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Abstract 

 

In this work, a bi-objective multi-facility location-allocation problem is investigated, in which the locations of the 
customers and their arrivals are stochastic. We first formulate the problem as a continuous location-allocation model 
with no constraints on the capacity of the facilities. Then, we develop an approximated discrete model in which the 
facilities with limited capacities can be located on a set of candidate points. The proposed model has two objective 
functions that are evaluated using discrete event system simulation. The first objective is to minimize the expected 
total time the customers spend in the system until their services begin. The time that each customer spends in the 
system includes the customer's travel time as well as his/her waiting time in the facility until he/she receives service. 
The second objective is to minimize the sum of the expected queue lengths. Considering the NP-hardness of the 
problem and the unique properties of the objective functions, a Non-dominated Sorting Genetic Algorithm (NSGA-II) 
is developed to obtain a Pareto optimal front. We have proposed a heuristic approach for generating feasible solutions 
to initiate NSGA-II. Since there is no benchmark available in the literature, in order to evaluate the obtained results, 
we have utilized another multi-objective meta-heuristic approach called Non-dominated Ranked Genetic Algorithm 
(NRGA). For further validation, we have also employed a genetic algorithm to solve two single-objective problems 
separately.  
© 2018 World Academic Press, UK. All rights reserved.  
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1 Introduction 
 
The multi-facility location-allocation problem is concerned with locating n facilities in the Euclidian plane and 
allocating m customers to those facilities while minimizing the total cost. This cost mostly consists of the 
transportation cost. Suppliers, warehouses, producers, or servers can be counted as facilities, and retailers, purchasers, 
and service users are usually treated as the customers. Cooper  [9] was the first who introduced the location-allocation 
problem (LAP). This problem has been studied in various settings; if the location of a facility can be selected from a 
set of candidate points, the problem is a discrete optimization problem. In some other settings, however, the facilities 
might be placed at any point in the Euclidian plane, and the problem is continuous and is known as the multi-facility 
Weber location problem (MFWP) in the literature [37]. The Weber problem which was first introduced by Weber 
[35], is to locate a single facility in the plane, where the weighted sum of its distances from the customers is 
minimized. While various MFWPs have been proposed in the literature, the most recent is studied by Jiang et al. [20] 
who proposed a generalized variation of the Weber problem on a plane in which a straight line divides the plane into 
two regions and various gauges are used to measure the distances in different regions. 

Sherali and Nordai [33] showed that an MFWP with capacity limitations on facilities and deterministic 
parameters is NP-hard even if all customers are located on a straight line. Consequently, the exact methods are not 
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practical in solving those settings. Although there are certain conditions under which the problem is solvable. For 
large-scale problems the only reasonable approach is to use heuristic or meta-heuristic methods. 

Cooper [10] introduced the first heuristic approach for solving MFWP. This well-known heuristic is based on the 
fact that the two components of the problem, namely finding the locations of the facilities and allocating customers to 
them, are easier to solve separately. This algorithm which alternates between location and allocation sub-problems is 
called ALA and has been used as a measure for other algorithms since then. Cooper’s ALA algorithm has also been 
playing a part such as improving the initial solutions in some solution algorithms. Love and Juel [25] introduced the 
neighborhood search method for the first time and then Mladenovic and Brimberg [26] combined their idea with the 
Cooper’s ALA method to propose a descent-ascent-based method. They also used Tabu search and variable 
neighborhood algorithms to solve an un-capacitated continuous location-allocation problem [6, 7]. Later, Salhi and 
Gamal [32] proposed an improved genetic algorithm (GA) to find near-optimal solutions for this problem. Taillard 
[34] proposed a heuristic method based on decomposition, and Brimberg et al. [4] extended his work by developing a 
variable neighborhood decomposition search (VNDS) heuristic that was applicable to variable sizes of the 
subproblems. Hosseininezhad et al. [17] developed a crossed-entropy-based meta-heuristic for the capacitated multi-
source Weber problem considering a fixed cost for opening each facility. They presented a mixed integer nonlinear 
formulation and then utilized a three-stage cross entropy meta-heuristic to solve the problem. They showed that for 
small-sizes of the problem, their approach performs well compared with commercial solvers. Recently, Drezner and 
Salhi [13] proposed two methods to reduce the neighborhood for the solution of the p-median problem on a plane. 
Brimberg et al. [5] provided a survey on solution methods for the continuous location-allocation problem. 

Various multi-objective optimization algorithms have been proposed in the literature to solve facility location-
allocation problems. Farahani et al. [15] provided a good review and classification of such algorithms. Pasandideh et 
al. [30] developed a multi-objective facility-location problem within the batch arrival queuing framework. Their 
objectives include (1) minimizing the weighted sum of the waiting and traveling times, (2) minimizing the maximum 
idle time of the facilities, and (3) minimizing the total facility establishment cost. They implemented a simulated 
annealing (SA) and a genetic algorithm (GA) to solve their problem. In a recent work, Hajipour et al. [16] discussed a 
multi-objective multi-layer facility location-allocation model for congested facilities. The objectives were (1) 
minimizing the sum of travel and waiting times; (2) minimizing the establishment cost of the facilities; and (3) 
minimizing the maximum idle probability of the facilities. They utilized a multi-objective vibration damping 
optimization (MOVDO) as well as a multi-objective harmony search (MOHS) algorithm to find Pareto solutions.  

Although early efforts were devoted to modeling and solving LA problems with the assumption of the 
parameters being deterministic, in many real-world applications this assumption is not reasonable. An example 
involves locating emergency stations for demands with uncertain locations. A very common approach to this type of 
problems is to assume that the uncertain parameters are probabilistically distributed. Katz and Cooper [21] studied a 
single facility LA problem with probabilistic customer locations. In their work, locations of the customers follows a 
symmetric bivariate normal distribution, where the Euclidian function was used to calculate the distances. Later, Katz 
and Cooper [22] considered the case of symmetric bivariate exponential distribution for customer locations as well. 
Wesolowsky [36] investigated the case of the rectilinear distance function. Logendran and Terrell [24] modeled an 
un-capacitated continuous LA problem with uncertain demands. Carrizosa et al. [8] investigated and solved a more 
general case where the locations of the facilities and customers, both could be stochastic. Moreover, Zhou [38] 
utilized the expected value model (EVM) and chance-constrained programming (CCP) for uncertain demands of an 
un-capacitated continuous LA problem. In another research, Zhou and Liu [39] introduced the dependent-chance 
programming (DCP) for un-capacitated as well as capacitated continuous LA problems with stochastic demands. 
They combined the network simplex algorithm, stochastic simulation, and genetic algorithm to solve the problem 
through a hybrid intelligent algorithm. Jamalian and Salahi [19] developed an equivalent formulation for the robust 
counterpart of MFWP with uncertain locations for the demand points and transportation cost. 

Aras et al. [2] studied a capacitated continuous location-allocation problem in both deterministic and stochastic 
settings. For the deterministic version of the problem, they proposed a discrete approximation model and a heuristic 
solution algorithm. For the stochastic case, where locations of the customers were probabilistically distributed, they 
proposed a mathematical model and a heuristic solution algorithm based on Cooper’s [10] ALA algorithm. In another 
work, Aras et al. [3] extended this algorithm and proposed two other algorithms using a discrete approximation. 
Pasandideh et al. [30] investigated a multi-objective facility location problem with batch arrivals and developed two 
parameter-tuned genetic and simulated annealing algorithms to solve the problem. Mousavi et al. [27] proposed a new 
model for the capacitated location-allocation problem where both locations and demands of the customers were 
stochastic. Moreover, Rahmati et al. [31] formulated a tri-objective facility location problem within multi-server 
queuing framework, in which selecting the nearest-facility along with the service level restriction were considered to 
bring the model closer to reality. They proposed a Pareto-based meta-heuristic to solve the problem. 
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In this paper, we consider a setting for the continuous multi-facility LA problem, with a specially structured 
stochastic demand. We assume the location of each customer can be modeled as a two-dimensional random vector 
that follows a bivariate normal distribution. This could refer to a situation in which we are trying to locate a set of 
service centers to provide a service for customers using certain types of products (vehicles for instance). This could be 
even more valuable when the distance of the demand location with the service station is more sensitive. In this 
particular setting, it is reasonable to allocate the customers to the stations (provide them the information of where they 
can get help with their product) instead of having the policy of going to the nearest station. Although the stochastic 
locations and arrival times on the side of customers has been studied in the literature previously, previous studies 
either model the location of the next customer as a Poisson random variable on the two dimensional plane, or in case 
customers are individuals with independent location random variables, they assume each customer goes to the nearest 
service center. In this work, however, we consider a continuous multi-facility LA problem with stochastic customer 
locations and arrivals where the customers assigned to a certain facility will always be served in that facility. To the 
best of our knowledge, this particular problem setting has not been studied in the literature yet.  

We first provide a mathematical formulation of this problem. Then, we discuss an approximated discrete model 
with two objectives in which facilities with limited capacity can be located on a set of candidate points (a case that is 
closer to reality with many applications). Since the problem is NP-hard, we utilize a multi-objective evolutionary 
algorithm, the nondominated sorting genetic algorithm (NSGA-II) to find Pareto optimal front, and we propose a new 
heuristic approach to generate initial feasible solutions. Further, as no benchmark is available in the literature, another 
meta-heuristic multi-objective evolutionary algorithm, the non-dominated ranked genetic algorithm (NRGA) is also 
employed to validate the results obtained. For further validation, the results are also compared with the ones obtained 
employing a genetic algorithm to solve two single-objective problems separately. The solution algorithms are then 
evaluated using some multi-objective performance measures. 

The remainder of the paper is organized as follows. In Section 2, the un-capacitated continuous location-
allocation problem with stochastic customer locations and arrivals is introduced, and the mathematical formulation of 
the problem is presented. Then, an approximated discrete model is proposed in this section to make the problem 
easier to solve. In Section 3, not only a genetic algorithm is developed for the single-objective version of the problem, 
but also NSGA-II and NRGA are utilized to solve the multi-objective version of the problem. The computational 
results are discussed in Section 4 and finally, Section 5 concludes. 

 
2 Problem Description and Formulation 
 
This section describes the problem, the assumptions made, and the proposed formulation. The goal of the problem is 
to locate a set of un-capacitated facilities with specific service rates on the Euclidian plane and to allocate a set of 
customers to these facilities. The model that will be developed in this paper accounts for a set of assumptions and 
conditions, along with a specially structured stochastic demand. We assume that the location of each customer can be 
modeled as a two-dimensional random vector that follows a bivariate normal distribution with known parameters. 
Further, the demand for each customer is assumed to follow a Poisson process that could fairly describe many 
demand processes. Using the same argument, we also assume that the service times of the customers are independent 
exponential random variables. 

The above approach for modeling the demand locations could pertain to a variety of practical situations and has 
been used previously in the literature. For example, when the customers’ addresses and the average distances they 
travel every day are known, one could derive the parameters of the normal distribution for each customer. Although 
the stochastic locations and arrival times on the side of customers has been studied in the literature, previous studies 
either model the location of the next customer as a Poisson random variable or they make the assumption that each 
customer goes to the nearest service center. In the current work, however, we account for stochastic customer 
locations and arrivals, with focus on a situation where customers are allocated to a certain facility, and seek service in 
that facility. 

The travel time of each customer to a specific facility depends on its location as well as its travel speed; we 
assume a constant speed for all customers. Nevertheless, this assumption can be relaxed if one has the data for the 
existing paths and the travel times associated with each path, which is a possible direction for future works on this 
problem. Hence, at each particular facility, the entrance rate of the customers is affected by the demand occurrence 
rate of the customers assigned to that facility and their travel times, both of which being stochastic. Consequently, one 
may assume that each facility behaves as a G/M/1 queue. 
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2.1. Problem Formulation 
 
In order to formulate the continuous LA problem discussed above, the following notations are used: 

Indices: 

   Index for facilities (       ) 
   Index for a customers (       ) 

Parameters: 

   (       )   Stochastic location point of customer   
    Demand rate of customer   
   The common service rate of facilities 
   The common travel speed of customers (                       ) 

Decision variables: 

   (       )   Location of facility   
    {

                                                
                                                                         

  
The total demand rate at each facility is equal to the sum of the demand rates of the customers allocated to that 

facility. In other words, 

                                                                                      ∑      

 

   

                                               ( ) 

The first objective function to be minimized, represented by   , is the expected total time the customers spend 
until their services begin. This customer-based objective includes the sum of the expected travelling times and the 
expected waiting times in the queue. The reason why this objective function has been chosen can be explained using 
an example. Consider a situation in which one is trying to find the best location among a set of ATMs (automated 
teller machines) based on the time she/he travels in addition to the time she/he spends in the waiting line. As the 
queue reaches equilibrium in the long term, the average waiting time can be considered as a decision criterion. 
Although one might think of an imaginary allocation step for this particular example, to make sure the best realization 
of customers’ allocation is consistent with the best locations found and in that case, since customers do have a choice, 
this performance for a queue in its equilibrium state may not be optimal, but the solution found may be a suggestion 
for the customers.  

The first part of this objective function is the sum of the travel times of the demanding customers and the second 
part is the expected sum of their waiting times [29], i.e. 

   ∑∑   
 . (     )/

 
    

 

   

 

   

 ∑∑         

 

   

 

   

                                                          ( ) 

In Eq. (2),  . (     )/ is the expected Euclidean distance between the locations of facility   and customer   

obtained based on a procedure explained in Section 4,   is the travel speed (hence  . (     )/     is the expected 
travel time), and    is the expected waiting time of a customer at facility  . In order to calculate   , we need to know 
the distribution of the demand entrance to each facility, which cannot be found analytically. Consequently, we have 
utilized a simulation technique to estimate values of    in each scenario. As explained earlier, the time between two 
arrivals to a certain facility consists of two components: time between occurrence of two demands and the travel time 
of customers to the facility. Hence, the inter-arrival time to a facility is the sum of an exponentially distributed 
random variable and a bivariate normal distribution for the travel time. 

The second objective is to minimize is the expected sum of the queue lengths represented by   . This system-
based objective can also be explained through the ATM example, where this time the factor affecting the decision 
would be the average number of waiting customers in the queue. That is 

   ∑  

 

   

                                                                                                ( ) 

In Eq. (3),    represents the expected queue length at facility  , which is another parameter of the G/M/1 queue.  
As a result, the mathematical model for the uncapacitated multi-facility continuous LA problem with stochastic 

customer locations and arrivals is 
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                                                                                                               ( ) 

        *   +                                                             
In this model, the first constraint guarantees that each customer is allocated to exactly one facility and the second 

constraint is set to check the stability of each queue, where it means that the demand rate of each facility should be 
less than its service rate. 

 
2.2. Discrete Approximation Model 
 
Aras et al. [2, 3] proposed a mixed integer linear programming (MILP) model based on an approximation using 
vertices of a grid covering all customer locations. In order to illustrate the idea better, the example that was presented 
in Aras et al. [2] is used here. Consider the location problem shown in Figure 1. In this figure, the square marks 
represent customer locations. It is known that there is a set of optimal facility locations that lie in the convex hull 
made by the set of customer locations. Considering the smallest rectangle that covers all of these customer locations, 
we divide it using horizontal and vertical lines of the same distance from one another. The resulting grid points within 
the convex hull are the candidate points for the locations of the facilities. 
 

 
Figure 1: Candidate points of a small size problem (Aras et al. 2007) 

The idea of using candidate points in order to propose a discrete approximation for the LA problem can be used 
for the stochastic version of the problem as well. Clearly, as the number of candidate points increases, the resulting 
solution will come closer to the optimal solution. If the number of points goes to infinity, or equivalently the distance 
between dividing lines goes to zero, the solution to the approximated problem will be an optimal solution to the 
continuous version. 

In our problem, if   candidate points are in the convex hull built by customer locations, the coordinates of the  -
th candidate point (         ) will be represented by    (       ) and the decision variables will change to: 

   {
                                                   
                                                                                    

  

    {
                                               
                                                                          

  

Then, the first part of the first objective function representing the sum of all travel times will be: 

∑ ∑    
 . (     )/

 
       

 
   

 
                                                                        ( )  

And the sum of waiting times is: 

∑∑          

 

   

 

   

                                                                                  ( ) 
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The second objective function will also change as follows: 

   ∑   

 

   

                                                                                        ( ) 

Thus, the discrete approximation of the model can be written as: 

        ∑∑    
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 ∑ ∑          

 

   

 

   

 

                                                 ∑   

 

   

 

s.t. 

        )  ∑    

 

   

                                                                                                                      ( ) 

         )                                                                                                           (  ) 

          ) ∑      

 

   

                                                                                                                (  ) 

         )  ∑   

 

   

                                                                                                                                        (  )  

                                                      *   + 
                                            *   +.            

In this model, the first constraint guarantees that each customer is allocated to exactly one facility. The second 
constraint will make sure that each customer can only be assigned to a candidate points where facilities are located. 
The third constraint is set to check the stability of each queue, and finally, the fourth constraint is set to make sure that 
all facilities (no more than the number of available facilities) are located. 

The optimal solution of the above-approximated model is not necessarily optimal to the original problem, but an 
increase in the number of candidate points will reduce the gap. However, by increasing the number of candidates the 
computational effort needed to solve the problem will increase as well. Consequently, considering the desired 
accuracy, one should make a balance between the quality of the solution found for the continuous model and the 
computational effort needed to solve the discrete model. 

 
3 Solution Methods 
 
As mentioned in the previous section, calculation of the objective functions requires us to compute parameters of the 
G/M/1 queue at each facility. Since the distribution of demand arrivals to each facility is unknown, we utilize a 
simulation approach to estimate these parameters. This complicates the problem and makes it hard to solve optimally 
(even for small sizes of the problem) as opposed to many other LA problems that can be solved through exact 
solution approaches. This leaves us with no other choice except utilizing heuristic or meta-heuristic methods. 

Considering the special characteristics of the problem, a search-based algorithm is required. Some algorithms 
such as simulated annealing, Tabu search, and genetic algorithm reduce the probability of being trapped in local 
optimum solutions. Among them, genetic algorithm (GA) has performed fairly well in LA models with similar 
structure (see for example [5, 32]). Although many heuristics or meta-heuristics have the property of producing 
several solutions at a given stage, they usually use a neighborhood search method. Consequently, their solutions do 
not have the extensity and diversity of GA solutions unless diversification methods are used.  

Note that the two objective functions introduced for this problem cannot be merged easily due to the difference 
in their entities. Moreover, as the first objective function includes the travel times to the facilities, it can conflict the 
second objective function i.e. the average queue lengths. This leads to taking advantage of multi-objective 
programming approaches to solving this problem. One common approach is to search for a set of Pareto-optimal 
solutions. In a multi-objective problem with   objective functions, if all objectives are in the minimization form, the 
feasible solution   is dominated by the feasible solution   if 

    (             )    {
    (       )      ( )    ( )

             
                      ( )    ( ) 

                                                       (  ) 
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A feasible solution is said to be Pareto-optimal if it is dominated by no other solution in the feasible space. The 
set of all Pareto-optimal solutions in the feasible space is called Pareto-optimal set and the values of their objective 
functions are called Pareto-front. Among several multi-objective evolutionary algorithms proposed recently, NSGA-II 
is one of the best and most efficient algorithms. This algorithm and another similar algorithm called NRGA are 
chosen to solve the problem. 

In the rest of this section, we first describe how a genetic algorithm is implemented to solve the problem 
considering each of the objectives in isolation. Then, we explain the solution approaches for solving our bi-objective 
problem using NSGA-II and NRGA. A heuristic method to produce initial solutions will also be proposed. 

 
3.1. Genetic Algorithm  
 
In the genetic algorithm (GA), an individual or a chromosome presents a solution. Chromosomes consist of units 
called genes. Each gene defines a characteristic of a chromosome. GA operates on a set of chromosomes called 
population. The first population is usually produced randomly. During the successive iterations (generations), only 
the best chromosomes with respect to a quality measure, usually a fitness function, remain in the population and 
finally, the algorithm converges to the best chromosome (solution). 

GA uses two operators to produce new chromosomes: crossover and mutation. The crossover operator, which is 
the more important operator, combines two chromosomes called parents to produce new chromosomes called children. 
The mutation operator makes random alterations in chromosomes. In order to select parents, a selection operator is 
used. In single objective problems, this selection is based on a fitness function, and the fitness function is often the 
objective function. In multi-objective problems, however, the selection operator acts differently. 

The chromosome we designed for the GA algorithm consists of two main parts, U and Y shown in Figure 2, 
where U is a     vector representing the first decision variable. The elements of this chromosome indicate the 
candidate points 1 to   where the facilities are to be located. In other words, U takes the form ,            -

 . The 
second part, Y is a matrix that shows the allocation of customers to facilities. Each column of this matrix refers to a 
specific customer and it takes value 1 if the customer is allocated to a facility, otherwise zero. The matrix Y takes the 
form 

                                                                              [

       

     

       

]

   

.                   

 

 
Figure 2: Chromosome representation 

 
3.1.1. The Crossover Operator 
 
This operator combines two parents in order to produce two children. It combines the Z vector of one parent with the 
Y matrix of another to produce a child, as shown in Figure 3. 
 
3.1.2. The Mutation Operator 
 
Two mutation operators are defined in GA as: 
Mutation operator 1: It chooses one of the non-zero elements of Z randomly and moves it with its customers to 
another row with a zero value. In other words, it chooses a facility randomly and moves it with all of its customers. 
Mutation operator 2: This operation randomly selects a customer and allocates it to another facility. 

Examples of these operations are shown in Figure 4. 
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Figure 3: Crossover operation 

 

3.1.3. The Selection Operator 
 
This operator helps to select parents in order to produce next generation. For a single-objective model, the value of 
the objective function is considered as the fitness function, where a chromosome with a lower fitness function value is 
better and more probable to be chosen.  
 
3.1.4. Feasibility of a Solution 
 
Feasibility of a solution found by this algorithm should be guaranteed somewhere in the process. There are different 
approaches to check feasibility. When the number of constraints is large, one efficient way to check feasibility is to 
use a penalty function. Since the number of constraints is small in our developed model, we use the following rules to 
assure feasibility [11]:  

1) A feasible solution is always preferred to an infeasible solution. 

2) Between two feasible solutions, the one with better objective function value is preferred. 

3) Between two infeasible solutions, the one with smaller constraint violation is preferred. 
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Figure 4: Mutation operation 

 

3.2. The NSGA-II 
 
One of the most popular algorithms for solving multi-objective optimization problems is the so-called elitist non-
dominated sorting genetic algorithm (NSGA). It is a simple and effective algorithm that requires minimum user 
interaction. An improved extension of NSGA is named NSGA-II that has been utilized in many optimization 
problems, efficaciously [12, 23]. NSGA-II, with a better sorting property compared to NSGA in the sense that it 
incorporates elitism and does not require any sharing parameter to be chosen in advance, takes advantage of the 
dominance concept to select solutions for the Pareto front. There are five operations namely initialization, fast non-
dominated sorting, crossover, mutation, and the elitist crowded-comparison operation, involved in the original version 
of NSGA-II [28]. We used these operations in the NSGA-II that we developed for the purpose of this study. 

The crossover and the mutation operators are the same operators defined in the GA described in Section 3.1. 
However, since there are more than one objective functions, it is not possible to sort chromosomes with respect to 
their fitness functions. Instead, the following two criteria are used in order to sort and select a better chromosome: 

1) Non-domination level, 

2) Crowding distance.  

In order to sort the chromosomes, the fast non-dominated sorting approach is first employed to divide them into 
different levels of nondomination. Then, the crowding distance is used to sort each level [12]. After sorting the 
population, the selection operator chooses a set of parents randomly. This selection is based on a probability 
distribution such that better solutions are more likely to be chosen, where  

(                   )            {
(            )

  
(             )     (                   ) 

                                        (  ) 
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In Equation (14),       refers to the non-domination level and           refers to the crowding distance value for 
solution  . Moreover, the feasibility of a solution is guaranteed using the same rules as the ones used in the GA with 
the following changes in the second rule: between two feasible solutions, the solution with lower non-domination 
level is preferred; if they belong to the same level of non-domination, the solution having greater crowding distance 
value is preferred. The main steps involved in NSGA-II are described in the following subsection. 

The main steps of the NSGA-II algorithm are 

1. An initial population (  ) of the chromosomes is created. Although it can be produced randomly, in order to 

produce feasible solutions and improve the quality of the initial population, a heuristic method described in 

Section 3.4 is used in this step. 

2. The population    is sorted with respect to the non-domination level and the crowding distance assignment. 

3. Parents are selected using the selection operator. 

4. Crossover and mutation operators are applied to produce children population. 

5. The population of children is first combined with the previous generation. Then, the new generation is 

selected from the sorted combined population. 

6. A predefined number of randomly produced chromosomes are added to the new generation. 

7. Repeat (3)-(6) until the stopping criterion is satisfied. 

 

3.3. The NRGA 
 
This algorithm is similar to NSGA-II. The only difference is that the selection operator could end up with better 
results in some cases [18]. NRGA utilizes a ranked based roulette wheel selection. In this algorithm, each solution is 
assigned a rank based on its non-domination level and the probability of selecting an individual which is defined in 
Equation (15).  

   
  (        )

 (   )
                                                                                         (  ) 

In Equation (15),     is the maximum rank available in the population,      refers to the chromosome’s non-
domination level, and   is the number of individuals in the population. A chromosome with a lower rank is more 
likely to be selected.  In our problem, the chromosomes of the population are first arranged according to their non-
domination level and a level is chosen using ranked based roulette wheel selection. Then, chromosomes of the same 
rank are sorted by the crowding distance measure and again a chromosome is chosen among them. 

 

3.4. The Proposed Heuristic Approach to Generate Initial Solutions 
 
This heuristic is proposed in order to make feasible and preferable initial solutions. It first chooses random locations 
for facilities using candidate points. Then, the distances between each customer and all facilities are calculated. Next, 
starting from the nearest facility, the allocation process begins. If the allocation does not disturb the stability of the 
queue for the corresponding facility, the customer will be allocated to that facility. Otherwise, the next nearest facility 
is considered. This process continues until all customers are allocated. The flowchart of this heuristic is shown in 
Figure 5. 
 
3.5. The Simulation Approach 
 
As described in the previous sections, in order to calculate the objective functions we use a discrete system simulation 
approach to estimate the required parameters of the G/M/1 queues. The simulation works as a part of the coded 
algorithm (GA, NSGA-II or NRGA that are coded in C#). Each solution of the problem indicates where the facilities 
are located and how the customers are allocated to them. Considering each solution, there are   systems of G/M/1 
queues that should be simulated. In order to simulate this system, the following assumptions are made: 
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- There is no limit on the number of customers waiting in each queue. 

- The time between the occurrence of a demand and its arrival to the related facility is treated as the travel 

time.  

- The simulation starts considering zero values for all variables such as queue lengths and the number of 

busy facilities.  

 

Choosing random 

locations for facilities 

among candidate points

j=1

Calculating the distance between 

customer j and all facilities and 

sort them ascendingly

i=1

If allocating customer j 

to facility i violates the 

stability condition?

Stopping 

criteria

i=i+1

Allocate customer j 

to facility i

j=j+1

Yes 

No 

Yes 

No 

Stop 

 
Figure 5: Flowchart of the proposed heuristic 

 
The simulation starts at time zero with no customers in line. Then, we start to generate the following random 

attributes for the next demand of each customer: 
1. Time until the next event  

2. Coordinates of the location for the next demand 

3. The service time associated with this demand 

Attribute 1 is generated randomly based on an exponential distribution (because the demand is assumed to 
follow a Poisson process) with parameters specific to the customer. Attribute 2 will be generated randomly based on 
the bivariate normal distribution for that customer’s demand location. Attribute 3 is also generated according to an 
exponential distribution. 

At each step, one event is planned to occur, where the first event is the customer with the smallest value for 
Attribute 1. Then, the travel time is calculated based on the customer’s distance to his/her associated facility, based on 
which the customer is assigned to that line. These steps are followed for the time interval specified for the simulation. 
One can calculate the time each customer spends in the queue and also the number of people in line.  

The simulation approach provides the following parameters: 

- The expected waiting time for a customer at facility   



R. Mohammadivojdan et al.: A Bi-objective Multi-facility Location-Allocation Problem 

 
 

134 

- The expected queue length at facility   

Consequently, calculation of the objective functions for each feasible solution is possible through the expected 
waiting time and the expected queue length given in Equations (16) and (17). 

                                                                                                       

                       
                                                     

                                              
                                                 (  ) 

                                                                              

 
      (                                                                )

               
           (  ) 

 
4 Computational Results 
 
In this section, we present and evaluate the results obtained by the developed algorithms. First, we discuss the method 
used to calculate the expected distances. Then, several numerical problem instances are examined. 
 
4.1. Evaluating Expected Distances 
 
In order to compute the first part of the first objective function, the expected distances between customers and 
facilities are required. For a symmetric bivariate normal distribution, the expected distance between the facility   and 
customer  ,  . (     )/, is obtained by  

                       [ (     )]  ∫ ∫  (     )   

 

  

 

  

(  )                                                                  (  ) 

In Equation (18),     and     are the coordinate components, which are independently distributed (      
    

 

 ), with expected values     and     and standard deviations            (      ). The integration in (18) is 
not easy to calculate, especially when the distribution of the distances is not known. In this work, the approximation 
method proposed by Altınel et al. [1] and Durmaz et al. [14] is used. The approximation function is 

             ( )  

{
 

  (   )  
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√ 

 √                                                      (   )  
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                                                 (  ) 

In Equation (19),  (   ) refers to the Euclidian distance between   and  . 
 

4.2. Results 
 
In order to calculate the objective functions for each feasible solution, simulation of the entire system is required. This 
makes it impossible to find the exact optimal solution or the Pareto-Front in the multiobjective case. Consequently, 
we chose to solve two single-objective problems separately through the genetic algorithm in order to evaluate the 
results obtained by NSGA-II and NRGA. 

Several problem instances are presented in this section. We first discuss a problem and its results step by step. 
The problem presented here has 10 customers and 5 similar facilities to locate. As mentioned earlier, each customer 
location follows a bivariate normal distribution. The location of customer   is    (       ) with expected value 
   (       )  and standard deviation    (       )  where            (the coordinates are independantly 
distributed with a unique standard deviation). In this example, both     and     are generated using a uniform 
distribution in interval [0,1000] and the variances are also created using a uniform distribution in [0,100]. Table 1 
shows these values for each facility. The demand rates of the customers are also generated randomly using a uniform 
distribution over interval [0,20]. Moreover, the common service rate of the facilities is considered 30. 
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Table 1: Randomly generated parameters of the problem instances 

Customer           
     

1 68.812 354.152 69.810 9.457 
2 685.562 339.686 22.214 6.059 
3 996.241 847.633 57.278 4.782 
4 472.236 451.614 9.182 6.452 
5 978.944 441.617 98.038 12.906 
6 53.178 920.361 61.979 6.732 
7 292.695 881.288 33.436 8.769 
8 614.441 581.363 47.028 11.133 
9 153.205 632.424 96.638 8.426 

10 494.276 435.152 40.155 10.510 
 

In Figure 6, the customers’ mean locations and the candidate points within the convex hull of customers are 
shown, where 228 points are resulted by dividing the rectangle covering all customers using parallel lines with equal 
50 units distance from each other. Among these points, 184 points are within the convex hull and considered to be the 
candidate points to locate the facilities. 

 
Figure 6: Customers' mean locations and candidate points for the discrete approximation of the problem 

This problem is solved considering the first objective function through GA on a Core-i5 computer. The 
probability of choosing mutation operator is considered 0.5 and if chosen, each mutation operator is selected with an 
equal probability of 0.5. After 500 iterations, the results are shown in Table 2 as well as in Figure 7. 

Table 2: The solution to the example problem considering the first objective function 

Facility Candidate point       Allocated customers 
1 12 153.178 389.686 1 
2 28 203.178 639.686 6,9,10 
3 99 553.178 439.686 2,4 
4 112 603.178 589.686 3,7,8 
5 177 953.178 489.686 5 

Objective Function 315.941 Time 4:54:1.141 
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Figure 7: The resulted facility locations 

The problem is also solved considering the second objective function separately. Besides, both NSGA-II and 
NRGA are utilized to find Pareto-optimal fronts for the bi-objective version of the problem. The results are shown in 
Table 3. 

 
Table 3: The solutions of the single objective and multi-objective problems 

Algorithm First objective 
function 

Second objective 
function CPU time 

GA 315.941 - 4:54:1.141 
GA - 0.909 4:26:22.304 

NSGA-II 439.558 3.400 6:59:13.517 
 457.478 2.234  
 471.451 1.969  
 475.105 1.677  
 494.685 1.567  
 502.224 1.367  
 599.936 1.235  

NRGA 434.360 2.311 7:38:34.689 
 437.229 2.168  
 437.263 2.119  
 457.988 1.819  
 458.035 1.814  
 458.082 1.780  
 500.288 1.657  
 531.534 1.549  
 608.733 1.419  
 680.407 1.140  
 783.421 1.088  
 800.072 1.074  
 800.085 1.042  
 851.581 0.973  
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The results in Table 3 indicate that the solutions found by NSGA-II are distributed properly in terms of extension 
and density of their distribution. Moreover, they are not so far from the single objective solutions. We note that 
decreasing one objective function results in an increase in the other one. In other words, none of the solutions 
dominate another and hence they belong to the Pareto-front found by the algorithm. These are also true for the 
solutions found by NRGA. 

For a better comparison, we explore problems with various sizes. In Tables 4 & 5, the results for 7 instances are 
shown after 100 iterations. The parameters for these samples are produced using similar approaches as the ones 
described in the previous example. The computers used in this section are equipped with 1.7-GHz Processor and 1GB 
RAM, where run times are larger for larger problem sizes. 

 
Table 4: The solutions to 7 different problems (1) 

Problem     First objective 
function (GA) Time Second objective 

function (GA) Time 

1 5 3 221.524 0:18:20 0.533 0:19:13 
2 7 4 291.778 0:26:37 0.881 0:32:24 
3 12 8 733.289 2:10:52 1.300 2:54:52 
4 12 8 616.030 2:6:34 3.054 2:31:45 
5 15 8 650.673 3:12:20 4.125 3:51:44 
6 15 12 866.011 3:33:27 3.208 3:41:54 
7 20 15 1101.345 5:30:34 3.789 6:10:80 

 

Table 5: The solutions to 7 different problems (2) 

Problem     
Number of 

solutions found by 
NSGA-II 

Time Number of solutions 
found by NRGA Time 

1 5 3 4 0:9:47 9 0:18:23 
2 7 4 10 0:39:20 13 0:30:30 
3 12 8 7 1:7:47 11 2:42:53 
4 12 8 9 2:24:45 6 2:21:26 
5 15 8 15 4:06:51 10 3:31:29 
6 15 12 14 2:3:23 12 3:33:16 
7 20 15 11 5:51:31 17 5:58:20 

 
Various criteria such as the diversity and the convergence performance measures are defined to evaluate the 

performance of multi-objective evolutionary optimization algorithms [12]. In this problem, as the Pareto-Front is not 
known, we use the diversity metric denoted by  . It measures how evenly the points in the approximation set are 
distributed in the solution space. It can be calculated as follows: 

  ∑
|    |

|  |

|  |

   

                                                                                         (  ) 

In Equation (20),    is the Euclidian distance between two consequent solutions in the first domination level and 
  is the mean of these values. This equation is only practical for problems with two objective functions. The deviation 
metric   can be calculated for each run of the algorithm, based on which an average of these deviations ( ̅) is 
calculated over 10 runs in order to compare different algorithms. The algorithm with smaller  ̅ value is more capable 
of spreading solutions in the obtained front. 

In this paper,   is calculated in 10 runs of NSGA-II and NRGA, each run with 10 customers and 5 facilities (the 
parameters of these problems are produced exactly the same way as mentioned for the earlier problems). The results 
are shown in Tables 6 and 7. Note that the runtime in Table 6 is the least in Problem 9 because it was obtained using a 
faster computer. 

Due to special characteristics of this problem, no exact solution exists. Firstly, the location of the demand is 
stochastically distributed for each customer; secondly, the demand occurrence time is also stochastic. Thus, there is 
no appropriate deterministic version of the problem that could be solved as a comparison solution. Consequently, the 
results of the above algorithms that are considered as the best feasible solutions found are compared with each other. 
The results in Tables 6 and 7 indicate that on one hand, NSGA-II generally performs better considering the number of 
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solutions found, which provides the decision maker with more options. On the other hand, NRGA is better with 
respect to the deviation metric and gives a more diverse set of solutions. 

 
Table 6: GA Solutions of 10 problems (m=10, n=5) 

Problem First objective 
function (GA) Time Second objective 

function (GA) Time 

1 522.491 - 2.949 1:49:10 
2 458.985 1:27:15 5.467 1:54:56 
3 617.971 1:31:29 2.752 2:13:13 
4 574.023 1:41:16 1.471 1:45:46 
5 638.965 1:30:28 4.053 1:40:55 
6 668.993 1:36:19 2.356 1:49:24 
7 423.302 1:43:56 2.472 1:55:49 
8 552.024 1:28:13 2.672 1:53:90 
9 455.075 0:59:29 1.701 1:10:33 

10 500.097 1:13:40 1.689 1:26:50 
 

Table 7: NSGA-II and NRGA solutions of 10 problems (m=10, n=5) 

Problem 
Number of 

solutions found 
by NSGA-II 

Time 
 
  

Number of 
solutions found by 

NRGA 
Time 

 
  

1 13 1:47:48 56.382 7 1:34:29 21.174 
2 16 2:37:10 16.647 8 1:48:35 5.650 
3 11 1:59:27 74.489 12 1:50:48 27.412 
4 16 1:26:42 29.664 9 1:25:49 26.526 
5 6 2:13:16 49.535 8 2:16:50 50.919 
6 13 1:38:52 18.382 13 1:39:52 22.250 
7 13 1:53:21 41.563 13 1:45:30 27.302 
8 11 1:46:49 33.880 9 1:43:59 39.372 
9 15 1:09:30 36.646 10 1:5:00 13.635 

10 13 2:21:57 46.881 13 1:24:28 20.158 
   ̅ 40.407   ̅ 25.439 

 
5  Conclusion 
 
In this paper, a new version of the multi-objective multi-facility location-allocation problem was discussed in which 
the locations of customers and their arrivals were probabilistically distributed. Uncertainty was taken into account in a 
stochastic form while the distance function was assumed to be Euclidian. Two mathematical models were proposed, a 
continuous one and a discrete approximation. Due to NP-hardness of the problem and the fact that simulation was 
needed to evaluate the objective functions of any feasible solution, finding optimal solutions of single-objective 
problems or Pareto-Front solutions of the multiobjective case was not practical. Consequently, a genetic algorithm 
was used to solve single-objective problems separately, while NSGA-II and NRGA were applied to solve the multi-
objective problem. The results based on 18 test problems indicated that NSGA-II was the better approach in terms of 
the number of solutions found while NRGA performed better with respect to the diversity of the solutions obtained. 

As this problem is not solvable optimally, making use of new tools such as big data-analysis techniques and 
advanced optimization methods such as distributed optimization are opportunities for possible improvements in 
solving such problems. Besides, another potential direction for future research could be to consider fixed costs for 
opening facilities. Here, one possible approach is to introduce a third objective to account for this component, as this 
type of cost is different from the other two objectives functions. Another approach is to consider a range of possible 
values for the number of facilities and optimize for each value (i.e. fixing the number of facilities and minimizing the 
two objective functions), assuming that building different facilities at various locations has approximately the same 
cost. Then the optimal number of facilities can be found. In addition, other distributions for the demand process and 
for the locations can be considered. 
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