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Abstract

In this manuscript, a novel hyper-chaotic system with complex dynamics having one real equilibrium point has
been proposed. Fundamental dynamical analysis for a novel hyper chaotic system such as dissipation, equilibrium
points, time series, phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation and Poincaré maps
are investigated theoretically as well as numerically. The new hyper-chaotic system has five equilibrium points, out
of which only one equilibrium point lie in real plane whereas, all other equilibrium points lies in imaginary plane.
Beauty of the system is that despite of having five equilibrium points only one equilibria is acceptable. A hyper-chaotic
systems with complex equilibrium points are very rare in the literature. Such system can act as powerful models in
many engineering applications, especially in chaos based cryptology and coding information. Further, we studied
the optimal control for the novel hyper-chaotic system which is based on the Pontryagin minimum principle (PMP).
Also, we apply Lyapunov stability theory for adaptive control approach and a parameter estimation update law is given
for the novel hyper-chaotic system with completely unknown parameters. Finally, to demonstrate the effectiveness
of the proposed method we use MATLAB bvp4c and ode45 for numerical simulation which illustrates the stabilized
behaviour of states and control functions of equilibrium point. The plots displaying the time history of states functions
and the parameters estimates have been drawn for the equilibrium point.
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1 Introduction

Chaos can be defined as confusion or disorder that occurs in systems so that the systems appear erratic and unpredictable.
Chaos is an interesting as well as important phenomenon due to its emergent properties or surprises. An emergent
property is something that emerges from a system that is unexpected which gives rise to surprise. We can’t predict
it, and we can’t even judge what surprise will come. We can’t even know if a surprise will happen. We can only
make a guess. Whereas, chaotic behavior is a common feature of nonlinear dynamics, as well as hyper-chaos in high-
dimensional systems. Due to wide applications of chaotic systems in the field of mathematics, chemistry, biology,
physics, engineering, computer science and many more. Now a days research is on the peak to introduce the new
chaotic and hyper chaotic system with more complicated topological structures [, B, I, 172, 3, 71, 31, B7, 39]. Yet, it
is not easy task to create to new chaotic system or hyper-chaotic system with a more topological structure, with more
wings, with more scrolls, with less equilibria and which also fulfills the compromise between lyapunov exponent and
dissipation. The first classical hyper-chaotic system is the well known hyper-chaotic Rossler system [B0]. After that,
many hyper-chaotic systems have been developed and the applications of these models have been enhanced recently.
Over the past decades, many other hyper-chaotic systems have been introduced,such as hyper-chaotic Chen system [4],
hyper-chaotic Chen system [[[¥], hyper-chaotic Lii system [6], hyper-chaotic Nikolov system [[Z5], hyper-chaotic Lorenz
system [B4], and hyper-chaotic Lorenz system [2].

Hyper-chaotic systems not only have all the features and properties of chaotic systems, but also have more com-
plicated nonlinear dynamic characteristics because they have more than one positive Lyapunov exponents and they
are expanded in more than one direction. Some hyper-chaotic systems being applied in the practical engineering, are
preferable for those applications that require the complexity of dynamics, such as the network security and the data
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encryption. From both theoretical and practical points of view, it is always desirable to generate an attractor with both
multiple wings and hyper-chaos possessing both complicated topological structures and complex dynamics such as
rich bifurcations and wider frequency bandwidths. There is no doubt that such a four-wing hyper-chaos system can
help us to make chaos more important in both engineering applications and theoretical research. Nearly all the 4D
hyper-chaotic systems, reported up to now, have double-wing hyper-chaotic attractors with three or five equilibrium
points [[4, T3, IR, 19, P2, 73, DA, P8, 32, B3, B5]. Generating a hyper-chaotic attractor with one equilibrium point from
adynamical system is a very difficult and rare phenomenon [, 200, Z2]. Also, a hyper-chaotic system having multi-scroll
or multi-wing attractor with complex equilibrium points are very rare to be found. Such systems can act as powerful
models in many engineering applications, especially in chaos based cryptology and coding information and in many
other areas.

In present manuscript, we have first constructed the new hyper-chaotic system with multi wings and only one
real equilibrium point and four complex equilibrium points but here, we have not bothered about the existence of
complex equilibrium points because all the realizable models have real signals or states which means that the states
will never reach to these equilibrium points as they are not real. Further, we have discussed the basic dynamical
characters of the new hyper-chaotic system investigated by means of dissipation, equilibria, stability analysis, time
series, phase portraits, Lyapunov exponents, Poincaré maps and bifurcation analysis. As we are aware that chaos
control of chaotic systems has also received a great attention due to their potential applications in physics, chemical
reactor, biological networks, artificial neural networks, telecommunications etc. Basically, chaos controlling is the
stabilization of an unstable periodic orbits or equilibria by means of tiny perturbations of the system. Ott, Grebogi,
and Yorke [277] firstly proposed the method of chaos control and after that many useful and powerful methods have
been developed for sustained development of humanity. These may include optimal control [9, [T], synchronization
[[Z], adaptive control [?4], state-feedback control [Bf], sliding mode control [29], time-delayed feedback control [S],
etc. So, in this paper sophisticated computational strategy has been proposed for hyper-chaos and optimal control. To
obtain the optimal controllers for the new hyper-chaotic system Pontryagins minimum principle (PMP) [IZ] has been
applied. Furthermore, an adaptive control law is introduced to stabilize the new 4-D Hyper-chaos system with unknown
parameters. The adaptive control results derived in this paper are established by using the Lyapunov stability theory
[6]. The numerical simulation results are strong enough to show the efficiency and accuracy of the proposed technique.

The paper is organised as: Section 2 contains the formulation of a new 4-D Hyper-chaotic system. Section 3 is
about the analysis of the presented new hyper-chaotic system. In Section 4, Hyper-chaos and optimal control law are
formulated for new 4-D Hyper-chaos system along with the simulations. In Section 5, an adaptive control law is devised
to stabilize the new 4-D Hyper-chaotic system. The computational studies of the unknown parameters have also been
preformed in this section. Finally, in the last section conclusions are drawn.

2 Description and Formulation of a Novel Hyper-Chaotic System

Our new hyper-chaotic system is based on chaotic system presented by Zhang, et al. [B8], which can be given as:
X = —ax+byz,
y = —cy® +dxz,
Z = ez— fxy. 2.1

where x, y and z are the state variables and a,b,c,d,e, f are the positive constants. The above system shows chaotic
behaviour when parameters are chosen as a = 2,b = 10,c = 6,d =3,e =3, f = 1. To generate hyper-chaos from the
dissipative autonomous systems, the state equation must satisfy the following two basic conditions:

e The dimension and order of the state equations should to be at least 4 and 2 respectively.

e The system must have at least two positive Lyapunov exponents with the condition that the sum of all Lyapunov
exponents is less than zero.

Based on system (1) and keeping in mind the above two basic conditions, we construct novel hyper-chaotic system
defined by:

X —ax+ byz,

y = —cy3 +dxz+xw,

z = dz—xy,

W o= kw+zg, (2.2)
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where [x,y,z,w]T € R*is the state vector, and a, b,c,d and k are positive constant parameters of the system.

More precisely, we analyzed some complicated dynamics in detail by using phase portraits, time series, Lyapunov
exponents, bifurcation diagrams and Poincaré maps. We have shown that the system has two positive Lyapunov ex-
ponents, so system orbits extensively expand in some directions but rapidly shrink in some other directions, which
significantly increase the system’s orbital degree of disorder and randomness. We have discussed the detailed bifur-
cation analysis, which illustrates the evolution processes of the system among sinks, periodic orbits, chaos and hyper
chaos. Also, by using phase portraits we have observed that the four-wing transient chaos occurs in the system. More-
over, we have performed Poincaré map analysis, which shows that the system has extremely rich dynamics. The basic
properties of equilibrium points of the our new system have are also been discussed in detail.

3 Dynamical Analysis of the Novel Hyper-Chaotic System

3.1 Lyapunov Exponent, Phase Portraits and Time Responses.

In this section, we use the fourth order Runge-kutta method in Matlab to solve system () for the parameters and initial
conditions are a = 2.6,b = 10,c = 7,d = 3,k = .05 and (.4,—.5,—.1,.7) respectively. The Lyapunov exponents are
calculated as LE] = .46058,LE; = .15104, LE3 = 0.0006415 and LE4 = —18.1521. It is clear that LE; = 0.0006415 is
very close to 0. As, for a hyper-chaotic character we need at least two positive Lyapunov exponents, one null Lyapunov
exponent along the flow and one negative Lyapunov exponent. To ensure the boundness of the solution and the minimal
dimension for a (continuous) hyper-chaotic system must be 4. Thus for the values of chosen parameters, the system
exhibits hyper-chaos. Lyapunov exponents are shown in Figure . Also, the complex dynamic behaviour of system
(I2) via plotting phase portraits and time series are displayed in Figure @ and Figure B respectively.

Dynamics of Lyapunov Exponents for new hyperchaotic system
I I I

LE= 046058 LE,= 015104

LE,= 0.00064151

LE= -18.1521

50 100 150 200 250 300

Figure 1: Lyapunov exponents graph for new 4-D Hyper-chaos systems
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3.2 Kaplan-Yorke Dimension

The Kaplan-Yorke dimension of a chaotic system is defined as

/o LE;
Dgy=j+Y o
ky =]+ |LEj+1|’

i=1

3.1)

where j is the largest integer such that the sum of the j largest Lyapunov exponents is still non-negative. Dy represents
an upper bound for the information dimension of the system. The Kaplan Yorke dimension of system (Z2) is Dxy =
3.03372951.
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Figure 2: Phase portrait of a novel hyper-chaotic systems
3.3 Dissipation
The divergence of a vector field F of the system (Z2) can be obtained as:
0 0 d 0
v.F:i+ﬁ+£+£=—a—3cy2+d+k7 (3.2)
dx dy dz dw
where
F = (f1, /2, 3, f1) = (—ax + byz, —cy’ + dxz + xw,dz — xy,kw + z). (3.3)

So, system (Z2)would be dissipative \7.F < 0 i.e when —a — 3¢y +d +k < 0 and will converges to subset of measure

zero volume according to ‘Z—f = ¢~ 473" +d+k This implies that all system orbits will ultimately be confined to a specific
subset of zero volume and the asymptotic motion dies onto an attractor. It proves the existence of an attractor which is
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witnessed in Figure D. Since, the sum of all the Lyapunov exponents of the new hyper-chaotic system is also negative,
thus we conclude that the new hyper-chaotic system is dissipative.

Time Series of x Time Series of y
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Time Series of z Time Series of w
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-5 -10
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Figure 3: Time series of a novel hyper-chaotic systems

3.4 Symmetry and Invariance

The novel hyper-chaotic system (Z2) is invariant under the coordinate transformation (x,y,z,w) — (x,—y,z,w) and
(x, —y, —z,—w). Thereby the system (Z2) is symmetrical for any choice of the values of system parameters.

3.5 Equilibrium Points and Stability Analysis

The equilibria of new 4-D system () can be calculated by solving the following equations :

—ax+byz = 0,
—cy +dxz = 0,
dz—xy = 0,
kw+z 0. (3.4)

On solving above equation with the chosen parameters as a =2.6,b = 10,c = 7,d = 3 and k = .05, we get five Equilib-
rium points for new 4-D hyper-chaos system which are given by:

Ei (0,0,0,0),

E» = (0.—0.981595i,0.883176,0. —0.288974i,0. +5.77948i),

E; = (0.+0.981595i,0.883176,0. 4 0.288974i,0. — 5.77948i),

E; = (0.4+0.981595i,—0.883176,0. — 0.288974i,0.+5.77948i),

Es = (0.—0.981595i,—0.883176,0. +0.288974i,0. — 5.77948i). (3.5)

It is very interesting to note that out of these five equilibrium points four equilibrium points i.e E, E3, E4 and Es lie in
the imaginary plane and one equilibrium point £ is only one point which lies in the real plane. But here, we neglect the
existence of complex equilibrium points because all the realizable models have real signals or states which indicates that
the states will never reach to these equilibrium points as they are not real. Also, from the definition of the equilibrium
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point: it is the point that if the states are that point they will stay forever, so the states must be complex and this is
impossible in practice. Thus, keeping it in mind we neglect all the complex equilibrium points and consider only one
equilibrium point i.e E; = (0,0,0,0). It is the beauty of the system that in spite of being five equilibrium point we only
consider only one equilibrium points and investigate the complex dynamic behavior.

Proposition 1: The equilibrium point E; of new Hyper-chaotic system (Z2) is unstable for chosen parameter values
a=2.6,b=10,c=7,d =3 and k = .05.

Proof: The Jacobian matrix for the Hyper-chaos system () is given by
—a bz by 0
dz4+w —3c¢cy* dx «x
—y —x d 0
0 0 1 %k

with the parameter values a = 2.6,b = 10,c = 7,d = 3 and k = .05, the system (Z2) has E;,E;,E3,E4 and E5 five
equilibrium points given by (B33). Out of which only equilibrium point E is real. So we discuss the stability only about
E;.

The eigenvalues of the jacobian matrix J at the equilibrium point E; = (0,0,0,0) are given by: A; = 3,4, =
—2.6,A3 = 0.05,44 = 0. Tt is observed that two eigenvalues Ajand A3 are positive. Thus, according to Lyapunov
stability theory, the equilibrium point E; is unstable. Hence, it is established that the equilibrium point E; of new
Hyper-chaotic system (Z2) is unstable for the chosen parameters a =2.6,b = 10,c =7,d = 3 and k = 0.05.

J= 3.6)

3.6 Poincaré Mapping

The Poincaré map is one such computational technique which helps to visualise the folding properties of chaos. This
also provides the idea of the bifurcation. When a = 2.6,b = 10,c = 7,d = 3 and k = 0.05 and on taking the different
crossing planes such as z =0,y = 0,x = 0. The corresponding Poincaré maps on the x —y,x —w,z—w and y — w planes
are displayed in Figure 8. Figure B illustrates that, system (ZZ) has a self-similar structure and some sheets are folded
and wing type structure is visualized.

3.7 Bifurcation

When the parameters b = 10,¢c = 7,d = 3 and k = .05 are fixed while parameter ‘a’ is varied, the corresponding
bifurcation diagram of state y with respect to ‘a’ is obtained as shown in Figure B. it is easy to see the chaotic behavior
of new hyper-chaotic system when the parameter ‘a’€ [0,4].
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Figure 4: Poincaré section for new hyper-chaotic systems (Z2) with the parameters @ = 2.6,b = 10,c =7,d = 3 and
k =.05. (a) Projection on x — y plane with z = 0; (b) Projection on x — W plane with y = 0; (c) Projection on z — w plane
with y = 0; (d) Projection on y — w plane with x =0

0.5 1 15 2 25 3 35 4

Figure 5: Bifurcation diagram of new hyper chaotic system (Z=2) versus the parameter ‘a’€ [0,4] when b = 10,¢c =
7,d =3,k=.05

4 Hyper-Chaos and Optimal Control of a New 4-d Hyper-chaotic System

In this section, we apply Pontryagin minimum principle (PMP) to achieve optimal hyper-chaos control of the new
hyper-chaotic system (Z2) at the equilibrium point E£; = (0,0,0,0).
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4.1 Methodology

For the purpose of optimal hyper-chaos control, we represent new 4-D Hyper-chaotic system (Z72) as:

= —ax+byz+ U,

= —cy3 +dxz+xw+ Uy,

= dz—xy+Us,

= kw+z+Us. 4.1)

S < =

where, U, U,,Us and Uy are the control inputs which should be satisfied by the optimal conditions at the equilibrium
point E; = (0,0,0,0) obtained by PMP with respect to the cost function J. The main strategy to control the system is
to design the optimal control inputs U;,U,,Us and Uy such that the state trajectories tends to the unstable equilibrium
point E; = (0,0,0,0) in a given finite time interval [0,¢/]. Thus, the boundary conditions are:

x(0) =x0, x(ty) =%,
¥(0) =yo, ¥(tr) =75,
2(0) =20, z(ty) =73,
w(0) =wo, w(ty)=w 4.2)

where X,y,7Z and w denote the coordinates of the equilibrium points. The objective functional to be minimized is defined
as:

.
J= 1/2/0 ! (a1 (x—%)2 4+ (y—5)> + a3(z—2)> + ou(w —W)? + BiUE + BoU3 + BsU3Z + By U2 dt, 4.3)

where o; and B;(i = 1,2,3,4) are positive constants. Now, we will derive the optimality conditions as a nonlinear
two point boundary value problem (TPBVP) arising in the Pontryagin minimum principle (PMP). The corresponding
Hamiltonian function H will be:

H=—1/2[a1(x—X)*+ 0 (y—)* + as(z—2)* + o4 (w—W)*) + B1UT + BoU5 + 3Us3 + BaUy]

4.4
+ A [—ax + byz 4 Ur) 4 Aa[—cy® + dxz+xw + Us] + A3[dz — xy + Us] + Ag[kw + 2+ U],

where 41,4, 43 and A4 are the costate variables. On applying the Pontryagin minimum principle (PMP), we obtain the
Hamiltonian equations:

. oH
A'l - 7%7
- 0H
AZ - 787)7,
. JH
2'3 - _8717
. 0H
A4 o “4.5)
From (E4) and (E3), we have:
/'1;1 = oy(x—X)+ar — (dz+w)Ay +yAs,
AL = o (y—3y) — bzl +3¢y*Aa 4+ x23,
l.3 = 063(2—2) —byA —dxAy —dA3 — A4,
}{4 = OC4(W —W) —xAy — kAq. 4.6)

The optimal control functions that have to be used are determined from the condition g—g =0(i=1,2,3,4). Hence, we
1

get

ur =i (i=1,2,3,4). %))

1

1
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After substituting the value from (E=2) into (E=4), we get the controlled non linear state equations:

A
X = —ax+byz+—1,
B
. 3 A2
y = —cy +dxzt+xw+ —,
B2
A3
z = di—xy+ -,
-
A
W= kw+z+[3—:. 4.8)

The above system of nonlinear ordinary differential equations together with the (BE6) forms a complete system for
solving the optimal control of the new hyper-chaos system. The boundary conditions for this system have been given
in (E2). On solving the above nonlinear two point boundary value problem, we can obtain the optimal control law and

the optimal state trajectories.

4.2 Numerical Simulations and Discussions

In this section we demonstrate the effectiveness and feasibility of the proposed optimal control scheme by using the
MATLAB’s bvp4c in-built solver. We solve the system (E8) along with (E-f) and using the boundary conditions given
in (E2). For solving we choose the finite time interval as: [0,7], initial values and system parameters for the new 4-d
hyper-chaotic system are chosen as: x(0) = .4,y(0) = —.5,z(0) = —.1,w(0) = .7,a =2.6,b = 10,c =7,d = 3 and
k = 0.05. Also, the positive constants in objective function J for the equilibrium point E; are chosen as: ¢; = 5 and

Bi=2,fori=1,2,3 and 4.

0.04

—_— X(t)
==y - U
Sl b g

w(t) 002l ® o Us(t i

-0.02

Control

s -004f

-0.06 !

-0.08

Figure 6: The stabilized behaviour of states and control functions for the equilibrium points E;

Figures B exhibit the controlled behaviour of the states variables (x,y,z,w) as all the states trajectories converge to
the equilibrium point E; = (0,0,0,0) with in the chosen time frame [0,7]. It also displays the controlled behaviour of

controllers (U, U,, Us, Uy) for the equilibrium point E of the controlled new hyper-chaotic system.
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5 Adaptive Control Approach for New 4-D Hyper-Chaos System with Un-
known Parameters
This section aims to find an adaptive control law along with a parameter estimation update law for the new 4-D hyper-

chaos system (), such that all the state variables x,y,z and w converges to its equilibrium points as ‘¢” approaches to
infinity.

5.1 Design of the Adaptive Controllers

Let’s assume that the controlled system can be written in the form:

= —ax+byz+Vi,

—cy3 +dxz4+xw+Vy,

= dz—xy+Vs,

= kw+z+Vy, 5.1

S e =
I

where x,y,z and w are the states of the system and a,b,c,d and k are the unknown parameters of the system and
V1,Va, V3, V4 are the adaptive controllers to be designed.

Theorem 5.1 The new hyper-chaotic system () with unknown parameters is asymptotically and globally stabilized
for all initial values of states (x(0),y(0),z(0),w(0))€ R* by the following adaptive control law:

Vi = aix—biyz—{1(x—X),

Vi = cy —dxz—xw—Lb(y-Y),

Vi = —diz+xy—{3(z—73),

Vi, = —klw—z—€4(w —-w), 5.2)

and the parameter estimation update law:

d = —(x—=X)x+4s5(a—ay),

by = (x—X)yz+Lls(b—by),

= ==y +blc—ca),

di = (z-2)z+(—)xz+ls(d—d),

ki = (w—w)w+Llo(k—ki), (5.3)

where ay,b1,c1,d1,k; are estimated values of uncertain parameters a,b,c,d,k and ¢;(i = 1,...,9) are the positive con-
stants.
Proof. After substituting (82) into (&), we get the closed-loop system as:

i o= —(a—axt(b—b)yz—li(x—%),

y = _(c_cl)y3+(d—d1)xz—€2(y_y)v

;= (d—d)z—6:(z—-3),

W= (k—k)w—Ly(w—W). S

For the derivation of the update law for adjusting the parameter estimates, the lyapunov approach is used. We define the
lyapunov function as:

V(x,y,2:wd,b,6,d,k k) = 1/2((x =3+ (y =3 + (=2 + (w=w)* + & + b’ + & + & + 1) (5.5)

whered=a—a;,b=b—b|,i=c—c;,d=d—d; andk =k —kj.
On taking the time derivative of the lyapunov function V, we obtain

V=(x—X)i+ -3+ (—2)z+ (w— W)+ ad -+ bb+ éé+ dd + kk. (5.6)
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On substituting (583)and (8-4) in (B6), the derivative of lyapunov function with respect to time becomes:

V=—"ti(x=3%)—l(y—7)—l3(z—2)* — la(w—W)?

5.7
—ts(a—a1)® —ls(b—b1)* —t7(c—c1)* = lg(d —di)* — Lo (k— k).

Since the lyapunov function V is a positive definite function on R° and clearly its derivatives V on R is negative
definite function, then by using lyapunov stability theory, the controlled system (1) converge asymptotically and
globally for all initial values to its equilibrium points with the adaptive control law (82) and the parameter update law
(B3). This completes the proof.

T 12

10 B

©

Parameter estimates

Figure 7: Time history of states function and parameter estimates for the equilibrium points £}

5.2 Numerical Simulations and Discussions

Numerical results are presented to demonstrate the effectiveness of the proposed adaptive control technique. For simula-
tion we solve the controlled hyper-chaotic system (511) with the adaptive control law (82) and the parameter update law
(B3) by using MATLAB’s ode45 in-built solver. The initial and parameters values are respectively chosen as: x(0) =
4,y(0) =—-.5,2(0) = —.1,w(0) = .7, a = 2.6,b = 10,c = 7,d = 3 and k = .05 for the controlled new 4d hyper-chaos
system. Also, for adaptive and update laws,we take ¢; = 10,0, = 10,¢3 = 10,44 = 10,¢5 = 10,{c = 10,¢7 = 10,43 = 10
and {9 = 10. Further, the initial values for parameter estimates are chosen as: a; = 0,b; =0,¢; =0,d; =0and k; =0.
From Figure [, it is clear that the trajectories of the controlled new hyper-chaotic system (B-1l) converges asymptoti-
cally to E; = (0,0,0,0) with time ‘¢’ and this figure also shows that the parameter estimates a; (¢),b1(¢),c1(),d; (¢) and
ki () actually converge to the system parameter values a = 2.6,b = 10,c = 7,d = 3 and k = .05 asymptotically with
time. Thus, our desired goal of controlling the hyper-chaos and estimating the unknown parameters has been achieved
successfully.

6 Conclusion

In present manuscript, we have introduced a new hyper-chaotic system with more complicated dynamical properties
which have been successfully validated analytically and numerically. Dynamical properties of the new hyper chaotic
system are analysed by means of time series, lyapunov exponent, equilibrium points. Also, poincaré and bifurcation
analysis have been executed for the chosen parameters. An optimal control law has been formulated for the new 4-D
hyper-chaos system, which is based on the PMP. Furthermore, an adaptive control law has been devised to stabilize
the new 4-D hyper-chaos system with unknown parameters. Effectiveness and feasibility of results are validated via
numerical simulations which are performed by using MATLAB’S bvp4c and ode-45 in-built solver. Remarkably, our
analytic and computational results are in an excellent agreement.



Journal of Uncertain Systems, Vol.12, No.2, pp.91-104, 2018 103

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]
[16]
[17]
[18]

[19]

(20]
(21]

[22]

(23]

[24]

[25]

[26]

(27]
(28]

Aihara, K., Takabe, T., and M. Toyoda, Chaotic neural networks, Physics Letters A, vol.144, pp.333-340, 1990.

Barboza, R., Dynamics of a hyperchaotic Lorenz system, International Journal of Bifurcation and Chaos, vol.17, no.12,
pp-4285—-4294, 2007.

Cang, S., Qi, G.Y., and Z.Q. Chen, A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic
autonomous system, Nonlinear Dynamics, vol.59, pp.515-527, 2010.

Chen, G.R., and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, Singapore,
1998.

Chen, G., and X. Dong, Form Chaos to Order: Perspectives, Methodologies and Applications, World Scientific, Singapore,
1998.

Chen, A., Lu, J., L, J., and S. Yu, Generating hyperchaotic Lii attractor via state feedback control, Physica A, vol.364, pp.103—
110, 2006.

Chen, C.H., Sheu, L.J., Chen, H.K., Chen, J.H., Wang, H.C., Chao, Y.C., and Y.K. Lin, A new hyper-chaotic system and its
synchronization, Nonlinear Analysis: Real World Applications, vol.10, pp.2088-2096, 2009.

Chen, Z., Yang, Y., Qi, G., and Z. Yuan, A novel hyperchaos system only with one equilibrium, Physics Letters A, vol.360,
pp-696-701, 2007.

Effati, S., Saberi-Nadjafi, J., and S. Nik, Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic system,
Applied Mathematical Modelling, vol.38, pp.759-774, 2014.

El-Gohary, A., and I.A. Alwasel, The chaos and optimal control of cancer model with complete unknown parameters, Chaos
Solitons & Fractal, vol.42, pp.2865-2874, 2009.

Giuseppe, G., Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems, Chinese Physics B, vol.17,
pp.3247-3251, 2008.

Grassi, G., Severance, F.L., and D.A. Miller, Multi-wing hyperchaotic attractors from coupled Lorenz systems, Chaos Solitons
& Fractals, vol.41, pp.284-291, 2009.

Guan, Z.H., Lai, Q., Chi, M., Cheng, X.M., and F. Liu, Analysis of a new three-dimensional system with multiple chaotic
attractors, Nonlinear Dynamics, vol.75, pp.331-343, 2014.

Jia, Q., Generation and suppression of a new hyperchaotic system with double hyperchaotic attractors, Physics Letters A,
vol.371, pp.410-415, 2007.

Jia, Q., Hyperchaos generated from the Lorenz chaotic system and its control, Physics Letters A, vol.366, pp.217-222, 2007.
Khalil, H.K., Nonlinear Systems, 3rd Edition, Prentice Hall, 2002.
Kirk, D.E., Optimal Control Theory: An Introduction, Prentice-Hall, 1970.

Li, Y., Tang, WK.S., and G. Chen, Generating hyperchaos via state feedback control, International Journal of Bifurcation and
Chaos in Applied Sciences and Engineering, vol.15, no.10, pp.3367-3375, 2005.

Li, Y., Tang, W.K.S., and G. Chen, Hyperchaos evolved from the generalized Lorenz equation, International Journal of Circuit
Theory & Applications, vol.33, pp.235-251, 2005.

Liu, C., A new hyperchaotic dynamical system, Chinese Physics, vol.16, no.11, pp.3279-3284, 2007.

Liu, N., and Z.H. Guan, Chaotication for a class of cellular neural networks with distributed delays, Physics Letters A, vol.375,
pp-463-467, 2011.

Liu, L., Liu, C., and Y. Zhang, Analysis of a novel fourdimensional hyperchaotic system, Chinese Journal of Physics, vol.46,
pp-386-393, 2008.

Mahmoud, G.M., Al-Kashif, M.A., and A.A. Farghaly, Chaotic and hyperchaotic attractors of a complex nonlinear system,
Journal of Physics A Mathematical & Theoretical, vol.41, pp.295-302, 2008.

Nik, H.S., and M. Golchaman, Chaos control of a bounded 4D chaotic system, Neural Computing and Applications, vol.25,
pp.683-692, 2014.

Nikolov, S., and S. Clodong, Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyper-
chaotic systems, Chaos, Solitons & Fractals, vol.22, no.2, pp.407-431, 2004.

Niu, Y., Wang, X., Wang, M., and H. Zhang, A new hyperchaotic system and its circuit implementation, Communications in
Nonlinear Science and Numerical Simulation, vol.15, pp.3518-3524, 2010.

Ott, E., Grebogi, C., and J.A. Yorke, Controlling chaos, Physical Review Letters, vol.64, pp.1196-1199, 1990.
Qi, G., Wyk, M.A., Wyk, B.J., and G. Chen, On a new hyperchaotic system, Physics Letters A, vol.372, pp.124-136, 2008.



104

[29]

[30]
(31]
(32]

(33]

[34]
[35]

(36]

[37]

(38]

[39]

A. Khan and A. Tyagi: Optimal and Adaptive Control of a New Hyper-Chaotic System about Its Unstable Equilibrium Points

Roopaei, M., Sahraei, B.R., and T.C. Lin, Adaptive sliding mode control in a novel class of chaotic systems, Communications
in Nonlinear Science and Numerical Simulation, vol.15, pp.4158—4170, 2010.

Rossler, O., An equation for hyperchaos, Physics Letters A, vol.71, pp.155-157, 1979.
Schiff, S.J., Jerger, D.H., and T. Duong, Controlling chaos in the brain, Nature, vol.370, pp.615-620, 1994.

Thamilmaran, K., Lakshmanan, M., and A. Venkatesan, Hyperchaos in a modified canonical Chua’s circuit, International
Journal of Bifurcation & Chaos, vol.14, pp.221-243, 2004.

Wang, J.Z., Chen, Z.Q., and Z.Z. Yuan, The generation of a hyperchaotic system based on a three-dimensional autonomous
chaotic system, Chinese Physics, vol.15, pp.1216-1225, 2006.

Wang, X., and M. Wang, A hyperchaos generated from Lorenz system, Physica A, vol.387, no.14, pp.3751-3758, 2008.

Wu, WJ., Chan, Z.Q., and Z.Z. Yuan, Local bifurcation analysis of a four-dimensional hyperchaotic system, Chinese Physics
B, vol.17, pp.2420-2432, 2008.

Yu, W.G., Stabilization of three-dimensional chaotic systems via single state feedback controller, Physics Letters A, vol.374,
pp-1488-1492, 2010.

Zarei, A., Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors,
Nonlinear Dynamics, vol.81, pp.585-605, 2015.

Zhang, M., and Q. Han, Dynamic analysis of an autonomous chaotic system with cubicnonlinearity, Optik-International Journal
for Light and Electron Optics, vol.127, pp.4315-4319, 2016.

Zuo, T., Sun, K., Ai, X., and H. Wang, High-order grid multiscroll chaotic attractor generated by the second-generation current
conveyor circuit, IEEE Transactions on Circuits & Systems 1l Express Briefs, vol.61, pp.818-822, 2014.



	JUS-12-2-2.pdf
	Introduction
	Description and Formulation of a Novel Hyper-Chaotic System
	Dynamical Analysis of the Novel Hyper-Chaotic System
	 Lyapunov Exponent, Phase Portraits and Time Responses.
	Kaplan-Yorke Dimension
	Dissipation
	Symmetry and Invariance
	Equilibrium Points and Stability Analysis
	Poincaré Mapping
	Bifurcation

	Hyper-Chaos and Optimal Control of a New 4-d Hyper-chaotic System
	Methodology
	Numerical Simulations and Discussions

	Adaptive Control Approach for New 4-D Hyper-Chaos System with Unknown Parameters 
	Design of the Adaptive Controllers
	Numerical Simulations and Discussions

	Conclusion




