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Abstract

Indeterminacy is an intrinsic characteristic of a decision making process. Sometimes there are no
samples, and historical data are not enough for estimating an appropriate probability distribution for an
indeterminate variable. In these situations, an option could be referring to an expert on the subject,
and uncertainty theory is a potentially powerful framework to manage this sort of indeterminacy. In this
theory, an undetermined input parameter is referred to as an uncertain variable and its distribution is
constructed based on the opinion of an expert. This is the case in many practical problems such as in the
smuggling networks and drug-trafficking networks. This paper considers the network interdiction problem
that aims to minimize the maximum flow through a capacitated network from a source to a sink where
the arc capacities are uncertain variables. It is proved that there exists an equivalent deterministic model
to the uncertain network interdiction problem. The proposed method is applied on a test problem, and
the results are compared with the associated deterministic counterpart.
c©2018 World Academic Press, UK. All rights reserved.
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1 Introduction

Network Interdiction Problem (NIP) is classically defined in the interdictor-evader framework as a bi-level
mixed integer programming, which is one of the hardest problems in optimization. The primary purpose of an
NIP is to minimize the evader’s maximum flow through a capacitated network by an interdictor using a set of
limited resources. This goal could be replaced by “limiting the evader’s feasible actions set” or by “increasing
the cost of associated activities”.

Historically, the initial deterministic NIP was formulated to investigate in a military context by Wollmer[17]
with the goal of removing n arcs from a network to minimize the maximum flow between the source and
the sink nodes. An extension of this problem, by adding a budget constraint, was considered to prevent
enemy’s arsenal transmission [13]. Wood solved this problem using a mathematical method by devising an
integer programming formulation of the problem, and provided a proof of NP-completeness [18]. The author
also mentioned that the model could be generalized to other possibilities such as multicommodity networks,
undirected networks, networks with multiple sources and multiple sinks.

Let us briefly review the deterministic NIP. For G = (N,A) as a directed graph, where N and A are the
sets of nodes and arcs respectively, two specific nodes are considered as the source and the sink nodes. We
denote them by s and d, correspondingly. To each arc (i, j) ∈ A the capacity uij is associated, and xij ≥ 0 is
the possible amount of flow on this arc that could not exceed the arc’s capacity. Let R denote the available
resource units of the interdictor that can be expended to potentially interdict some arcs, and rij units of
resource is required for interdicting of the arc (i, j). Corresponding to the nodes s and d, an artificial arc
(d, s) is defined with uds =∞ and rds = ∞. This assumption is valid since this artificial arc should not be
interdicted. Let yij be a binary decision variable of the interdictor that is 1 when the arc (i, j) is interdicted
and 0 otherwise. Moreover, the set of feasible decisions of the interdictor is denoted by

Y =
{
yij |

∑
(i,j)∈A

yijrij ≤ R, yij ∈ {0, 1}, ∀(i, j) ∈ A
}
.
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Respecting this notation, the deterministic NIP is in the following form [18]:

min
y∈Y

max
x

xds

subject to
∑

j:(i,j)∈A′
xij −

∑
j:(j,i)∈A′

xji = 0 ∀i ∈ N

0 ≤ xij ≤ uij(1− yij) ∀(i, j) ∈ A,

where A′ = A∪{(d, s)}. Here, the first restriction is the mass balance constraint at each node, and the second
one expresses the arc capacity constraint.

Cormican et al. extended the deterministic NIP to the stochastic case [2]. In their model, capacity of arcs
and success in their interdiction are uncertain when the interdiction successes are binary random variables.
In their work, the authors developed sequences of upper and lower bounds to the value function achieved by
the interdictor. These values are improved during the solution procedure and used to construct a sequence
of solutions approaching to the optimal attack performance value. Later on, Woodruff [19] devised a similar
model, whence the interdictor must put detecting sensors for narcotic drugs without any information on the
exact location of the source and the sink nodes. Pan [15], in his dissertation, has developed a class of stochastic
NIP models. In these models, the interdictor installs detectors on arcs subject to a budget constraint. Then,
the smuggler’s random origin-destination pair is revealed and the smuggler selects a maximum reliable path in
the residual network. The interdictor’s goal is to minimize the reliability of the smuggler’s maximum reliable
path. Morton et al. [14] studied stochastic network interdiction models for nuclear smuggling interdiction,
where the evader’s origin-destination pair is random, and the interdictor and the attacker have asymmetric
information on network parameters.

Zheng et al. [20] studied a stochastic dynamic NIP where the interdictor’s actions achieve indeterminate
effects. They developed a new solution algorithm based on a modified branch and bound framework, which
combines the idea of using sequentially improving lower bounds with the branch-and-bound search. The
resulting algorithm was faster than the algorithms proposed in [2]. The authors further considered a dynamic
two stage version of the stochastic NIP problem where the attack on the network occurs in two stages. The
outcome of the interdiction on the first stage attack could be observed by the attacker and is used to adapt
the second stage attack.

Ramirez and Rocco [16] proposed a stochastic network interdiction problem (SNIP) with capacitated
network reliability, and introduced an evolutionary optimization approach to solve SNIPs. They assumed
that the nominal capacity of each link as well as the associated cost of interdiction can change from link to
link and that such interdiction has a probability of being successful. This version of the SNIP was modeled
as a capacitated network reliability problem for the first time by these authors. Later on, Carrigy et al. [1]
considered the multi-state SNIP for the problem of maximizing the reliability associated with an interdiction
strategy. They presented an effective approach for solving SNIPs with the inclusion of multi-state stochastic
behavior of link flow in a two-terminal network.

All of these works have considered the probability theory on their modeling scheme. It is important
to restate that probability theory is only applicable for modeling frequencies based on historical data and
existence of enough trusted observations. However, such data rarely exists in practice for NIP instances, such
as the arc capacities in narcotic trafficking networks, and as a consequence, utilizing the probability theory in
these situations may lead to incorrect decision with irreversible consequences. The uncertainty theory initiated
by Liu [8] could be a well-founded powerful axiomatic counterpart in such circumstances. Liu clarified that
it is inappropriate to model belief degrees by probability theory, since it may lead to counterintuitive results
[11] (See also Page 6 in [12]).

Uncertain network problem was first proposed by Liu in order to model the project scheduling problem
with uncertain duration times [10]. Here, capacity of arcs were represented by uncertain variables and the 99-
method was considered for solving the maximum flow problem with uncertain capacities on arcs. This method
has been used for the first time by Liu [10] in calculating the uncertainty distribution of monotone function
of uncertain variables. Han et al. [4] investigated the maximum flow problem in an uncertain environment.
They also used the 99-method for producing the uncertainty distributions as well as the expected value of the
maximum flow in an uncertain network.

In this paper, we consider the NIP with uncertain capacity on some arcs, and reformulate the problem
as an uncertain network problem based on the uncertainty theory. Since our approach is independent of
the type of uncertain variable, it is assumed that the capacity of arcs are only independent linear or zigzag
uncertain variables in the sense of the uncertainty theory (See Appendix A). The proposed uncertain problem
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Table 1: The common notation

uij The capacity of arc (i, j).
s, d The source node and the sink node, respectively.

(d, s) An artificial arc with uds =∞ and rds =∞.
xij The amount of flow on the arc (i, j).
xds The maximum flow on network from s to d.
R The total resource units for the interdictor.
yij Binary interdicting decision variable.
rij Units of resource is required to interdict the arc (i, j).
A′ The set of arcs where A′ = A ∪ {(d, s)}.
B A Borel set.
αij The confidence level within (0, 1).
ξij Uncertain variable associated to the capacity of arc(i, j).
Φ The (linear or zigzag) uncertainty distribution.
M An uncertain measure on L.
L σ-Algebra over Γ where Γ be a nonempty set.

(Γ,L,M) An uncertainty space.

can be transformed into a corresponding deterministic one. The produced deterministic model is a bi-level
mixed integer program which can be converted to a single-level one. This problem is identical with the original
model in optimality. A simple test problem is considered and the results are compared with the corresponding
deterministic version.

The remainder of paper is organized as follows. Section 2 is devoted to the formulation of NIP with
uncertain arc capacities. The section continues with presenting an equivalent deterministic problem, and
finally a single-level mixed integer linear problem. The equivalence of these problems are proved in this
section. Section 4 is devoted to the existing challenges in applying the probability theory in the absence of
enough trusted samples. In Section 3, we present a numerical example to illustrate the differences of the
results in uncertain environment with the deterministic situation. The paper terminates with concluding
remarks and possible future work directions. The appendix contains some necessary preliminary concepts and
results from the uncertainty theory.

2 Problem Formulation

For easily access, the notation used in this paper are summarized in Table 1. In the graph G(N,A), let ξij
denote an uncertain variable corresponding to uij , the capacity of the arc (i, j). Considering a confidence level
αij for the constraint associated to the uncertain capacity ξij , the following optimization problem is defined
for the uncertain NIP.

min
y∈Y

max
x

xds

subject to ∑
j:(i,j)∈A′ xij −

∑
j:(j,i)∈A′ xji = 0 ∀i ∈ N (1)

M
{
xij ≤ ξij(1− yij)

}
≥ αij ∀(i, j) ∈ A (2)

xij ≥ 0 ∀(i, j) ∈ A. (3)

Constraint (2) reads as the belief degree that “the interdictor’s constraint holds” is not less than αij . In
other words, the belief degree that “When there is no interdicting action on the arc (i, j), potential flow through
this arc does not exceed the uncertain value ξij .” is greater than of equal to the pre-specified confidence level
αij . Further, the belief degree that “When there is an interdicting action on the arc (i, j), the flow through
this arc vanishes.” is again at least the confidence level αij .

Let f denote the value of objective function. From this formulation, the value of the objective function is
f(ξ). Observe that as a function of ξ, f is also an uncertain variable.
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The following theorem presents a substitute to constraint (2) when the uncertain variable ξij has linear
uncertainty distribution.

Theorem 2.1. Let ξij be a linear uncertain variable L(aij , bij) of the capacity on the arc (i, j). For a given
confidence level αij ∈ (0, 1), constraint (2) is identical to

xij ≤
(
αijaij + (1− αij)bij

)
(1− yij). (4)

Proof. Observe that for yij = 1, constraint (2) reads as

M{xij ≤ 0} ≥ αij . (5)

Regarding (3), it holdsM{xij ≤ 0} = 1. In this case, (4) reduces to x ≤ 0, accompanying with (3) completes
the proof.

Thus, without loss of generality, constraint (2) can be rewritten as

M{(xij)/(1− yij) ≤ ξij} ≥ αij . (6)

From the linearity of ξij , the uncertainty distribution Φij is

Φ(
xij

1− yij
) =



0, if
xij

1− yij
≤ aij

xij

1−yij − aij
bij − aij

, if a ≤ xij
1− yij

≤ bij

1, if
xij

1− yij
≥ bij ,

(7)

and considering (16) (see Appendix A), constraint (6) converts to the following deterministic form.

xij
1− yij

≤ Φ−1ij (1− αij) = αijaij + (1− αij)bij . (8)

The proof is complete.

Observe that constraint (4) forces the flow on the arc (i, j) to be zero when an interdicting action is carried
out on (i, j), and leave the flow to be at most (αijaij + (1− αij)bij) when there is no interdiction on the arc.
Further, the upper bound for the possible flow depends both on the uncertainty interval and confidence level.

The following theorem presents a substitute to constraint (2) when the uncertain variable ξij has zigzag
uncertainty distribution.

Theorem 2.2. Let ξij be a zigzag uncertain variable Z(aij , bij , cij) of the capacity on the arc (i, j). For a
given confidence level αij ∈ (0, 1) , constraint (2) is identical to

xij ≤
(
2αijbij + (1− 2αij)cij

)
(1− yij), if αij ≥ 0.5, (9)

xij ≤
(
(2αij − 1)aij + (2− 2αij)bij

)
(1− yij), if αij < 0.5. (10)

Proof. Let yij 6= 1 (the case of yij = 1 can be proved as in Theorem 2.1). Observe that the uncertain
distribution Φij of the zigzag uncertain variable ξij is

Φ(
xij

1− yij
) =



0, if x ≤ a
xij

1−yij − a
2(b− a)

, if a ≤ x ≤ b

xij

1−yij + c− 2b

2(c− b)
, if b ≤ x ≤ c

1, if x ≥ c,

(11)
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and considering (17) (see Appendix A), constraint (6) converts to the following deterministic form.

xij
1− yij

≤ Φ−1ij (1− αij) =

{
2αijbij + (1− 2αij)cij , if αij ≥ 0.5

(2αij − 1)aij + (2− 2αij)bij , if αij < 0.5.
(12)

The proof is complete.

Let A1 be the set of arcs that the capacity on these arcs are independent linear uncertain variables, and
A2 denote the set of arcs, where the uncertain variables on these arcs are independent zigzag. Theorems 2.1
and 2.2 enable us to have the following deterministic model instead of the uncertain NIP form.

(MOD1)

{
min
y∈Y

max
x

xds
∣∣ constraints (1), (4), (9), (10), and (3)

}
.

Note that x = 0 is a feasible solution of the inner maximization problem of (MOD1). In addition, the
feasible region of this problem is bounded. Therefore, by the strong duality theorem, there is no duality
gap and the primal and dual objective values are identical in optimality. Therefore, the inner maximization
problem can be replaced with its dual with no effect on the optimal solution. Let πi (i ∈ N), βij , θij , and
ωij be dual variable vectors corresponding to (1), (4), (9), and (10), respectively. Thus, this substitution
reduces (MOD1) to the following single-level minimization problem.

(MOD2) min
∑

(i,j)∈A

[
βij
(
αijaij + (1− αij)bij

)
+ θij

(
2αijbij + (1− 2αij)cij

)
+ωij

(
(2αij − 1)aij + (2− 2αij)bij

)]
(1− yij)

subject to

πi − πj + βij + θij + ωij ≥ 0 ∀(i, j) ∈ A
πd − πs ≥ 1

βij ≥ 0 ∀(i, j) ∈ A1

θij , ωij ≥ 0 ∀(i, j) ∈ A2

y ∈ Y.

The following theorem summarizes this argument asserting that the bi-level linear mixed integer program
(MOD1) is identical with the single-level mixed integer nonlinear problem (MOD2).

Theorem 2.3. Two optimization problems (MOD1) and (MOD2) are equivalent in optimality.

Observe that problem (MOD2) has a subtle nonlinearity in the objective function. Recall that βij is the
shadow price corresponding to the constraint (4). Increasing the value of αijaij + (1 − αij)bij by one unit
permits at most one more unit of flow through the network. According to the strong duality in optimality, the
increase in the objective function of problem (MOD2) will be at most one, too. Thus βij ≤ 1 for all (i, j) ∈ A.
Similar conclusion is also valid for θij and ωij .

In the sequel, we only describe the standard method for linearization of βijyij . Analogous results can be
unambiguously derived for θijyij and ωijyij , too. Observe that βijyij , when 0 ≤ βij ≤ 1 and yij ∈ {0, 1},
is either equal to zero (if yij = 0 ) or to βij (if yij = 1). By introducing the auxiliary variable γij ≥ 0 and
adding the constraints

γij ≤ yij , (13)

γij ≤ βij − yij + 1, (14)

γij ≥ βij + yij − 1 (15)

to the problem, one can replace the nonlinear term βijyij by γij .
Validity of this substitution is justified in the following theorem.

Theorem 2.4. Constraints (13)-(15) justify the substitution γij = βijyij.
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Proof. Let us complete the proof in two cases.
Case 1: When yij = 0 (no interdicting action happens), the nonnegativity of γij and (13), implies γij = 0.
Case 2: When yij = 0, constraints (14) and (15), leads to γij = βij .

Considering Theorem 2.4, by replacing of γij = βijyij , λij = θijyij , and µij = ωijyij , the following mixed
integer linear optimization problem is devised which is equivalent to (MOD2) in optimality. This problem
can be solved by standard solvers.

(MOD) min
∑

(i,j)∈A

(
αijaij + (1− αij)bij

)
(βij − γij)

+
(
2αijbij + (1− 2αij)cij

)
(θij − λij)

+
(
(2αij − 1)aij + (2− 2αij)bij

)
(ωij − µij)

subject to

πi − πj + βij + θij + ωij ≥ 0 ∀(i, j) ∈ A
πd − πs ≥ 1

γij ≤ βij − yij + 1 ∀(i, j) ∈ A1

γij ≥ βij + yij − 1 ∀(i, j) ∈ A1

λij ≤ θij − yij + 1 ∀(i, j) ∈ A2

λij ≥ θij + yij − 1 ∀(i, j) ∈ A2

µij ≤ ωij − yij + 1 ∀(i, j) ∈ A2

µij ≥ ωij + yij − 1 ∀(i, j) ∈ A2

γij , λij , µij ≤ yij ∀(i, j) ∈ A
βij , θij , ωij ≥ 0 ∀(i, j) ∈ A
γij , λij , µij ≥ 0 ∀(i, j) ∈ A
y ∈ Y.

3 An Illustrative Example

The proposed model is implemented on the problem introduced in [3] which consists 20 nodes and 30 arcs.
The authors considered this problem as an NIP with deterministic arcs’ capacity, while we assumed that some
of them are uncertain linear variables L(aij , bij) with aij = uij−2 and bij = uij +2, and the others are zigzag
variables Z(aij , bij , cij) with aij = uij − 2 and bij = uij + 1 and cij = uij + 2. The information of uncertain
variables and necessary resource to interdict each arc are given in Table 2. A total of 9 units of resource is
available for interdicting all the arcs (i. e., R = 9).

The belief degree αij is specified by experienced persons of the field which could be distinct for different
arcs. Here, they are set identical as αij = α = 0.9 for all (i, j) ∈ A.

Recall that for a given value of the confidence level, only one of the constraints (9) and (10) exists in the
problem. Therefore, the final mixed integer linear problem has 192 constraints and 170 variables and the s−d
maximum flow without interdicting action is 36 in an uncertain flow network. This amount equals to 44 units
where there is no uncertainty assumption on the network [3].

Optimal solution of problem has been calculated by the branch-and-bound algorithm using GAMS 23.5.2
with the solver CPLEX 12.5. In both uncertain and deterministic environment, interdicted arcs are (8, 16)
and (18, d), while the optimal objective value reduces to 23.6 units in uncertain environment, and to 29 units
where there is no imposed uncertainty assumption on the problem [3].

The uncertainty distribution of Objective Value (OV) of (MOD) is listed in Table 3 and plotted in Fig.3
for different selections of α. It is clear from Table 3 that the best solution of (MOD) is obtained when α = 0.9.
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Table 2: Network data

Arc Capacity Resource Arc Capacity Resource
(1,6) L(6, 10) 4 (9,17) Z(8, 11, 12) 3
(1,7) L(2, 6) 4 (10,17) L(9, 13) 3
(1,8) L(7, 11) 3 (11,17) Z(11, 14, 15) 2
(2,8) Z(11, 14, 15) 5 (12,d) L(11, 15) 6
(2,9) Z(5, 8, 9) 4 (13,18) L(11, 15) 3
(2,10) L(4, 8) 5 (14,18) Z(2, 5, 6) 4
(3,10) L(3, 7) 5 (15,18) L(7, 11) 4
(3,11) Z(10, 13, 14) 5 (16,d) Z(13, 16, 17) 8
(3,12) Z(5, 8, 9) 5 (17,d) L(9, 13) 6
(4,13) Z(6, 9, 10) 3 (18,d) Z(12, 15, 16) 7
(4,14) L(13, 17) 2 (s,1) L(9, 13) 8
(5,15) L(6, 10) 6 (s,2) Z(6, 9, 10) 9
(6,16) L(8, 12) 3 (s,3) L(9, 13) 7
(7,16) Z(2, 5, 6) 4 (s,4) L(11, 15) 10
(8,16) L(5, 9) 2 (s,5) Z(4, 7, 8) 12

Table 3: The value of (MOD) corresponding to the different choosing of α
α interdicted arcs OV

0.9 (8, 16), (18, d) 23.6
0.8 (8, 16), (18, d) 24.8
0.7 (8, 16), (18, d) 26.2
0.6 (8, 16), (18, d) 27.4
0.5 (8, 16), (18, d) 28.5
0.4 (18, d) 30.6
0.3 (18, d) 31.7
0.2 (18, d) 32.8
0.1 (18, d) 33.9

Figure 1: Uncertainty distribution of (MOD)

4 Challenges in Stochastic Case

Liu declared that uncertainty theory is only legitimate approach when only belief degrees are available [11].

In the sequel, we first review the model in stochastic case and mention some existing chalenges. Then
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we show that using probability theory to model the belief degree in our problem could lead to incorrect
conclusion.

Let us consider the general probabilistic constraint as

G(x) = Prξ(t
Tx ≥ h(ξ)),

where t is a deterministic vector, x is a decision vector, h(ξ) is the right-hand-side depending to the random
variable ξ that has the probability distribution function Fξ. Here, x is a decision vector independent of the
random variable xi. As a result, the associate chance constraint would be G(x) ≥ α where α ∈ [0, 1].

Let B(α) = {x|G(x) ≥ α}. It was proved that this set is closed [6]. Moreover, it is convex for α = 0 and
α = 1 [5]. In the case of α = 0 the probability constraint is clearly redundant. If α = 1, then the solution
of the associated optimization problem can be interpreted as a “fat solution”, in a probabilistic sense [7].
The problem with this class of constraints can lead, under appropriate assumptions, to convex optimization
problems. Obviously we have G(x) = Fξ(t

Tx) , and this is equivalent to a linear constraint

Pr(tTx ≥ ξ) ≥ α⇔ F (tTx) ≥ α⇔ tTx ≥ Q−ξ(α),

where Q−ξ(α) denotes the left end-point of the closed interval of αquantiles of Fξ. some care is needed if
ξ does not have a continuous distribution. For instance, a finite discrete distribution forξ , the theoretically
correct reformulation may consist of the strict inequality, which from the modeling point of view this is usually
not a real problem. Moreover, finding exact representation of Q−ξ(α) is impossible in some cases (e.g. in
Normal distribution), while it has a clear representation in uniform distribution. Observe that this is not the
case in uncertainty theory when ξ is treated as an uncertain variable.

As mentioned beforehand, using probability theory in the case when only expert opinion is the base of
decision making process will lead to misleading results. Forexample, let the continuous uniform distributions
U(aij , bij), and constraint (2) is replaced by

Pr(xij ≤ ξij(1− yij)) ≥ pij , ∀(i, j) ∈ A,

where pij is the minimum prespecified probability level that the constraint Pr(xij ≤ ξij(1 − yij)) holds.
Consequently by

F−1ξij
(pij) = aij(1− pij) + bijpij for 0 < pij < 1,

where Fξij is its probability distribution function. Though the final form of the problem is similar to problem
(MOD), the interpretations are completely different. Independency in probability theory implies a wrong
conclusion as stated in [12]. For example, let the uncertain network G have m arcs, and for k of them, let
uij = bij and xij = (aij + bij)/2. In the absence of interdicting, from the uncertainty theory

M{“The amount of passing flow from these k arcs is not greater than the uncertain predefined value”}=1,

whereas, in probability theory, for enough large k, it holds

Pr{“The amount of passing flow from these k arcs is not greater than the uncertain predefined value”}

=(0.5)k ' 0.
Observe that this does not make sense in most practical situations.

5 Conclusion

This paper proposed a model of the network interdiction problem with uncertain arc capacity. It is proved
that the model can be transformed into the corresponding deterministic bi-level mixed integer optimization
problem when the uncertain variable is linear or zigzag. The solution approach consisted of transforming
the bi-level problem to a single-level mixed-integer problem in the first stage and then applying a standard
linearization method to produce a mixed integer linear optimization problem. The model is implemented on
an example to illustrate the theoretical considerations.

There are other kinds of uncertain variables introduced in [12] such as empirical variables. Moreover, we
assumed that all of the uncertain variables are independent and identically distributed. What would be the
result if these are not the cases? Respecting these concerns would be of special interest and the possible
direction of further study.



Journal of Uncertain Systems, Vol.12, No.2, pp.141-150, 2018 149

Appendix A. Preliminaries

In this part, some necessary concepts of uncertainty theory are briefly reviewed. For more details, we refer to
[12].

Let Γ be a nonempty set, and L a σ-algebra over Γ. A set functionM : L −→ [0, 1] is called an uncertain
measure if it satisfies the following axioms:
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ ∈ L.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, . . ., it holds

M
{ ∞⋃
i=1

Λi
}
≤
∞∑
i=1

M{Λi}.

The triple (Γ,L,M) is called an uncertainty space. Furthermore, Liu defined a product uncertain measure
as the fourth axiom as follows.
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. The product uncertain
measure M is the satisfying

M
{ ∞∏
k=1

Λk
}

=
∞∧
k=1

M{Λk},

where Λk is an arbitrarily chosen event from Lk, for k = 1, 2, . . ..

It is of value to remind that the probability measure satisfies the first three but not the last axiom [12].
An uncertain variable is a function ξ from an uncertainty space (Γ,L,M) to the set of real numbers such
that {γ|ξ(γ) ∈ B} is an event for any Borel set B. The uncertainty distribution Φ of an uncertain variable
ξ is defined by Φ(x) = M{ξ ≤ x} for any real number x. Φ(x) denotes the belief degree that the uncertain
variable ξ is at least x.

An uncertain variable ξ is called linear and denoted by L(a, b) if it has a linear uncertainty distribution

Φ(x) =


0, if x ≤ a
x− a
b− a

, if a ≤ x ≤ b
1, if x ≥ b,

where a and b are real numbers with a < b. An uncertain variable ξ is called zigzag if it has a zigzag
uncertainty distribution

Φ(x) =



0, if x ≤ a
x− a

2(b− a)
, if a ≤ x ≤ b

x+ c− 2b

2(c− b)
, if b ≤ x ≤ c

1, if x ≥ c,
denoted by Z(a, b, c) where a, b, and c are real numbers with a < b < c.

An uncertainty distribution Φ(x) is said to be regular if it is a continuous and strictly increasing function
with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

For an uncertain variable ξ with regular uncertainty distribution Φ(x), the inverse function Φ−1(α) is
well-defined and called the inverse uncertainty distribution of ξ. The inverse uncertainty distribution of linear
uncertain variable L(a, b) is [12]

Φ−1(α) = (1− α)a+ αb, (16)

and the inverse uncertainty distribution of zigzag uncertain variable Z(a, b, c) is [12]

Φ−1(α) =

{
(1− 2α)a+ 2αb, if α < 0.5

(2− 2α)b+ (2α− 1)c, if α ≥ 0.5.
(17)
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The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M
{ n⋂
i=1

(ξi ∈ Bi)
}

=
n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn.
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