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Abstract

Comparing and ordering of uncertain random variables give a guideline to make decisions in uncertain
random environments, so we study the comparison of two uncertain random variables. For this purpose,
we define a new order which we call the chance order and study some of its basic properties. We then
apply the results to order the lifetime of the k-out-of-n systems when the lifetimes of some components
of the system are random variables while the others are uncertain variables. It is worth mentioning that
when two uncertain random variables are both random variables or uncertain variables, the chance order
becomes the stochastic order and the uncertain dominance, respectively. That is, the concept of chance
order of uncertain random variables extends the concepts of the stochastic order of random variables and
the uncertain dominance of uncertain variables.
c©2018 World Academic Press, UK. All rights reserved.
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1 Introduction

When there are enough samples to estimate the probability distributions, probability theory provides an
effective mathematical tool to deal with such a condition. However, sometimes no samples are available. In
this case, we have to invite some domain experts to give their belief degrees about the indeterminacy quantity.
It has been shown that the belief degree function has a much larger variance than the real cumulative frequency.
For instance, Liu [22] showed that human beings usually estimate a much wider range of values than the object
actually takes. The conservative estimation of belief degrees by human beings deviates far from the frequency.
Hence, the belief degree could not be modeled by the probability measure. Thus probability theory is no longer
applicable. Some other convincing examples may be found in Liu [20]. In order to deal with belief degrees,
uncertainty theory was proposed by Liu [16] and is becoming a branch of axiomatic mathematics for modeling
human uncertainty. Nowadays, uncertainty theory is well developed in both theoretical and practical aspects,
for further details, see [18, 19]. In real situations, some quantities may be modeled by random variables while
some others by uncertain variables. Consequently, it is reasonable to assume that randomness and uncertainty
co-exist in a complex system. In order to deal with this type of indeterminacy, Liu [24] proposed the concept
of uncertain random variable that is a measurable function from a chance space to the set of real numbers.
The concept of the chance measure, the expected value, and the variance of an uncertain random variable
were also presented by Liu [24]. As an important contribution to the chance theory, Liu [23] put forward
the operational law for uncertain random variables. In addition, Guo and Wang [11] proved a formula to
calculate the variance of the uncertain random variable using the uncertainty distribution. Sheng and Yao
[28] verified some formulas to calculate the variance of the uncertain random variable by using the inverse
uncertainty distribution. Yao and Gao [30] proved the law of large numbers for independent uncertain random
variables with a common chance distribution in the sense of distribution. Gao and Sheng [7] proved another
law of large numbers for uncertain random variables with different chance distributions. And Gao and Ralescu
[6] proved the convergence in distribution for a sequence of uncertain random variables without a common
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chance distribution. Also, two types of concepts of convergence in mean and convergence in distribution for
the sequence of uncertain random variables were put forward by Gao and Ahmadzade [3]. The chance theory
has been also successfully applied to another problems such as the uncertain random programming [14, 23],
the uncertain random risk analysis [25], the uncertain random reliability analysis [8, 9, 29], the uncertain
random graph and the uncertain random network [21], the uncertain random process [10], and the uncertain
random logic [26].

Comparison of two variables is a very important topic in many fields for instance in the fields of reliability
theory, finance, and survival studies. Comparison of two random variables has been widely studied and used.
In this comparison, we sometimes face with the problem that there are just a few or even no samples so that
we can not estimate their probability distributions via statistics. Therefore, comparison of two variables based
on uncertainty theory has been proposed [5, 31]. The aim of this work is to deal with problems that have both
kinds of variables (random variables and uncertain variables) together. Therefore, this paper proposes an order
of comparing based on chance theory which is a generalization of both probability theory and uncertainty
theory. For more clarification, this order will also be applied to compare the lifetime of the k-out-of-n system.

The rest of this paper is organized as follows: Some basic definitions and properties with respect to
probability theory, uncertainty theory, and chance theory are reviewed in Section 2. Section 3 is devoted to
the presentation of our order of uncertain random variables and the investigation of some basic properties
of this order. The application of this order to k-out-of-n system is also studied in section 4. Finally, some
remarks are made in Section 5.

2 Preliminaries

In this section, we review some concepts of probability theory, uncertainty theory and chance theory, includ-
ing probability measure, random variable, probability distribution, uncertain measure, uncertain variable,
uncertainty distribution, chance measure, uncertain random variable, chance distribution, operational law,
expected value, variance.

2.1 Probability Theory

In this subsection, we provide some elementary definitions of probability theory that will be used in the next
sections (For details, see [12]).

Let F be a σ-algebra over a nonempty set Ω. A set function Pr : F −→ [0, 1] is called a probability
measure if it satisfies the following axioms:
(i) (Normality Axiom) Pr{Ω} = 1 for the universal set Ω.
(ii) (Nonnegativity Axiom) Pr{A} ≥ 0 for any event A ∈ F .
(iii) (Additivity Axiom) For every countable sequence of mutually disjoint events A1, A2, . . . , we have

Pr

{ ∞⋃
i=1

Ai

}
=
∞∑
i=1

Pr {Ai} .

The triple (Ω,F ,Pr) is called a probability space. The set function Pr is called a probability measure if it
satisfies the normality, nonnegativity, and additivity axioms. Besides, the product probability on the product
σ-algebra F is defined as follows. Let (Ωk,Fk,Prk) be probability spaces for k = 1, 2, . . .. The product
probability measure Pr is a probability measure satisfying

Pr{
∞∏
k=1

Ak} =

∞∏
k=1

Prk{Ak}, (2.1)

where Ak are arbitrary events chosen from Fk for k = 1, 2, . . ., respectively. This conclusion is called product
probability theorem. And such a product probability measure is denoted by

Pr =
∞∏
k=1

Prk. (2.2)
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A random variable η is a measurable function from a probability space (Ω,F ,Pr) to the set of real numbers
such that {η ∈ B} is an event for any Borel set B of real numbers. In order to describe a random variable in
practice, a concept of probability distribution function is defined as

Ψη(y) = Pr(η ≤ y) (2.3)

for any real number y. If there is a function ψ satisfying

Ψη(y) =

∫ y

−∞
ψη(t)dt (2.4)

for any real number y, then ψη(·) is called the probability density function of a continuous random variable
η. The random variables η1, η2, . . . , ηm are said to be independent if

Pr

{
m⋂
i=1

{ηi ∈ Bi}

}
=

m∏
k=1

Pr{ηi ∈ Bi} (2.5)

for any Borel sets B1, B2, . . . , Bm of real numbers.

Theorem 2.1 ([8]) Let η1, η2, . . . , ηm be independent random variables with probability distribution functions
Ψη1(·), Ψη2(·), . . ., Ψηm(·), respectively, and f : Rm −→ R a measurable function. then the random variable

η = f(η1, η2, · · · , ηm) (2.6)

has a probability distribution function

Ψη(y) =

∫
f(y1,y2,··· ,ym)≤y

dΨη1(y1)dΨη2(y2) · · · dΨηm(ym). (2.7)

If η1, η2, . . . , ηm have probability density functions ψη1(·), ψη2(·), . . . , ψηm(·), respectively, then η =
f(η1, η2, · · · , ηm) has a probability distribution function

Ψη(y) =

∫
f(y1,y2,··· ,ym)≤y

ψη1(y1)ψη2(y2) · · ·ψηm(ym)dy1dy2 · · · dym. (2.8)

Definition 2.1 ([27]) Let η1 and η2 be two random variables such that

Pr(η1 > t) ≤ Pr(η2 > t) for any t ∈ R. (2.9)

Then η1 is said to be smaller than η2 in stochastic order, denoted by η1 �st η2. Note that (2.9) is equivalent
to

Pr(η1 ≤ t) ≥ Pr(η2 ≤ t) for any t ∈ R. (2.10)

Theorem 2.2 ([2]) Let η1 and η2 be two random variables. Then η1 �st η2 if and only if E[f(η1)] ≤ E[f(η2)]
for all real valued increasing function f such that the expectations exist.

Theorem 2.3 ([27]) Let η1, η2, . . . , ηm be a set of independent random variables and let η
′

1, η
′

2, . . . , η
′

m be
another set of independent random variables. If ηi �st η

′

i for i = 1, 2, . . . ,m, then for any increasing function
f : Rm −→ R, we have

f(η1, η2, · · · , ηm) �st f(η
′

1, η
′

2, · · · , η
′

m). (2.11)

In particular,

m∑
i=1

ηi �st
m∑
i=1

η
′

i. (2.12)
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Definition 2.2 ([8]) Let η1, . . . , ηm be random variables, and let k be an index with 1 ≤ k ≤ m. Then

η(k) = k −min[η1, · · · , ηm]

is called the kth order statistic of η1, . . . , ηm, where k-min represents kth smallest value.

Theorem 2.4 ([8]) Let η1, η2 . . . , ηm be independent random variables with probability distribution functions
Ψη1(·), Ψη2(·), . . ., Ψηm(·), respectively. Then the kth order statistic of η1, . . . , ηm has a probability distribution
function

Ψη(k)(y) =

∫
Rm

k −max[I(y1 ≤ y), · · · , I(ym ≤ y)]dΨη1(y1) · · · dΨηm(ym),

where k-max represents kth largest value and I(·) is an indictor function.

2.2 Uncertainty Theory

In this subsection, we recall some elementary definitions of uncertainty theory which are used in the next
sections. (For more details, see [16, 17]).

Let L be a σ-algebra over a nonempty set Γ. A set function M : L→ [0, 1] is called an uncertain measure
if it satisfies the following axioms:
(i) (Normality Axiom) M{Γ} = 1 for the universal set Γ.
(ii) (Duality Axiom) M{Λ}+ M{Λc} = 1 for any event Λ.
(iii) (Subadditivity Axiom) M {

⋃∞
i=1 Λi} ≤

∑∞
i=1 M {Λi} for every countable sequence of events Λ1,Λ2, . . ..

(iv) (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . , the product uncertain measure
M is an uncertain measure satisfying

M{
∞∏
k=1

Λk} =
∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ..

Definition 2.3 ([19]) The events Λ1,Λ2, . . . ,Λn are said to be independent if

M

{
n⋂
i=1

Λ∗i

}
=

n∧
i=1

M{Λ∗i },

such that Λ∗i are arbitrarily chosen from {Λi,Λci ,Γ}, i = 1, 2, . . . , n.

Definition 2.4 ([22]) An uncertain variable τ is a function from an uncertainty space (Γ,L,M) to the set of
real numbers such that {τ ∈ B} is an event for any Borel set B of real numbers.

Definition 2.5 ([22]) The uncertain variables τ1, τ2, . . . , τn are said to be independent if

M

{
n⋂
i=1

{τi ∈ Bi}

}
=

n∧
i=1

M {τi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 2.5 ([22]) Let τ1, τ2, . . . , τn be independent uncertain variables, and f1, f2, . . ., fn be measurable
functions. Then f1(τ1), f2(τ2), . . ., fn(τn) are independent uncertain variables.

Definition 2.6 ([16]) Let τ be an uncertain variable. Its uncertainty distribution function is

Υτ (x) = M(τ ≤ x)

for any real number x.
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Theorem 2.6 ([19]) Let τ1, τ2, . . . , τn be independent uncertain variables with continuous uncertainty distri-
bution functions Υτ1(·),Υτ2(·), . . . ,Υτn(·), respectively. If the function f(x1, x2, · · · , xn) is strictly increasing
with respect to x1, x2, . . . , xm and strictly decreasing with respect to xm+1, xm+2, . . ., xn, then the uncertain
variable

τ = f(τ1, τ2, · · · , τn)

has an uncertainty distribution function as

Υτ (x) = sup
f(x1,x2,··· ,xn)=x

(
min

1≤i≤m
Υτi(xi) ∧ min

m+1≤i≤n
(1−Υτi(xi))

)
.

Definition 2.7 ([17]) Let τ be an uncertain variable with regular uncertainty distribution function Υτ (x).
Then the inverse function Υ−1τ (x) is called the inverse uncertainty distribution function of τ .

Theorem 2.7 ([17]) Let τ1, τ2, . . . , τn be independent uncertain variables with regular uncertainty distribution
functions Υτ1(·),Υτ2(·), . . . ,Υτn(·), respectively. If f is a component-wise strictly increasing function, then
τ = f(τ1, τ2, · · · , τn) is an uncertain variable with inverse uncertainty distribution function

Υ−1τ (α) = f(Υ−1τ1 (α),Υ−1τ2 (α), · · · ,Υ−1τn (α)).

Definition 2.8 ([15]) Let T be an index set and let (Γ,L,M) be an uncertainty space. An uncertain process
is a measurable function from T × (Γ,L,M) to the set of real numbers, i.e., for each t ∈ T and any Borel set
B of real numbers, the set

{τt ∈ B} = {γ ∈ Γ|τt(γ) ∈ B}

is an event.

Definition 2.9 ([5]) Let (τ1, τ2, · · · , τn) and (τ
′

1, τ
′

2, · · · , τ
′

n) be uncertain vectors. If

M(τ1 ≤ x1, · · · , τn ≤ xn) = M(τ
′

1 ≤ x1, · · · , τ
′

n ≤ xn) (2.13)

for any real numbers x1, x2, · · · , xn ∈ R, then (τ1, τ2, · · · , τn) is said to be identically distributed with (τ
′

1,
τ

′

2, · · · , τ
′

n), denoted by (τ1, τ2, · · · , τn) =D (τ
′

1, τ
′

2, · · · , τ
′

n).

Definition 2.10 ([5]) Let τ1 and τ2 be two uncertain variables such that

M(τ1 > t) ≤M(τ2 > t) for any t ∈ R, (2.14)

then τ1 is said to be smaller than τ2 in uncertain dominance, denoted by τ1 �un τ2. Note that (2.14) is
equivalent to

M(τ1 ≤ t) ≥M(τ2 ≤ t) for any t ∈ R. (2.15)

Theorem 2.8 ([5]) Let τ1, τ2, . . . , τn be a set of independent uncertain variables and let τ
′

1, τ
′

2, . . . , τ
′

n be
another set of independent uncertain variables. If τi �un τ

′

i , for i = 1, 2, . . . , n, then, for any component-wise
strictly increasing function f : Rn −→ R, we have

f(τ1, τ2, · · · , τn) �un f(τ
′

1, τ
′

2, · · · , τ
′

n). (2.16)

In particular,

n∑
i=1

τi �un
n∑
i=1

τ
′

i . (2.17)

Similar to random variables, the values of uncertain variables also might be arranged in an ascending
order for providing us with useful summary information. Consequently, Gao et al. [4] described the concept
of order statistics for uncertain variables and presented the uncertainty distribution function of the kth order
statistic.



110 R. Mehralizade et al.: Chance Order of Two Uncertain Random Variables

Definition 2.11 ([4]) Let τ1, . . . , τn be uncertain variables, and let k be an index with 1 ≤ k ≤ n. Then

τ (k) = k −min[τ1, · · · , τn]

is called the kth order statistic of τ1, . . . , τn.

Theorem 2.9 ([4]) Let τ1, . . . , τn be independent uncertain variables with uncertainty distribution functions
Υτ1(·), . . . ,Υτn(·), respectively. Then the kth order statistic of τ1, . . . , τn has an uncertainty distribution
function

Υτ(k)(x) = k −max[Υτ1(x),Υτ2(x), · · · ,Υτn(x)].

2.3 Chance Theory

The chance space is refer to the product (Γ,L,M)× (Ω,F ,Pr), where (Γ,L,M) is an uncertainty space and
(Ω,F ,Pr) is a probability space.

Definition 2.12 ([24]) Let (Γ,L,M) × (Ω,F ,Pr) be a chance space, and let Θ ∈ L × F be an uncertain
random event. Then the chance measure of Θ is defined as

Ch{Θ} =

∫ 1

0

Pr{ω ∈ Ω |M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ r}dr.

Note that the chance measure is in fact the expected value of the random variable M(ξ(·) ∈ Θ), i.e.,

Ch(ξ ∈ Θ) = EPr(M(ξ(·) ∈ Θ)), (2.18)

where EPr(·) denotes the expected value operator for random variable under probability measure Pr(·).
Liu [24] proved that a chance measure satisfies normality, duality, and monotonicity properties, that is

(i) Ch{Γ× Ω} = 1;
(ii) Ch{Θ}+ Ch{Θc} = 1 for any event Θ;
(iii) Ch{Θ1} ≤ Ch{Θ2} for any real number set Θ1 ⊂ Θ2.

Besides, Hou [13] proved the subadditivity of chance measure, that is,

Ch

{ ∞⋃
i=1

Θi

}
≤
∞∑
i=1

Ch{Θi} (2.19)

for a sequence of events {Θn, n ≥ 1}.

Definition 2.13 ([24]) An uncertain random variable is a measurable function ξ from a chance space (Γ,L,M)
×(Ω,F ,Pr) to the set of real numbers, i.e., {ξ ∈ B} is an event for any Borel set B of real numbers.

To calculate the chance measure, Liu [23] presented a definition of chance distribution function.

Definition 2.14 ([23]) Let ξ be an uncertain random variable. Then its chance distribution function is defined
by

Φξ(x) = Ch(ξ ≤ x)

for any x ∈ R.

The chance distribution function of a random variable is simply its probability distribution function, and the
chance distribution function of an uncertain variable is simply its uncertainty distribution function.

Theorem 2.10 ([23]) Let η1, η2, . . . , ηm be independent random variables with probability distribution func-
tions Ψη1(·), Ψη2(·), . . ., Ψηm(·), respectively, and let τ1, τ2, . . . , τn be uncertain variables. Then the uncertain
random variable ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn) has a chance distribution function

Φξ(x) =

∫
Rm

F (x, y1, · · · , ym)dΨη1(y1) · · · dΨηm(ym),

where F (x, y1, y2, · · · , ym) is the uncertainty distribution function of uncertain variable f(η1, · · · , ηm, τ1, · · · ,
τn) for any real numbers y1, y2, . . . , ym.
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Definition 2.15 ([10]) Let T be an index set and let (Γ,L,M)× (Ω,F ,Pr) be a chance space. An uncertain
random process is a measurable function from T × (Γ,L,M)× (Ω,F ,Pr) to the set of real numbers, i.e., for
each t ∈ T and any Borel set B of real numbers, the set

{ξt ∈ B} = {(ω, γ) ∈ Ω× Γ|ξt(ω, γ) ∈ B}

is an event.

Definition 2.16 ([8]) Let η1, η2, . . . , ηm be independent random variables, τm+1, τm+2, . . . , τn be uncertain
variables, and 1 ≤ k ≤ n. Then

(ητ)(k) = k −min[η1, η2, · · · , ηm, τm+1, τm+2, · · · , τn]

is called the kth order statistic of η1, η2, . . . , ηm, τm+1, τm+2, . . . , τn.

Theorem 2.11 ([8]) Let η1, . . . , ηm be independent random variables with probability distribution functions
Ψη1(·), . . ., Ψηm(·), and τm+1,. . . , τn be uncertain variables with uncertainty distribution functions Υτm+1

(·), . . .,
Υτn(·), respectively. Then the kth order statistic of η1, . . ., ηm, τm+1, . . ., τn has the chance distribution
function

Φ(ητ)(k)(x) =

∫
Rm

k −max
{
I(y1 ≤ x), · · · , I(ym ≤ x),Υτm+1(x), · · · ,Υτn(x)

}
dΨη1(y1) · · · dΨηm(ym).

3 Definition and Properties

In the real world, a complex system always includes not only random variables but also uncertain variables. To
compare such systems, we need an order. Naturally, this order must be based on uncertain random variables,
as an extension of orders of uncertain and random variables. In this section, we introduce an order, called
the chance order, and study some of its basic properties.

Definition 3.1 The uncertain random variable ξ1 is said to be smaller than the uncertain random variable
ξ2 in chance ordering, denoted by ξ1 4ch ξ2, if

Ch(ξ1 > t) ≤ Ch(ξ2 > t) for any t ∈ R.

Remark 3.1 When ξ1 and ξ2 are both random variables or uncertain variables, chance order becomes the
stochastic order (Definition 2.1) and the uncertain dominance (Definition 2.10), respectively. Therefore, the
concept of the chance order of uncertain random variables extends the stochastic order of random variables
and the uncertain dominance of uncertain variables.

Proposition 3.1 If ξ1 �ch ξ2, and f(·) is any increasing (decreasing) function, then

f(ξ1) �ch (�ch)f(ξ2). (3.1)

Proof: Since f(·) is an increasing (decreasing) function, for all t ∈ R, we have

Ch(f(ξ1) > t) = Ch(ξ1 > f−1(t)) ≤ (≥)Ch(ξ2 > f−1(t)) = Ch(f(ξ2) > t). (3.2)

This completes the proof.

Proposition 3.2 The uncertain random variable ξ1 with the chance distribiution function Φξ1(·) is said to
be smaller than the uncertain random variable ξ2 with the chance distribiution function Φξ2(·) in the chance
ordering if and only if

Φξ1(t) ≥ Φξ2(t) for any t ∈ R. (3.3)
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Proof: It follows from the definition of the chance order which for each t ∈ R

Ch(ξ1 > t) ≤ Ch(ξ2 > t) ⇐⇒ Ch(ξ1 ≤ t) ≥ Ch(ξ2 ≤ t)
⇐⇒ Φξ1(t) ≥ Φξ2(t)

Thus, this completes the proof.

Corollary 3.1 If ξ1 �ch ξ2, and ξ2 �ch ξ3, then

ξ1 �ch ξ3. (3.4)

Example 3.1 Let η1, η2 be two random variables with continuous distribution functions U(0, 1) and U(−1, 0),
and let τ1, τ2 be two uncertain variables with continuous uncertainty distribution functions  L(0, 1) and  L(2, 3),
respectively. Then the chance distribution functions ξ1 = η1 + τ1 and ξ2 = η2 + τ2 are

Φξ1(t) =


0, t < 0
1
2 t, 0 ≤ t < 1

− 1
2 t

2 + 2t− 1, 1 ≤ t < 2

1, t ≥ 2

and

Φξ2(t) =


0, t < 1
1
2 t

2 − t+ 1
2 , 1 ≤ t < 2

− 1
2 t

2 + 3t− 7
2 , 2 ≤ t < 3

1, t ≥ 3.

Since for any t ∈ R

Φξ2(t) ≤ Φξ1(t),

we conclude that ξ1 4ch ξ2.

Example 3.2 Let τ1, τ2 be independent uncertain variables with uncertainty distribiution functions Υτ1(·),
Υτ2(·), and τ

′

1, τ
′

2 be independent uncertain variables with uncertainty distribiution functions Υτ
′
1
(·), Υτ

′
2
(·),

respectively. Then the uncertain random variable

ξ =

{
τ1 with probability p;
τ2 with probability q,

(3.5)

is smaller than the uncertain random variable

ξ
′

=

{
τ

′

1 with probability p;

τ
′

2 with probability q,
(3.6)

if and only if for any t ∈ R,

Φξ(t) = pΥτ1(t) + qΥτ2(t) ≥ pΥτ
′
1
(t) + qΥτ

′
2
(t) = Φξ′ (t). (3.7)

Especially, if for all t ∈ R, Υτi(t) ≥ Υτ
′
i
(t), i = 1, 2, then Φξ(t) ≥ Φξ′ (t).

Remark 3.2 Since any uncertain random variable is a function of uncertain variables and random variables,
in the following, we derive the chance order of two uncertain random variables from the stochastic order
between their random components and the uncertain dominance between their uncertain components.

Let η1, η2 be random variables and τ1, τ2 be uncertain variables, and if f : R2 −→ R is strictly monotone
function component-wise, then f(η1, τ1), f(η2, τ2) are uncertain random variables. In the following, we derive
the chance order of ξ1 = f(η1, τ1), ξ2 = f(η2, τ2).
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Theorem 3.3 Let η1, η2 be random variables with probability distribiution functions Ψη1(·), Ψη2(·), and τ1,
τ2 be uncertain variables with uncertainty distribution functions Υ1(·), Υ2(·), respectively. Then η1 4st η2
and τ1 4un τ2 imply that

ξ1 4ch ξ2 (3.8)

provided that f(x, y) is a component-wise strictly increasing function.

Proof: Since f(·, ·) is a component-wise strictly increasing function, hence for all y1, y2 ∈ R using Theorem
2.6, the uncertainty distribution function of f(yi, τi) becomes

Fi(x, yi) = sup
f(yi,xi)=x

Υi(xi). (3.9)

Also, τ1 4un τ2 and (2.15) imply that

Υ1(t) ≥ Υ2(t) for any t ∈ R. (3.10)

Therefore, for y = min{y1, y2}, by (3.9) and (3.10) we have

F1(t, y) = sup
f(y,x1)=t

Υ1(x1) ≥ sup
f(y,x2)=t

Υ2(x2) = F2(t, y). (3.11)

On the other hand, from Theorem 2.10 by the chance distribution function of the uncertain random variables
ξi = f(ηi, τi), i = 1, 2, and η1 4st η2, we have

Φξ1(t) =

∫
R
F1(t, y)dΨη1(y)

≥
∫
R
F2(t, y)dΨη1(y)

≥
∫
R
F2(t, y)dΨη2(y)

= Φξ2(t), ∀t ∈ R.

Since F2(t, y) is a decreasing function with respect to y, the second inequality follows from Theorem 2.2
immediately. Thus, the proof is complete.

Similarly, let η1, η2, . . . , ηm and η
′

1, η
′

2, . . ., η
′

m be two sets of independent random variables, τ1, τ2, . . . , τn
and τ

′

1, τ
′

2, . . ., τ
′

n be two sets of independent uncertain variables, and if f : Rm+n −→ R is a component-wise
strictly monotone function, then f(η1, · · · , ηm, τ1, · · · , τn) and f(η

′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) are uncertain random
variables. In the next Theorem, we derive the chance order of two functions:

ξ = f(η1, · · · , ηm, τ1, · · · , τn) and ξ
′

= f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n).

Theorem 3.4 Let η1, η2, . . ., ηm and η
′

1, η
′

2, . . ., η
′

m be two sets of independent random variables with
probability distribution functions Ψη1(·), Ψη2(·), . . ., Ψηm(·) and Ψη

′
1
(·), Ψη

′
2
(·), . . ., Ψη′m

(·), and let τ1, τ2,. . .,

τn and τ
′

1, τ
′

2, . . ., τ
′

n be two sets of independent uncertain variables with uncertainty distribution functions
Υτ1(·), Υτ2(·), . . ., Υτn(·), and Υτ

′
1
(·), Υτ

′
2
(·), . . ., Υτ ′

n
(·), respectively. Then ηi 4st η

′

i, i = 1, 2, . . . ,m, and

τj 4un τ
′

j , j = 1, 2, . . . , n imply that

ξ 4ch ξ
′

(3.12)

provided that f(y1, y2, · · · , ym, x1, x2, · · · , xn) is a component-wise strictly increasing function.

Proof: Since f(·, · · · , ·) is a component-wise strictly increasing function, hence for all y1, . . . , yn, y
′

1, . . . , y
′

n ∈ R
using Theorem 2.6, the uncertainty distribution functions of

f(y1, y2, · · · , ym, τ1, τ2, · · · , τn)
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and

f(y
′

1, y
′

2, · · · , y
′

m, τ
′

1, τ
′

2, · · · , τ
′

n)

become

F1(x, y1, y2, · · · , ym) = sup
f(y1,y2,··· ,ym,z1,z2,··· ,zn)=x

min
1≤j≤n

(Υτj (zj)), (3.13)

and

F2(x, y
′

1, y
′

2, · · · , y
′

m) = sup
f(y

′
1,y

′
2,··· ,y

′
m,z

′
1,z

′
2,··· ,z

′
n)=x

min
1≤j≤n

(Υτ
′
j
(z

′

j)), (3.14)

respectively. Also, τj 4un τ
′

j , j = 1, 2, . . . , n, and (2.15) imply that

Υτj (t) ≥ Υτ
′
j
(t), ∀t ∈ R. (3.15)

Therefore, for si = min{yi, y
′

i}, i = 1, 2, . . . ,m, by (3.13), (3.14), and (3.15) we have

sup
f(s1,s2,··· ,sm,z1,z2,··· ,zn)=t

min
1≤j≤n

(Υτj (zj)) ≥ sup
f(s1,s2,··· ,sm,z

′
1,z

′
2,··· ,z

′
n)=t

min
1≤j≤n

(Υτ
′
j
(z

′

j)).

The last inequality is equivalent to

F1(t, s1, s2, · · · , sm) ≥ F2(t, s1, s2, · · · , sm), ∀t ∈ R. (3.16)

On the other hand, from Theorem 2.10 by the chance distribution function of uncertain random variables ξ
and ξ

′
, and also ηi 4st η

′

i, i = 1, 2, . . . ,m, we have

Φξ(t) =

∫
Rm

F1(t, s1, s2, · · · , sm)dΨη1(s1) · · ·Ψηm(sm)

≥
∫
Rm

F2(t, s1, s2, · · · , sm)dΨη1(s1) · · ·Ψηm(sm)

≥
∫
Rm

F2(t, s1, s2, · · · , sm)dΨη
′
1
(s1) · · ·Ψη′m

(sm)

= Φξ′ (t), for any t ∈ R.

Hence, the proof is complete.

Example 3.3 Suppose η1, . . . , ηm, η
′

1, . . . , η
′

m, τ1, . . . , τn, and τ
′

1, . . . , τ
′

n are the same as in Theorem 3.4.
(i) If f(y1, · · · , ym, x1, · · · , xn) =

∑m
i=1 yi +

∑n
j=1 xj, where yi, xj ∈ R, i = 1, . . . ,m, j = 1, . . . , n, then

ξ = f(η1, · · · , ηm, τ1, · · · , τn) 4ch f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) = ξ
′

(3.17)

because of

Φξ(t) =

∫ ∞
−∞

Υτ (t− y)dΨη(y)

≥
∫ ∞
−∞

Υτ ′ (t− y)dΨη′ (y)

= Φξ′ (t) for any t ∈ R,

where Ψη(·) and Ψη′ (·) are the probability distribution functions of η =
∑m
i=1 ηi and η

′
=
∑m
i=1 η

′

i, and Υτ (·)
and Υτ ′ (·) are the uncertainty distribution functions of τ =

∑n
j=1 τj and τ

′
=
∑n
j=1 τ

′

j , respectively.

(ii) If f(y1, · · · , ym, x1, · · · , xn) =
∏m
i=1 yi ×

∏n
j=1 xj, where yi, xj ∈ R+, i = 1, . . . ,m, j = 1, . . . , n, then

ξ = f(η1, · · · , ηm, τ1, · · · , τn) 4ch f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) = ξ
′

(3.18)
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because of

Φξ(t) =

∫ ∞
−∞

Υτ (t/y)dΨη(y)

≥
∫ ∞
−∞

Υτ ′ (t/y)dΨη′ (y) = Φξ′ (t) for any t ∈ R,

where Ψη(·) and Ψη′ (·) are the probability distribution functions of η =
∏m
i=1 ηi and η

′
=
∏m
i=1 η

′

i, and Υτ (·)
and Υτ ′ (·) are the uncertainty distribution functions of τ =

∏n
j=1 τj and τ

′
=
∏n
j=1 τ

′

j , respectively.

(iii) If f(y1, · · · , ym, x1, · · · , xn) = {
∧m
i=1 yi} ∧ {

∧n
j=1 xj}, where yi, xj ∈ R, i = 1, . . . ,m, j = 1, . . . , n,

then

ξ = f(η1, · · · , ηm, τ1, · · · , τn) 4ch f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) = ξ
′

(3.19)

because of

Φξ(t) = Ψη(t) + Υτ (t)−Ψη(t)Υτ (t)

≥ Ψη′ (t) + Υτ ′ (t)−Ψη′ (t)Υτ ′ (t) = Φξ′ (t) for any t ∈ R,

where Ψη(·) and Ψη′ (·) are the probability distribution functions of η =
∧m
i=1 ηi and η

′
=
∧m
i=1 η

′

i, and Υτ (·)
and Υτ ′ (·) are the uncertainty distribution functions of τ =

∧n
j=1 τj and τ

′
=
∧n
j=1 τ

′

j , respectively.

(iv) If f(y1, · · · , ym, x1, · · · , xn) = {
∨m
i=1 yi}∨{

∨n
j=1 xj}, where yi, xj ∈ R, i = 1, . . . ,m, j = 1, . . . , n, then

ξ = f(η1, · · · , ηm, τ1, · · · , τn) 4ch f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) = ξ
′

(3.20)

because of

Φξ(t) = Ψη(t)Υτ (t)

≥ Ψη′ (t)Υτ ′ (t) = Φξ′ (t) for any t ∈ R,

where Ψη(·) and Ψη′ (·) are the probability distribution functions of η =
∨m
i=1 ηi and η

′
=
∨m
i=1 η

′

i, and Υτ (·)
and Υτ ′ (·) are the uncertainty distribution functions of τ =

∨n
j=1 τj and τ

′
=
∨n
j=1 τ

′

j , respectively.

Remark 3.3 It is worth mentioning that even if some of the conditions of the Theorem 3.4 are not satisfied,
the chance order can be established.

Example 3.4 Consider the Example 3.1. Then we have ξ1 4ch ξ2 while η2 4st η1.

Definition 3.2 Let (ξ1, ξ2, · · · , ξn) and (ξ
′

1, ξ
′

2, · · · , ξ
′

n) be uncertain random vectors, and if

Ch(ξ1 ≤ x1, · · · , ξn ≤ xn) = Ch(ξ
′

1 ≤ x1, · · · , ξ
′

n ≤ xn) (3.21)

for any real numbers x1, x2, . . . , xn ∈ R, then (ξ1, ξ2, · · · , ξn) is said to be identically distributed with (ξ
′

1, ξ
′

2, · · · ,
ξ
′

n), denoted by (ξ1, ξ2, · · · , ξn) =D (ξ
′

1, ξ
′

2, · · · , ξ
′

n).

Theorem 3.5 Let η1, η2 be two random variables, and τ1, τ2 be two uncertain variables. Then uncertain
random variables ξ1 = f(η1, τ1) and ξ2 = f(η2, τ2) satisfy ξ1 4ch ξ2 if there exist two random variables η̃1,
η̃2, defined on the same probability space, and two uncertain variables τ̃1, τ̃2, defined on the same uncertainty
space, such that ηi =D η̃i, τi =D τ̃i, i = 1, 2, and

Ch (f(η̃1, τ̃1) ≤ f(η̃2, τ̃2)) = 1 (3.22)

provided that f(x, y) is a component-wise strictly increasing function.
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Proof: Let ξ̃1 = f(η̃1, τ̃1) and ξ̃2 = f(η̃2, τ̃2), and there exist two random variables η̃1, η̃2, defined on the
same probability space, and two uncertain variables τ̃1, τ̃2, defined on the same uncertainty space, such
that ηi =D η̃i, τi =D τ̃i, i = 1, 2, and (3.22) holds. Then ηi =D η̃i, and τi =D τ̃i, i = 1, 2, imply that
ξ̃i = f(η̃i, τ̃i) =D f(ηi, τi) = ξi, i = 1, 2.

Using Theorem 2.6, for i = 1, 2, the uncertainty distribution functions of f(yi, τi) and f(ỹi, τ̃i) are

Fi(x, yi) = sup
f(yi,xi)=x

Υτi(xi), (3.23)

and

F̃i(x̃, ỹi) = sup
f(ỹi,x̃i)=x̃

Υτ̃i(x̃i). (3.24)

Also, τi =D τ̃i imply that

Υτi(x) = Υτ̃i(x), ∀x ∈ R. (3.25)

Then, for si = min{yi, ỹi}, i = 1, 2, by (3.23), (3.24), and (3.25), we have

Fi(x, si) = sup
f(si,xi)=x

Υτi(xi) = sup
f(si,x̃i)=x

Υτ̃i(x̃i) = F̃i(x, si). (3.26)

Also, using Theorem 2.10 for uncertain random variables ξi = f(ηi, τi), ξ̃i = f(η̃i, τ̃i), i = 1, 2, and since
η1 =D η2, we obtain

Φξi(x) =

∫
R
Fi(x, si)dΨηi(si)

=

∫
R
F̃i(x, si)dΨηi(si)

=

∫
R
F̃i(x, si)dΨη̃i(y)

= Φξ̃i(x), ∀x ∈ R.

So ξ̃i =D ξi, i = 1, 2. Therefore, ξ1 4ch ξ2 follows from (3.22) immediately.

The next theorem is an extended version of Theorem 3.5.

Theorem 3.6 Let η1, η2, . . ., ηm, and η
′

1, η
′

2, . . ., η
′

m be two sets of random variables, and τ1, τ2, . . ., τn,
and τ

′

1, τ
′

2, . . ., τ
′

n be two sets of uncertain variables, respectively. Then uncertain random variables

ξ = f(η1, · · · , ηm, τ1, · · · , τn) and ξ
′

= f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) (3.27)

satisfy ξ 4ch ξ
′

if there exist random variables η̃1, η̃2, . . ., η̃m, and η̃
′

1, η̃
′

2, . . ., η̃
′

m, defined on the same
probability space, and uncertain variables τ̃1, τ̃2, . . ., τ̃n, and τ̃

′

1, τ̃
′

2, . . ., τ̃
′

n, defined on the same uncertainty
space, such that ηi =D η̃i, η

′

i =D η̃
′

i, i = 1, 2, . . . ,m, τj =D τ̃j, τ
′

j =D τ̃
′

j , j = 1, 2, . . . , n, and

Ch[f(η̃1, · · · , η̃m, τ̃1, · · · , τ̃n) ≤ f(η̃
′

1, · · · , η̃
′

m, τ̃
′

1, · · · , τ̃
′

n)] = 1 (3.28)

provided that f(x1, · · · , xm, y1, · · · , yn) is a component-wise strictly increasing function.

Proof: Let ξ̃ = f(η̃1, · · · , η̃m, τ̃1, · · · , τ̃n) and ξ̃
′

= f(η̃
′

1, · · · , η̃
′

m, τ̃
′

1, · · · , τ̃
′

n), and there exist random variables
η̃1, η̃2, . . ., η̃m and η̃

′

1, η̃
′

2, . . ., η̃
′

m, defined on the same probability space, and uncertain variables τ̃1, τ̃2, . . .,
τ̃n, and τ̃

′

1, τ̃
′

2, . . ., τ̃
′

n, defined on the same uncertainty space, such that ηi =D η̃i, η
′

i =D η̃
′

i, i = 1, 2, . . . ,m,

τj =D τ̃j , τ
′

j =D τ̃
′

j , j = 1, 2, . . . , n, and (3.28) holds. Then ηi =D η̃i, η
′

i =D η̃
′

i, i = 1, 2, . . . ,m, and τj =D τ̃j ,

τ
′

j =D τ̃
′

j , j = 1, 2, . . . , n imply that ξ = f(η1, · · · , ηm, τ1, · · · , τn) =D f(η̃1, · · · , η̃m, τ̃1, · · · , τ̃n) = ξ̃ and

ξ
′

= f(η
′

1, · · · , η
′

m, τ
′

1, · · · , τ
′

n) =D f(η̃
′

1, · · · , η̃
′

m, τ̃
′

1, · · · , τ̃
′

n) = ξ̃
′
.
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Applying Theorem 2.6, for uncertaint random variables

f(y1, y2, · · · , ym, τ1, τ2, · · · , τn), f(y
′

1, y
′

2, · · · , y
′

m, τ
′

1, τ
′

2, · · · , τ
′

n)

and

f(ỹ1, ỹ2, · · · , ỹm, τ̃1, τ̃2, · · · , τ̃n), f(ỹ
′

1, ỹ
′

2, · · · , ỹ
′

m, τ̃
′

1, τ̃
′

2, · · · , τ̃
′

n),

we have

F1(x, y1, y2, · · · , ym) = sup
f(y1,y2,··· ,ym,z1,z2,··· ,zn)=x

min
1≤j≤n

(Υτj (zj)), (3.29)

F2(x, y
′

1, y
′

2, · · · , y
′

m) = sup
f(y

′
1,y

′
2,··· ,y

′
m,z

′
1,z

′
2,··· ,z

′
n)=x

min
1≤j≤n

(Υτ
′
j
(z

′

j)), (3.30)

and

F̃1(x, ỹ1, ỹ2, · · · , ỹm) = sup
f(ỹ1,ỹ2,··· ,ỹm,z̃1,z̃2,··· ,z̃n)=x

min
1≤j≤n

(Υτ̃j (z̃j)), (3.31)

F̃2(x, ỹ
′

1, ỹ
′

2, · · · , ỹ
′

m) = sup
f(ỹ

′
1,ỹ

′
2,··· ,ỹ

′
m,z̃

′
1,z̃

′
2,··· ,z̃

′
n)=x

min
1≤j≤n

(Υτ̃
′
j
(z̃

′

j)), (3.32)

respectively. Also, τj =D τ̃j , τ
′

j =D τ̃
′

j , j = 1, 2, . . . , n imply that

Υτj (x) = Υτ̃j (x), Υτ
′
j
(x) = Υτ̃

′
j
(x), ∀x ∈ R. (3.33)

Then, for si = min{yi, ỹi}, i = 1, 2, . . . ,m, by (3.29) and (3.31), we have

sup
f(s1,s2,··· ,sm,z1,z2,··· ,zn)=x

min
1≤j≤n

(Υτj (zj)) = sup
f(s1,s2,··· ,sm,z̃1,z̃2,··· ,z̃n)=x

min
1≤j≤n

(Υτ̃j (z̃j)).

That is equivalent to

F1(x, s1, s2, · · · , sm) = F̃1(x, s1, s2, · · · , sm), ∀x ∈ R. (3.34)

Similarly, for s
′

i = min{y′

i, ỹ
′

i}, i = 1, 2, . . . ,m, by (3.30) and (3.32), we have

sup
f(s

′
1,s

′
2,··· ,s

′
m,z

′
1,z

′
2,··· ,z

′
n)=x

min
1≤j≤n

(Υτ
′
j
(z

′

j)) = sup
f(s

′
1,s

′
2,··· ,s

′
m,z̃

′
1,z̃

′
2,··· ,z̃

′
n)=x

min
1≤j≤n

(Υτ̃
′
j
(z̃

′

j)).

So

F2(x, s
′

1, s
′

2, · · · , s
′

m) = F̃2(x, s
′

1, s
′

2, · · · , s
′

m), ∀x ∈ R. (3.35)

Also, using Theorem 2.10, for uncertain random variables ξ, ξ̃, ξ
′
, ξ̃

′
, and since ηi =D η̃i, η

′

i =D η̃
′

i, i =
1, 2, . . . ,m, we obtain

Φξ(x) =

∫
Rm

F1(x, s1, s2, · · · , sm)dΨη1(s1) · · ·Ψηm(sm)

=

∫
Rm

F̃1(x, s1, s2, · · · , sm)dΨη1(s1) · · ·Ψηm(sm)

=

∫
Rm

F̃1(x, s1, s2, · · · , sm)dΨη̃1(s1) · · ·Ψη̃m(sm) = Φξ̃(x), ∀x ∈ R.

and

Φξ′ (x) =

∫
Rm

F2(x, s
′

1, s
′

2, · · · , s
′

m)dΨη
′
1
(s

′

1) · · ·Ψη′m
(s

′

m)

=

∫
Rm

F̃2(x, s
′

1, s
′

2, · · · , s
′

m)dΨη
′
1
(s

′

1) · · ·Ψη′m
(s

′

m)

=

∫
Rm

F̃2(x, s
′

1, s
′

2, · · · , s
′

m)dΨη̃
′
1
(s

′

1) · · ·Ψη̃′m
(s

′

m) = Φξ̃′ (x), ∀x ∈ R.
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These imply that ξ =D ξ̃ and ξ
′

=D ξ̃
′
. Therefore, ξ 4ch ξ

′
follows from (3.28) immediately.

Suppose we have two stores. For each store, consider that the number of customers entering a store on a
given day is a random variable and the amount of money spent by a customer is an uncertain variable. On a
given day, in which store will the amount of sales be more?

To model and answer such problems, we must consider the random sum of uncertain variables. In the
next proposition, two random sums of uncertain variables will be compared.

Proposition 3.7 Let {τi, i = 1, 2, . . .} and {τ ′

i , i = 1, 2, . . .} be sequences of nonnegative independent and
identically distributed uncertain variables, and let η be a nonnegative integer- valued random variable, which
is independent of τi’s, and η

′
be a nonnegative integer- valued random variable, which is independent of τ

′

i ’s.

Then if τi �un τ
′

i , for i = 1, 2, . . ., and η �st η
′
, we have

η∑
i=1

τi �ch
η
′∑

i=1

τ
′

i . (3.36)

Proof: Let τ(m) =
∑m
i=1 τi and τ

′
(m) =

∑m
i=1 τ

′

i . Then by applying Theorem 2.8, we have

τ(m) �un τ
′
(m), for all m ∈ N. (3.37)

Since τ(η) and τ
′
(η) are uncertain random variables, so Theorem 3.4 implies that

τ(η) �ch τ
′
(η). (3.38)

Also, since η �st η
′
, Theorem 3.4 yields

τ
′
(η) �ch τ

′
(η

′
). (3.39)

Thus, (3.38), (3.39), and the Proposition 3.1 complete the proof.

4 An Application in Reliability

Consider a reliability system consisting of n components C = {c1, c2, . . . , cn} whose structure function is given
by

φ : {0, 1}n := {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n times

−→ {0, 1}. (4.1)

It is assumed that

(1) φ(0, · · · , 0) = 0;

(2) φ(1, · · · , 1) = 1;

(3) (Monotonicity) For (u1, · · · , un), (v1, · · · , vn) ∈ {0, 1}n,

ui ≤ vi, i = 1, . . . , n =⇒ φ(u1, · · · , un) ≤ φ(v1, · · · , vn). (4.2)

In a complex system, some components may have enough samples to estimate their probability distributions
and can be regarded as random variables, while some others may have no samples, and can only be evaluated
by the experts and regarded as uncertain variables. In this case, the system can not be simply modeled by
a stochastic system or an uncertain system [29]. Therefore, in order to compare the reliability of this type
system, which is known as the uncertain random system, we employ an uncertain random variable to model
the system. In the following, a description of the model is given.
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For i = 1, . . . ,m, let {Sηi (t); t ∈ R+} be a decreasing, right-continuous, and {0, 1}-valued stochastic
process representing the state of component ci at time t, that is,

Sηi (t) =

 1, if component ci is functioning at time t;

0, if component ci is failed at time t.
(4.3)

Similarly, for i = m + 1, . . . , n, let {Sτi (t); t ∈ R+} be a decreasing, right-continuous, and {0, 1}-valued
uncertain process representing the state of component ci at time t, that is,

Sτi (t) =

 1, if component ci is functioning at time t;

0, if component ci is failed at time t.
(4.4)

Similarly, let {Sξ(t); t ∈ R+} be a decreasing, right-continuous, and {0, 1}-valued uncertain random process
representing the state of the system at time t, that is,

Sξ(t) =

 1, if the system is functioning at time t;

0, if the system is failed at time t.
(4.5)

Using the definition of structure function, we have

Sξ(t) = φ(Sη1 (t), · · · , Sηm(t), Sτm+1(t), · · · , Sτn(t)), t ∈ R+. (4.6)

Now, let ηi, i = 1, . . . ,m be nonnegative random variables representing the lifetime (or failure time) of
component ci. Since

{ηi > t} ⇐⇒ {Sηi (t) = 1}, (4.7)

we have

P (Sηi (t) = 1) = P (ηi > t) = Ψ̄ηi(t) = 1−Ψηi(t), t ∈ R+, (4.8)

where P (Sηi (t) = 1) is defined as the probability measure that the component ci is working at time t.
Similarly, let τi, i = m + 1, . . . , n be nonnegative uncertain variables representing the lifetime (or failure

time) of component ci. Since

{τi > t} ⇐⇒ {Sτi (t) = 1}, (4.9)

we have

M({Sτi (t) = 1) = M(τi > t) = Ῡτi(t) = 1−Υτi(t), t ∈ R+, (4.10)

where M(Sτi (t) = 1) is defined as the uncertain measure that the component ci is working at time t.
Similarly, if ξ be a nonnegative uncertain random variable representing the lifetime (or failure time) of the

system, then since

{ξ > t} ⇐⇒ {Sξ(t) = 1}, (4.11)

we have

Ch(Sξ(t) = 1) = Ch(ξ > t) = Φ̄ξ(t) = 1− Φξ(t), t ∈ R+, (4.12)

where Ch(Sξ(t) = 1) is defined as the chance measure that the system is working at time t.
If we define a function

f : Rn+ −→ R+, (4.13)
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by

f(t1, · · · , tn) := sup {t ∈ R+ : φ(1[0,t1)(t), · · · , 1[0,tn)(t)) = 1} (4.14)

= inf {t ∈ R+ : φ(1[0,t1)(t), · · · , 1[0,tn)(t)) = 0}, (4.15)

then it determines the lifetime of the system by the lifetimes of the components, that is,

ξ = f(η1, · · · , ηm, τm+1, · · · , τn), (4.16)

and we call f the system lifetime function of φ. It is noted that, since φ is an increasing function, f is also
an increasing function.

An important example of a (monotone) reliability system is the k-out-of-n system (k ∈ {1, . . . , n}), whose
structure function φk|n : {0, 1}n −→ {0, 1} is defined by

φk|n(s1, · · · , sn) =

 1, if s1 + s2 + · · ·+ sn ≥ k

0, if s1 + s2 + · · ·+ sn < k,
(4.17)

where (s1, · · · , sn) ∈ {0, 1}n.
Here we will consider a k-out-of-n system, and we focus on the uncertain random system, whose components

contain both uncertain and random variables. Note that, in this situation, the structure function is defined
by

φk|n(y1, · · · , ym, xm+1, · · · , xn) =


1, if

∑m
i=1 yi +

∑n
i=m+1 xi ≥ k

0, if
∑m
i=1 yi +

∑n
i=m+1 xi < k.

(4.18)

where (y1, · · · , ym, xm+1, · · · , xn) ∈ {0, 1}n.
Both the parallel and the series systems are special cases of the k-out-of-n system. In other words, the

n-out-of-n and 1-out-of-n systems are called the series system and the parallel system, respectively, and their
structure functions φn|n and φ1|n are given by

φn|n(y1, · · · , ym, xm+1, · · · , xn) = (
m∧
i=1

yi) ∧ (
n∧

i=m+1

xi),

φ1|n(y1, · · · , ym, xm+1, · · · , xn) = (
m∨
i=1

yi) ∨ (
n∨

i=m+1

xi),

where (y1, · · · , ym, xm+1, · · · , xn) ∈ {0, 1}n.
The lifetime of most of the systems considered in reliability theory can be expressed as some function of

component lifetimes. For example, the system lifetime function fk|n of k-out-of-n system φk|n is given by

fk|n(ty1, · · · , tym, txm+1, · · · , txn) = (tytx)(k), (ty1, · · · , tym, txm+1, · · · , txn) ∈ Rn+,

where (tytx)(k) is the kth order time of ty1, . . . , t
y
m, t

x
m+1, . . . , t

x
n. As particular cases, we have

fn|n = (

m∧
i=1

tyi ) ∧ (

n∧
i=m+1

txi ), (ty1, · · · , tym, txm+1, · · · , txn) ∈ Rn+;

f1|n = (
m∨
i=1

tyi ) ∨ (
n∨

i=m+1

txi ), (ty1, · · · , tym, txm+1, · · · , txn) ∈ Rn+.

Since the system lifetime function f of any reliability system with a monotone structure function φ is
increasing, we have:
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Example 4.1 Let (ηi, η
′

i), i = 1, 2, . . . ,m be independent pairs of nonnegative random variables and (τi, τ
′

i ),
i = m + 1,m + 2, . . . , n be independent pairs of nonegative uncertain variables representing the lifetimes of
component ci, i = 1, 2, . . . , n. Then by using Theorem 3.4

(i) for any (monotone) reliability system with structure function φ,

ηi 4st η
′

i, i = 1, 2, 3, . . . ,m

τi 4un τ
′

i , i = m+ 1, . . . , n

imply

f(η1, · · · , ηm, τm+1, · · · , τn) 4ch f(η
′

1, · · · , η
′

m, τ
′

m+1, · · · , τ
′

n).

(ii)

ηi 4st η
′

i, i = 1, 2, 3, . . . ,m

τi 4un τ
′

i , i = m+ 1, . . . , n

imply

f1|n(η1, · · · , ηm, τm+1, · · · , τn) 4ch f1|n(η
′

1, · · · , η
′

m, τ
′

m+1, · · · , τ
′

n).

(iii)

ηi 4st η
′

i, i = 1, 2, 3, . . . ,m

τi 4un τ
′

i , i = m+ 1, . . . , n

imply

fn|n(η1, · · · , ηm, τm+1, · · · , τn) 4ch fn|n(η
′

1, · · · , η
′

m, τ
′

m+1, · · · , τ
′

n).

5 Conclusions

This paper has proposed a new concept of order for uncertain random variables as an extension of correspond-
ing results for random variables and uncertain variables. Moreover, some properties of this order have also
been studied. Finally, as an application, we have applied the chance order of uncertain random variables to
compare the reliability of the k-out-of-n systems.
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