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Abstract

This paper studies an ambiguous expected model with chance constraints, which assumes limited
information about the distributions of uncertainties. The uncertainties are characterized by a given family
of distributions. This setting leads to ambiguous expected objective function and chance constraints
are typically computationally intractable. We propose a new safe tractable approximations of chance
constraints, and employ refinement robust counterpart under the intersection of three perturbation sets
(i.e., Box-Ball-Budget and Box-Ellipsoid-Budget). Such refinement can better reflect the randomness of
the data than traditional intersection of two perturbations. Finally, we apply the proposed method in a
real case of transportation problem to illustrate the effectiveness of our model.
c⃝2018 World Academic Press, UK. All rights reserved.
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1 Introduction

The real-life optimal problems in the physical, engineering or economic systems always contain uncertain
data. The reasons for data uncertainty include many aspects: imprecise data caused by the physical factors,
or environmental conditions; experiment errors come from the physical impossibility to exactly implement a
computed solution; measurement errors that come from the lack of knowledge of the parameters; system errors
come from different environmental conditions. Some uncertain data’s distribution rules can be relatively easily
summarized from history data, but some are impossible to identify. How to deal with these uncertainties is
one of the most important issues for managers and designers. There are two major optimization approaches
to deal with the data uncertainties: stochastic optimization and robust optimization.

Stochastic optimization requires the exact probability distributions of the model uncertainties. In this
way, stochastic optimization method can solve the uncertainty of the data and practical problems in life. The
class of stochastic optimization problems with chance constraints can date back to Charns and Cooper [11].
Birge and Louveaux [10] introduced the methods to obtain analytic solutions to this class of problems. In this
respect, many scholars have studied different aspects. Shapiro and Kleywegt [21] pointed out the stochastic
programs by mini-max analysis, we get that the solution is conservation for the traditional. Next, Shaoiro
and Nemirovski [22] employed the complexity of stochastic. When people use stochastic optimization to
solve problem, the probability distribution is partially known. That is we don’t know the exact distribution
of perturbation vector and it can not guarantee chance contrains are computationally tractable. Dyer and
Stougie [15] considered the computational complexity of stochastic programming problems. Ma and Liu [20]
considered a stochastic chance constrained closed-loop supply chain network design model which objective is
VaR, they made the stochastic parameters with known joint distributions.

In robust optimization, the uncertainties of the data can be reflected. The key of robust optimization is
to establish the corresponding robust counterpart model to obtain the optimal solution, which can preserve
computational tractability. In 1973, Soyster [23] aimed at original liner programming problem, and had a
new idea that the resulting solution would be feasible for all possible realization of the uncertain model.
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Ben-Tal and Nemirovski [5, 6] studied the robust optimization within deterministic uncertainty sets. In 2004,
Ben-Tal et al. [4] introduced adjustable robust counterpart with an linear problem and applied it to a multi-
stage inventory management problem. Subsequently, Chen and Zhang [13] employed the extended affinely
adjustable robust counterpart by an affine reparameterization means. Bertsimas and Goyal [8] proposed
adjustable robust versions of convex optimization problems with uncertain constrains, and use it to revenue
management, semi-definite optimization. Yang and Yang [26] proposed the robust optimization for the single
allocation p-hub median problem under discount factor uncertainty, for the parameters, they employed robust
counterpart to approach the constraint. For a detailed overview of the RO framework, the readers can refer
to the literature [2, 3, 18].

Compared with the traditional stochastic optimization and robust optimization, distributionally robust
optimization is more suitable to deal with the problem with partially characterized uncertainties. Delage
and Ye [14] described uncertainty in both the distribution form (discrete, Gaussian, exponential, etc.) and
moments (mean and covariance matrix). Goh and Sim [17] presented a framework for the distributionally
robust optimization of linear programs under uncertainty, by using linear based decision rules to model the
recourse variables. Wiesemann and Kuhn [24] discussed the computationally tractability of distributionally
robust optimization problems, and presented some tractable conservative approximations for the problems.
Popecu and Bertsimas [9] derived tractable reformulations of robust individual chance constraints, this way can
deal with ambiguity sets which contain all distributions with a known mean value and covariance matrix. In
addition, Arkadi [1] considered some computationally tractable approximations of chance constrained convex
programs, Li and Floudas [19] studied the solution quality of robust optimization problems and used ”Interval-
Ellipsoidal” uncertainty set induced robust counterpart model as safe approximations.

In this paper, we present an ambiguous expected model with chance constraints based on distributionally
robust optimization. Unlike the above literature, facing the computationally intractable ambiguous chance
constraints, we consider new robust counterpart with refined uncertainty sets intersected from three pertur-
bation sets(“Box-Ball-Budget” and “Box-Ellipsoid-Budget”). This refinement setting can better reflect the
randomness of data and do not rely on the distribution of information. Finally, we applied our proposed
model and method in transportation problem [7, 25] to illustrate the effectiveness of our method.

The rest of this paper is organized as follows. In Section 2, an ambiguous expected model with chance
constraints is built. Section 3 presents safe tractable approximations under Ball-Box-Budget. In Section 4,
safe tractable approximations under Box-Ellipsoid-Budget. Section 5 applies our proposed model into robust
transportation problem. The conclusions and future research are presented in the final section.

2 Ambiguous Expected Model with Chance Constraints

The classic expected model with chance constraints under stochastic environment are widely studied [11,
16, 12]. Moreover, such models require the exact information about the uncertain variables’ distributions in
advance. However, in many real cases, we make decisions under high uncertainty with only limited distribution
information. In order to deal with these cases, we extend the classic expected model into an ambiguous
expected model with chance constraints as follows,

min E(c,d)∼p[c
Tx+ d] p ∈ P

s. t. Pr(ai,bi)∼Pi
{aTi x ≤ bi} ≥ 1− εi, i = 1 . . .M, Pi ∈ P,

(1)

where E(c,d)∼p and Pr(ai,bi)∼Pi
are the expected value and probability associated with the distributions of

random perturbations, respectively. Next we will simplify the expected objective and chance constraints.

For the chance constraint, we first focus on a single uncertainty-affected linear inequality–a family

{aTi ≤ bi}[ai:bi]∈U , (2)

of linear inequalities with the date varying in the uncertainty set

U =
{
[ai; bi] = [a0i ; b

0
i ] +

L∑
l=1

ζl[a
l
i; b

l
i] : ∀ζl ∈ Z

}
. (3)
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Among them, ζl is random variables, and the vectors ai and bi have the following forms,

aTi x ≤ bi, ai = a0i +
L∑

l=1

ζla
l
i, bi = b0i +

L∑
l=1

ζlb
l
i, (4)

it is easily seen that a given x satisfies (4) if and only if x is robust feasible and the closed convex hull of
the support is Pi. To satisfy the constraint with probability at least 1− εi, where εi ∈ (0, 1). This approach
associates with the randomly perturbed constraint (4), and the chance constraint becomes:

Pr(ζ)∼Pi

{
ζ : [a0i ]

Tx+
L∑

l=1

ζl[a
l
i]
Tx > b0i +

L∑
l=1

ζl[b
l
i]
}
≤ εi, (5)

it is reasonable to use this constraint when we do know this distribution. But sometimes, we only know the
partial information on Pi, in other words, we know only that P belongs a given family P of distributions.
Thus we make it sense to the ambiguous chance constraint

∀(Pi ∈ P) : Prζ∼Pi

{
ζ : [a0i ]

Tx+
L∑

l=1

ζl[a
l
i]
Tx > b0i +

L∑
l=1

ζl[b
l
i]
}
≤ εi. (6)

In model (1), assuming the expectations of c and d are c
′ ∈ [c−, c+], and d

′ ∈ [d−, d+] respectively, we can
simplify the expected objective as follows,

minE(c,d)∼p[c
Tx+ d], p ∈ P,

it has the following equivalent form:

min t

s.t. max
c′,d′

{c
′
x+ d

′
} ≤ t.

Finally, we reformulate the general model (1) as the following form

min t

s. t. max
c′,d′

{c
′
x+ d

′
} ≤ t, c

′
∈ [c−, c+], d

′
∈ [d−, d+]

Pr(ai,bi)∼Pi

{
[a0i ]

Tx+
L∑

l=1

ζhi [a
l
i]
Tx > b0i +

L∑
l=1

ζlib
l
i

}
≤ εi, i = 1 . . .M, Pi ∈ P.

(7)

Model (1) is a typical robust chance constrained problem, which is severely computationally intractable.
In the next sections, we will replace the chance constraints with their safe convex approximations. In the
next sections, we present the robust counterparts under two intersections of three perturbation sets (such
as Ball-Box-Budget and Box-Ball-Budget), and propose the safe approximations under the corresponding
perturbation sets.

3 Safe Tractable Approximations under Ball-Box-Budget

3.1 Robust Counterpart of Uncertain Set Ball-Box-Budget

In this section, we build safe approximations of a randomly perturbed linear constraint. Now consider a
rather general case when the perturbation set Z is given by a conic representation. We can define the Z is
Box-Ball-Budget

Z = {ζ ∈ RK : Pς +Qu+ p ∈ K}, (8)

where K is closed convex pointed cone in RN with a nonempty interior, P and Q are the given matrices and
p is a given vector. When K is not a polyhedral cone, assume that this representation is strictly feasible

∃(ζ−, u−) : Pς− +Qu− + p ∈ intK. (9)
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Theorem 1. Let the perturbation set Z be given by (2), and in the case of non-polyhedral K, let also (3)
take place. Then the semi-infinite constraint can be represented by the following system of conic inequalities
in variables x ∈ Rn, y ∈ R,

pT y + [a0]Tx ≤ b0,

QT y = 0,

(PT y)l + [al]Tx = bl, l = 1, . . . , L,

y ∈ K∗.

(10)

Now, we consider the random variables ζl of chance constraint, assume that random variables ζl satisfy
the following conditions

E{ζl} = 0 & |ζl| ≤ 1, l = 1, . . . , L,&{ζl}Ll = 1 are independent. (11)

Consider a rather general case when the perturbation set Z is given as the intersection of three uncertain sets
(Ball, Box and Budget),

Box {Z = ζ ∈ Rl : ∥ζ∥∞ ≤ 1},
Ball {Z = ζ ∈ Rl : ∥ζ∥2 ≤ Ω},
Budget {Z = ζ ∈ Rl : ∥ζ∥∞ ≤ 1 ∥ζ∥1 ≤ γ},
Z1 = {ζ ∈ Rl : ∥ζ∥∞ ≤ 1 ∥ζ∥2 ≤ Ω ∥ζ∥1 ≤ γ},
P1ζ = [ζ : 0] p1 = [0 : 1] K1

∗ = {(z : t) ∈ Rl ×R t ≥ ∥z∥1},
P2ζ = [ζ : 0] p1 = [0 : 1] K2

∗ = {(z : t) ∈ Rl ×R t ≥ ∥z∥2},
P3ζ = [ζ : 0] p1 = [0 : 1] K3

∗ = {(z : t) ∈ Rl ×R t ≥ ∥z∥∞}.

Setting y1 = [z : τ1], y1 = [w : τ1], y1 = [v : τ1], based on Theorem 1, the system of conic constraints in
variables x, y1, . . . , ys are as follows

S∑
s=1

PT
s ys + [a0]Tx ≤ b0, QT

s y
s = 0, s = 1, . . . , S.

S∑
s=1

(PT
s y

s)l + [al]Tx = bl, l = 1, . . . , L.ys ∈ ks∗ , s = 1, . . . , S.

(12)

Setting y1, y2, y3 with one-dimensional τ1, τ2, τ3 and L-dimensional z, w, v, x,

τ1 + τ2 + τ3 ≤ b0 − [a]0x,

(z + w + v)l = bl − [al]Tx l = 1, . . . , L,

∥z∥1 ≤ τ1,

∥w∥Ω ≤ τ2,

∥v∥∞ ≤ τ3.

(13)

We eliminate form this system the variables τ1, τ2, τ3 for every feasible solution to the system, and get

L∑
l=1

|zl|+Ω

√√√√ L∑
l=1

w2
l + γmax

l
|vl| ≤ b0i − [a0i ]

Tx,

zl + wl + vl = bli − [ali]
Tx l = 1, . . . , L i = 1, . . . ,M.

(14)

Finally, we obtain the robust counterpart of the perturbation set Box-Ball-Budget.
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3.2 Safe Approximations of Chance Constraint under Box-Ball-Budget

The robust counterpart of the uncertain linear constraint aTx ≤ b, [a; b] = [a0; b0] +
∑L

l=1[a
l; bl] with the

uncertainty set Z = {ζ ∈ Rl : ∥ζ∥∞ ≤ 1 ∥ζ∥2 ≤ Ω ∥ζ∥1 ≤ γ} is equivalent to the system of conic quadratic
constraints

(a)
L∑

l=1

|zl|+Ω

√√√√ L∑
l=1

w2
l + γmax

l
|vl| ≤ b0i − [a0i ]

Tx,

(b) zl + wl + vl = bli − [ali]
Tx l = 1, . . . , L i = 1, . . . ,M.

(15)

In the case of (11), x is component of every feasible solution to this system satisfying the randomly
perturbed inequality with probability at least 1− exp{−Ω2/2}. In particular, with Ω ≥

√
ln(1/ε), the robust

counterpart is a tractable safe approximation of the chance constraint.

Theorem 2. Let zl, l = 1, . . . , L, be deterministic coefficients and ζl, l = 1, . . . , l, be independent random
variables with zero mean taking values in [−1, 1]. Then for every Ω ≥ 0 it holds that

Pr
{
−

L∑
l=1

zlζl ≥ Ω

√√√√ L∑
l=1

(z2l )
2
}
≤ exp{−Ω2/2}. (16)

Proof. Expanding the original form of chance constraint aTx ≤ b, we have

L∑
i=1

[[al]Tx− bl]ζl > b0 − [a0]Tx.

Based on (15.b), we get

−
L∑

l=1

zlζl −
L∑

l=1

wlζl −
L∑

l=1

vlζl > b0 − [a0]Tx.

By (15.a), we obtain

−
L∑

i=1

wlζl −
L∑

i=1

vlζl > Ω

√√√√ L∑
i=1

w2
l + γmax |vl|.

Assume that ϕ = min(Ω, γ/
√
L), ∥ζ∥2 ≤

√
L∥ζ∥∞, and we have

−
L∑

l=1

wlζl −
L∑

l=1

vlζl > ϕ

√√√√ L∑
l=1

w2
l + ϕ

√√√√ L∑
l=1

v2l .

Finally, we get the final form

−
L∑

l=1

wlζl −
L∑

l=1

vlζl > ϕ

√√√√ L∑
l=1

w2
l +

L∑
l=1

v2l .

Based on Theorem 2, we have

Pr
{
−

L∑
l=1

ζl(wl + vl) ≥ ϕ

√√√√ L∑
i=1

(wl + vl)2
}
≤ exp{ϕ2/2}. (17)
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We can obtain the safe approximations of model (7)

min t

s. t. max{c
′
x+ d

′
} ≤ t, c

′
∈ [c−, c+], d

′
∈ [d−, d+]

L∑
l=1

|zl|+Ω

√√√√ L∑
l=1

w2
l + γmax

l
|vl| ≤ b0i − [a0i ]

Tx,

zl + wl + vl = bli − [ali]
Tx, l = 1, . . . , L i = 1, . . . ,M.

(18)

Note that the model (18) is a second order cone programming, which can be solved by traditional methods.

4 Safe Tractable Approximations under Box-Ellipsoid-Budget

4.1 Robust Counterpart of Uncertain Set Box-Ellipsoid-Budget

The distributions Pl of the components ζl are such that:

P1 : ζl, L = 1, . . . , L, are independent random variables.

P2 :

∫
exp{ts}dPl(s) ≤ exp

{
max[u+

l , u
−
t ] +

1

2
σ2
l t

2
}

∀t ∈ R,

with known u−
l ≤ u+

l and σl ≥ 0. In the solving process, u+
l , u

−
l is 0. Since

Ellipsoid {Z = ζ ∈ Rl : ∥ ζ
σ
∥2 ≤ Ω},

we denote the uncertain set Box-Ellipsoid-Budget as

Z2 = {ζ ∈ Rl : ∥ζ∥∞ ≤ 1 ∥ ζ
σ
∥2 ≤ Ω ∥ ζ

σ
∥1 ≤ γ}. (19)

By the Theorem 1, referring to the sovling process in Section 3.1, we get the following form,

(a)

L∑
l=1

|zl|+Ω

√√√√ L∑
l=1

w2
l σ

2
1 + γmax

l
|vlσ1| ≤ b0i − [a0i ]

Tx

(b) zl + wl + vl = bli − [ali]
Tx l = 1, . . . , L i = 1, . . . ,M.

(20)

This is the robust counterpart under uncertain set Box-Ellipsoid-Budget.

4.2 Safe Approximations of Chance Constraint under Box-Ellipsoid-Budget

The robust counterpart of the uncertain linear constraint aTx ≤ b, [a; b] = [a0; b0] +
∑L

l=1[a
l; bl] with the

uncertainty set Z2 is equivalent to the system of conic quadratic constraints. According to Theorem 2, we
can sort it out

Z2 =
{
ζ ∈ Rl : −1 ≤ ζl ≤ 1, l ≤ L,

√√√√ l∑
l=1

ζ2l /σ
2
l ≤ Ω

L∑
l=1

| ζl
σl
| ≤ γ

}
.

Theorem 3. Let ζl, l = 1, . . . , L, be independent random variables with distributions satisfying P2, than,
for every deterministic vector ζl, l = 1, . . . , l and constant Ω ≥ 0 one has

Pr
{
−

L∑
l=1

zlζl ≥
L∑

l=1

max[u−
l zl, u

+
l zl] + Ω

√√√√ L∑
l=1

(z2l )
2
}
≤ exp{−Ω2/2}. (21)

Proof. The corresponding proof is similar to the one of Theorem 2.
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Based on the Theorem 3, we obtain the approximation model as follows,

min t

s. t. max{c
′
x+ d

′
} ≤ t, c

′
∈ [c−, c+], d

′
∈ [d−, d+],

L∑
l=1

|zl|+Ω

√√√√ L∑
l=1

w2
l σ

2
l + γmax

l
|vlσl| ≤ b0i − [a0i ]

Tx,

zl + wl + vl = bli − [ali]
Tx, l = 1, . . . , L i = 1, . . . ,M.

(22)

Model (22) is a tractable second order cone programming.

5 Robust Transportation Problem

In this section, we employ the proposed model into a real transportation problem. Transportation problem is a
traditional optimization problem solving business problem in the physical distribution of products. Basically,
the purpose is to minimize the freight of shipping goods from one location to another so that the needs of each
arrival area are met and every shipping location operates within its capacity. We consider the transportation
problem about a new kind of products, and the manager cannot forecast the demand exactly. Thus we assume
that the demand only has limited information and is characterized by a given family of distributions. At last,
we formulate the robust transportation model as follows,

min E(cij∼p)

[ m∑
i=1

n∑
j=1

cijxij

]
s. t.

n∑
j=1

xij = ai, i = 1, . . . ,m

Pr(ai,bi)∼Pi

{ m∑
i=1

xij ≥ bj

}
≥ 1− ε, j = 1, . . . , n

xij ≥ 0,

(23)

where xij is the transportation quantity between locations; cij is the unit transportation freight; ai is the
supply quantity of factory; and bj is the demand.

We analyse the transportation problem of a company whose business mainly in the north of China. It has
five factories (m = 5) located in BeiJing, TianJing, BaoDing, ShiJiaZhuang and ChengDe for processing goods,
and seven sales points (n = 7) located in TaiYuan, QinHuangDao, JiNan, YinChuan, XiAn, HuHeHaoTe and
ZhengZhou. The locations of factories and sales points are shown in Figure 1.

Figure 1: The locations of factories and sales points
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The unit freight for the products from factories to the sale points cij is derived from distance of factories
and sale points, and changes between [c̃ij(1 − 5%), c̃ij(1 + 5%)], where its reference value c̃ij is shown in
the Table 1. Table 2 presents the supply quantity of city ai. In our case, the demand of the sale points is
uncertain. Based on the population of seven cities, The uncertain demand bj are described in Table 3.

Table 1: The reference value of unit freight (c̃ij)

TaiYuan QinHuangDao JiNan YinChuan XiAn HuHeHaoTe ZhengZhou
BeiJing 1474.57 1138.93 1197.23 1842.66 1566.49 1334.12 1165.03
TianJing 2231.73 398.89 1666.57 2399.15 1927.00 2399.15 1684.40
BaoDing 510.62 651.62 2100.00 1548.00 2144.00 1950.00 916.57

ShiJiaZhuang 2000.00 898.84 1925.14 2399.99 1915.73 1871.89 1930.17
ChengDe 1074.98 332.09 961.89 2006.28 1907.31 2200.00 1800.00

Table 2: The supply quantity of city (ai)

BeiJing TianJing BaoDing ShiJiaZhuang ChengDe
Supply Quantity 110 97 114 109 125

Table 3: The demand of city (bj)

TaiYuan QinHuangDao JiNan YinChuan XiAn HuHeHaoTe ZhengZhou
b0j 75 59 89 45 80 75 60
blj 10 12 5 10 5 8 9

Demand [65,85] [47,71] [84,94] [35,55] [75,85] [63,83] [51,69]

We take robust counterpart as a safe approximation of chance constraints under perturbation set Box-Ball-
Budget. Based on the case of the model (18), we assume that when ε is known, Ω =

√
2 ln(1/ε), γ =

√
LΩ

and σ = 2. Table 4 presents the total freight in this case with different ε.

Table 4: The total freight under uncertain set Box-Ball-Budget

ε 0.01 0.02 0.04 0.05 0.06 0.08 0.1
Objective Value 694463.9 688214.8 743511.5 673321.6 668969.8 657250.3 657179.1

1 2 3 4 5 6 7 8 9 10

×10-3

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

fr
ei

gh
t

×105

(a) The fright of robust optimization

1 2 3 4 5 6 7 8 9 10

×10-3

5.67

5.68

5.69

5.7

5.71

5.72

5.73

5.74

fr
e

ig
h

t

×105

(b) The fright of stochastic optimization

Figure 2: The total freights of robust optimization and stochastic optimization
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We compare the results of our proposed robust optimization with the stochastic optimization. Assume
that ζ1, . . . , ζL are independent Gaussian random variables with partially known expectations µ, variances
σ2 and ε ∼ N (µ, σ2). The stochastic optimization results are shown in the right part of Figure 2 (part (a)).
When the variable is Gaussian perturbation, we can get the exact probability. Meanwhile, the left part of
Figure 2 (part (b)) is the robust results, the results solved by the two methods have completely opposite trend
with ε. The total freight decreases with respect to ε in robust method, while increases with ε in stochastic
method.

Table 5: The total freight under stochastic optimization

ε 0.01 0.02 0.04 0.05 0.06 0.08 0.1
Objective Value 567971.6 568666.1 569896.5 570270.9 570645.4 571180.3 573052.7

1 2 3 4 5 6 7 8 9 10 11

×10-3

0

1

2

3

4

5

6

7

8

fr
ei

gh
t

×105

Robust optimization
Stochastic programming

Figure 3: The freights under robust and stochastic models

Finally, in order to observe and contrast, we plot a bar chart about the solutions of robust and stochastic
optimizations in Figure 3. We find that the freights of robust optimization is higher than the stochastic
optimization. It is because the robust result contains ”worst-case-oriented” criterion. In addition, stochastic
optimization must rely on the distribution, this illustrates the stochastic optimization has limitation.

6 Conclusions

In this paper, we focus on the uncertainties with partially distribution information, and extend traditional
expected model with chance constraints into an ambiguous model. The uncertainties are described by a given
family of distributions. This setting gives rise to ambiguous expected objective function and ambiguous chance
constraints, which are typically computationally intractable. We analyse refined robust counterpart under
the intersection of three perturbation sets (i.e., Box-Ball-Budget and Box-Ellipsoid-Budget). Moreover, we
propose the safe tractable approximations of ambiguous chance constraints under the corresponding uncertain
perturbation set. Such refinement can better reflect the randomness of the data than traditional intersection
of two perturbations. Consequently, we apply our proposed model and method into a case of transportation
problem with five factories and seven sale points. We use our methods and theories to deal with the uncertainty
of demand, and obtain the quantity of goods delivered to the sale points.
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