = aexp(α·t).

Comment. It is worth mentioning that for small t, we get dt(p) ≈ a + α · t · a · ln(a) and is thus related to
entropy −

∑
ai · ln(ai).

General case. It is known that every “and”-operation can be approximated, with any accuracy, by a
Archimedean one, i.e., by an operation of the type f&(a.b) = g−1(g(a) · g(b)). Thus, for re-scaled values
a′ = g(a), we have f&(a′, b′) = a′ · b′, hence dt(a

′) = (a′)exp(α·t) and, in the original scale,

dt(a) = g−1
(

(g(a))exp(α·t)
)
.

8 Towards a Natural Interval Interpretation of Pythagorean and
Complex Degrees of Confidence

Formulation of the problem. Often, we only know the expert’s degrees of confidence a, b ∈ [0, 1] in
statements A and B, and we need to estimate the expert’s degree of confidence in A&B. The algorithm
f&(a, b) providing the corresponding estimate is known as an “and”-operation, or a t-norm. One of the most
frequently used “and”-operation is min(a, b). Similarly, one of the most frequently used “or”-operation is
max(a, b).

Often, it is difficult for an expert to describe his/her degree of certainty by a single number a, an expert is
more comfortable describing it by range (interval) [a, a] of possible values. (An alternative way of describing
this is as an intuitionistic fuzzy degree, i.e., a pair of values a and 1 − a.) If we know intervals [a, a] and
[b, b] corresponding to a and b, then the range of possible degree of confidence in A&B is formed by values
min(a, b) corresponding to all a ∈ [a, a] and b ∈ [b, b]. Since min(a, b) is monotonic, this range has the form
[min(a, b),min(a, b)]. Similarly, the range for A ∨B is [max(a, b),max(a, b)].

A recent paper [3] describes extensions [absmin(a, b), absmin(a, b)] and [absmax(a, b), absmax(a, b)] of the
above definitions from a, b ∈ [0, 1] to a, b ∈ [−1, 1], where:

• absmin(a, b) is a if |a| < |b|, b is |a| > |b|, and −|a| if |a| = |b| and a 6= b,

• absmax(a, b) is a if |a| > |b|, b if |a| < |b|, and |a| if |a| = |b| and a 6= b.

These operations have nice properties, but what is their meaning?

Our explanation. In addition to closed intervals, let us consider open and semi-open ones. An open end will
be then denoted by the negative number: e.g., (0.3, 0.5] is denoted as [−0.3, 0.5], and (0.3, 0.5) as [−0.3,−0.5].

By considering all possible cases, one can show that for two intervals A = [a, a] and B = [b, b], the range
of possible values {min(a, b) : a ∈ A, b ∈ B} is indeed [abs min(a, b), abs min(a, b)]. Similarly, the range of
possible values of max(a, b) forms the interval [abs max(a, b), abs max(a, b)].

Thus, we get a natural interval explanation of the extended operations.
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