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Abstract

An m-polar fuzzy model is useful for multi-polar information, multi-agent, multi-attribute and multi-
object network models which gives more precision, flexibility, and comparability to the system as compared
to the classical, fuzzy and bipolar fuzzy models. In this paper, m-polar fuzzy sets are used to introduce the
notion of m-polar psi-morphism on product m-polar fuzzy graph (mFG). The action of this morphism is
studied and established some results on weak and co-weak isomorphism. d2-degree and total d2-degree of
a vertex in product mFG are defined and studied their properties. A real life situation has been modeled
as an application of product mFG.
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1 Introduction

After the introduction of fuzzy sets by Zadeh [30] in 1965, fuzzy set theory is included as large research fields.
Since then, the theory of fuzzy sets has become a vigorous area of research in different disciplines including
medical and life sciences, management sciences, social sciences engineering, statistic, graph theory, artificial
intelligence, signal processing, multi agent systems, decision making and automata theory. In a fuzzy set, each
element is associated with a membership value selected from the interval [0,1]. Instead of using particular
membership value as in fuzzy sets, m-polar fuzzy set can be used to represent the vagueness of a set more
perfectly. In 2014, Chen et al. [6] introduced the notion of m-polar fuzzy set as a generalization of fuzzy set
theory. The membership values in m-polar fuzzy sets is more expressive in capturing uncertainty of data.

The idea behind this is that “multipolar information” exists because data of real world problems are
sometimes come from multiple agents. m-polar fuzzy sets allow more graphical representation of vague data,
which facilitates significantly better analysis in data relationships, incompleteness, and similarity measures.

Graph theory besides being a well developed branch of Mathematics, it is an important tool for mathe-
matical modeling. Realizing the importance, Rosenfeld [22] introduced the concept of fuzzy graphs, Mordeson
and Nair [15] discussed about the properties of fuzzy graphs and hypergraphs. After that, the operation of
union, join, Cartesian product and composition on two fuzzy graphs was defined by Mordeson and Peng [16].
Sunitha and Kumar [27] further studied the other properties of fuzzy graphs. The concept of weak isomor-
phism, co-weak isomorphism and isomorphism between fuzzy graphs was introduced by Bhutani in [4]. After
that several researchers are working on fuzzy graphs like in [3, 5, 13, 14, 17, 18, 23, 25, 26].

In 2011, using the concepts of bipolar fuzzy sets, Akram [1] introduced the bipolar fuzzy graphs and
defined different operations on it. Rashmanlou et al. [19, 20, 21] studied bipolar fuzzy graphs, bipolar fuzzy
graphs with categorical properties, product of bipolar fuzzy graphs and their degrees, etc. Some work on
bipolar fuzzy graphs may be found on [12, 24, 28, 29].

Chen et al. [6] first introduced the concept of mFGs. Ghorai and Pal studied many properties of generalized
mFGs [8], defined operations, density of mFGs [7], introduced the concept of m-polar fuzzy planar graphs
[10, 11] and studied isomorphic properties of them [9].

This paper is organized in the following manner. In Section 1, introduction is given and the literature
review is illustrated. Section 2 represents a brief study of some graph theoretic concept used in this paper.
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In Section 3, the notion of m-polar ψ-morphism is introduced on product mFG as a generalization of our
usual homomorphism. The action of this morphism is studied and established some results on weak and
co-weak isomorphism. d2-degree and total d2-degree of a vertex in product mFGs are defined and studied
their properties. In Section 4, a real life situation have been modeled. Section 5 represents the conclusion of
the paper.

2 Preliminaries

A graph is an ordered pair G∗ = (V,E), where V is the set of vertices of G∗ and E is the set of all edges of
G∗. Two vertices x and y in an undirected graph G∗ are said to be adjacent in G∗ if xy is an edge of G∗. A
simple graph is an undirected graph that has no loops and no more than one edge between any two different
vertices. A subgraph of a graph G∗ = (V,E) is a graph H = (W,F ), where W ⊆ V and F ⊆ E. The degree
of a vertex in G is the number of edges incident with the vertex.

A fuzzy graph with V as the underlying set is a triplet G = (V, σ, µ), where σ : V → [0, 1] is a fuzzy subset
of V and µ : V × V → [0, 1] is fuzzy relation on σ such that µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ V .

Here, [0, 1]m (m-power of [0,1]) is considered to be a poset with point-wise order ≤, where m is an natural
number. “≤” is defined by x ≤ y ⇔ for each i = 1, 2, . . . ,m; pi(x) ≤ pi(y) where x, y ∈ [0, 1]m and
pi : [0, 1]m → [0, 1] is the i-th projection mapping.

Definition 2.1. [6] An m-polar fuzzy set
(
or a [0, 1]m-set

)
on X is a mapping A : X → [0, 1]m. The set of

all m-polar fuzzy sets on X is denoted by m(X).

Throughout the paper, G∗ represents a crisp graph and G = (V,A,B) represents a product mFG of G∗.

Definition 2.2. [7] A product m-polar fuzzy graph of a graph G∗ = (V,E) is a pair G = (V,A,B) where

A : V → [0, 1]m is an m-polar fuzzy set in V and B : Ṽ 2 → [0, 1]m is an m-polar fuzzy set in Ṽ 2 such that

pi ◦ B(xy) ≤ pi ◦ A(x) × pi ◦ A(y) for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m and B(xy) = 0 for all xy ∈ Ṽ 2 − E,(
0 = (0, 0, . . . , 0) is the smallest element in [0, 1]m

)
.

Definition 2.3. [8] G is called strong if pi ◦B(xy) = pi ◦A(x)× pi ◦A(y) for all xy ∈ E, i = 1, 2, . . . ,m.

G is called complete if pi ◦B(xy) = pi ◦A(x)× pi ◦A(y) for all x, y ∈ V , i = 1, 2, . . . ,m.

The complement of G is a product mFG G = (V,A,B) where A = A and B is defined by pi ◦ B(xy) =

pi ◦A(x)× pi ◦A(y)− pi ◦B(xy), xy ∈ Ṽ 2 and i = 1, 2, . . . ,m.

Definition 2.4. [8] Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two product mFGs of the graphs G∗1 =
(V1, E1) and G∗2 = (V2, E2) respectively.

A weak isomorphism between G1 and G2 is a bijective mapping φ : V1 → V2 such that φ is a homomorphism
and pi ◦A1(x1) = pi ◦A2(φ(x1)) for all x1 ∈ V1 for i = 1, 2, . . . ,m.

A co-weak isomorphism between G1 and G2 is a bijective mapping φ : V1 → V2 such that φ is a homomor-

phism and pi ◦B1(x1y1) = pi ◦B2(φ(x1y1)) for all x1y1 ∈ Ṽ 2
1 for i = 1, 2, . . . ,m.

Definition 2.5. Let G = (V,A,B) be a product m-polar fuzzy graph of G∗ = (V,E).

(i) The neighborhood degree of a vertex v is defined as dN (v) =
(
d1N (v), d2N (v), · · · , dmN (v)

)
where diN (v) =∑

u∈N(v)

pi ◦A(u), i = 1, 2, . . . ,m.

(ii) The degree of a vertex v in G is defined by dG(v) =
(
d1G(v), d2G(v), · · · , dmG (v)

)
, where diG(v) =

∑
u 6=v
uv∈E

pi ◦

B(uv), i = 1, 2, . . . ,m. If all the vertices of G have same degree, then G is called regular product mFG.

(iii) The closed degree of a vertex v is defined by dG[v] =
(
d1G[v], d2G[v], · · · , dmG [v]

)
, where diG[v] = diG(v) +

pi ◦ A(v), i = 1, 2, . . . ,m. If each vertex of G has same closed degree, then G is called totally regular
product mFG.
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3 Regularity and Isomorphism on mFGs

Regular graphs are the most widely studied classes. For example, regular fuzzy graphs play a key role in
designing reliable communication networks. Here, the notion of m-polar ψ-morphism is introduced in product
mFG. Also, d2-degree, total d2-degree, (2, k)-regularity and totally (2, k)-regularity are defined in product
mFG and studied some important properties of them.

Definition 3.1. Let G be a product mFG. The d2- degree of a vertex u in G is d2(u) = (d12(u), d22(u), · · · , dm2 (u))
where di2(u) =

∑
pi ◦B2(uv) is such that pi ◦B2(uv) = sup{pi ◦B(uu1) ∧ pi ◦B(u1v)}.

The minimum d2-degree of G is denoted as δ2(G) = (δ12(G), δ22(G), · · · , δm2 (G)) where δi2(G) = ∧{di2(u) :
u ∈ V }. The maximum d2-degree of G is denoted as 42(G) = (41

2(G),42
2(G), · · · ,4m2 (G)) where 4i2(G) =

∨{di2(u) : u ∈ V }.

Example 3.2. Let G be a product 3-polar fuzzy graph where V = {u1, u2, u3, u4, u5} and E = {u1u2, u2u3,
u3u4, u4u5, u5u1} (see Fig. 1). By routine computations we have

d12(u1) = {0.3 ∧ 0.5}+ {0.3 ∧ 0.4} = 0.6, d22(u1) = {0.4 ∧ 0.4}+ {0.4 ∧ 0.2} = 0.6,
d32(u1) = {0.2 ∧ 0.1}+ {0.3 ∧ 0.2} = 0.3, d12(u2) = {0.5 ∧ 0.4}+ {0.3 ∧ 0.3} = 0.7,
d22(u2) = {0.4 ∧ 0.2}+ {0.4 ∧ 0.4} = 0.6, d32(u2) = {0.1 ∧ 0.1}+ {0.2 ∧ 0.3} = 0.3,
d12(u3) = {0.4 ∧ 0.4}+ {0.5 ∧ 0.3} = 0.7, d22(u3) = {0.2 ∧ 0.2}+ {0.4 ∧ 0.4} = 0.6,
d32(u3) = {0.1 ∧ 0.2}+ {0.1 ∧ 0.2} = 0.2.

Hence, d2(u1) = (0.6, 0.6, 0.3), d2(u2) = (0.7, 0.6, 0.3), d2(u3) = (0.7, 0.6, 0.2).
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u4(0.6, 0.3, 0.4)

u5(0.7, 0.7, 0.6)

u1(0.5, 0.7, 0.5)

u2(0.7, 0.6, 0.4)

u3(0.8, 0.7, 0.4)

(0.4, 0.2, 0.2)

(0.3, 0.4, 0.3) (0.3, 0.4, 0.2)

(0.5, 0.4, 0.1)

(0.4, 0.2, 0.1)

Figure 1: Product 3-polar fuzzy graph G

Definition 3.3. If d2(u) = k for all u ∈ V then G is said to be (2, k)- regular product mFG.

Example 3.4. Consider the product 3-polar fuzzy graph as in Fig. 2. Here, d2(u1) = d2(u2) = d2(u3) =
d2(u4) = (0.2, 0.2, 0.2). So, G is

(
2, (0.2, 0.2, 0.2)

)
-regular product 3-polar fuzzy graph.

tttt
u1(0.4, 0.5, 0.6)

(0.2, 0.2, 0.2)

u2(0.5, 0.6, 0.7)

(0.2, 0.2, 0.2) (0.2, 0.2, 0.2)

u3(0.7, 0.8, 0.9) u4(0.9, 0.9, 0.9)

Figure 2:
(
2, (0.2, 0.2, 0.2)

)
-regular product 3-polar fuzzy graph G

Definition 3.5. The total d2- degree of a vertex u ∈ V is defined as td2(u) = (td12(u), td22(u), · · · , tdm2 (u)),
where tdi2(u) =

∑
pi ◦B2(uv) + pi ◦A(u), i = 1, 2, . . . ,m.

Note 3.6. If each vertex of G has the same total d2-degree l, then G is said to be totally (2, l)-regular product
mFG.

Example 3.7. Consider the product 3-polar fuzzy graph G with the vertex set V = {u1, u2, u3, u4, u5} and
edge set E = {u1u2, u2u3, u3u4, u4u5, u5u1} (see Fig. 3).

We see that d2(u1) = (1, 0.3, 0.6), d2(u2) = (0.8, 0.2, 0.4), d2(u3) = (0.8, 0.3, 0.6), d2(u4) = (0.8, 0.2, 0.4),
d2(u5) = (0.8, 0.2, 0.4) and td2(u1) = td2(u2) = td2(u3) = td2(u4) = td2(u5) = (1.7, 0.9, 1.2). Since each
vertex has the same total d2-degree, therefore G is totally (2, (1.7, 0.9, 1.2))-regular product 3-polar fuzzy graph.
Although G is not (2, k)-regular.
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u4(0.9, 0.7, 0.8)

u5(0.9, 0.7, 0.8)

u1(0.7, 0.6, 0.6)

u2(0.9, 0.7, 0.8)

u3(0.9, 0.6, 0.6)

(0.5, 0.1, 0.2)

(0.5, 0.1, 0.2) (0.5, 0.2, 0.4)

(0.5, 0.2, 0.4)

(0.3, 0.1, 0.2)

Figure 3: Totally (2, (1.7, 0.9, 1.2))-totally regular product 3-polar fuzzy graph G

Theorem 3.8. Let G = (V,A,B) be a product mFG. Then A(u) = c = (c1, c2, · · · , cm) for all u ∈ V if and
only the following are equivalent:

(i) G is a (2, k)-regular product mFG,

(ii) G is a totally (2, k + c)-regular product mFG.

Proof. Suppose that A(u) = c = (c1, c2, · · · , cm) for all u ∈ V . We will show that the statements (i) and (ii)
are equivalent.

(i)⇒ (ii) : Let G be a (2, k)-regular product mFG. Therefore, d2(u) = k for all u ∈ V . Now, td2(u) = k+c
for all u ∈ V . So, G is totally (2, k + c)- regular.

(ii) ⇒ (i) : Now, suppose that G is totally (2, k + c)-regular. Then td2(u) = k + c for all u ∈ V , i.e.,
d2(u) +A(u) = k + c for all u ∈ V , i.e., d2(u) = k for all u ∈ V , i.e., G is k-regular.

Conversely, let (i) and (ii) are equivalent. Let G be both totally (2, k+ c)-regular and (2, k)-regular. Then
we have, td2(u) = k + c and d2(u) = k for all u ∈ V , i.e., d2(u) + A(u) = k + c and d2(u) = k for all u ∈ V .
So, A(u) = c for all u ∈ V . Hence the result.

Definition 3.9. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two product mFGs. Then a bijective function
ψ : V1 → V2 is called an m-polar morphism or m-polar ψ-morphism if there exist positive real numbers k1, k2
such that for i = 1, 2, . . . ,m

(i) pi ◦A2(ψ(u)) = k1pi ◦A1(u) for all u ∈ V1.

(ii) pi ◦B2(ψ(u)ψ(v)) = k2pi ◦B1(uv) for all uv ∈ Ṽ 2
1 .

In this case, ψ is called (k1, k2) m-polar ψ-morphism from G1 to G2. If k1 = k2 = k, then we call ψ an
m-polar k-morphism. When k = 1, we obtain usual m-polar morphism.

Note 3.10. Let G1 = (V1, A1, B1), G2 = (V2, A2, B2) and G3 = (V3, A3, B3) be three product mFGs of the
graphs G∗1 = (V1, E1), G∗2 = (V2, E2) and G∗3 = (V3, E3) respectively. A1, A2 and A3 denote the membership
function of the vertices in G1, G2, G3 respectively; B1, B2, B3 denote the membership function of the edges in
G1, G2, G3 respectively.

Theorem 3.11. The relation ψ-morphism is an equivalence relation in the collection of all product mFGs.

Proof. Let G be the collection of all product mFGs. Define a relation ‘∼’ on G ×G as follows: for G1, G2 ∈ G,
we say G1 ∼ G2 if and only if there exist a (k1, k2) m-polar ψ-morphism from G1 to G2 for some non-zero k1
and k2.

We show that ∼ is an equivalence relation. First we see that ∼ is reflexive by simply taking the identity
mapping from G1 onto itself.

Let G1, G2 ∈ G and G1 ∼ G2. Then there exists a (k1, k2) ψ-morphism from G1 to G2 for some non-zero
k1 and k2. Therefore pi ◦A2(ψ(u)) = k1pi ◦A1(u) for all u ∈ V1 and pi ◦B2(ψ(u)ψ(v)) = k2pi ◦B1(uv) for all

uv ∈ Ṽ 2
1 . Now consider the function ψ−1 : V2 → V1. Let x, y ∈ V2. Since ψ is bijective, therefore there exist

u, v ∈ V1 such that ψ(u) = x and ψ(v) = y. Then,

pi ◦A1(ψ−1(x)) = pi ◦A1(u) =
1

k1
pi ◦A2(ψ(u))
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and

pi ◦B1(ψ−1(x)ψ−1(y)) = pi ◦B1(uv) =
1

k2
pi ◦B2(ψ(u)ψ(v)) =

1

k2
pi ◦B2(xy)

for i = 1, 2, . . . ,m. Thus, ψ−1 is a ( 1
k1
, 1
k2

) m-polar morphism from G2 to G1. Hence G2 ∼ G1. So, ∼ is
symmetric.

Again let G1, G2, G3 ∈ G, G1 ∼ G2 and G2 ∼ G3. Then there exist a (k1, k2) m-polar ψ1 morphism from
G1 to G2 and a (k3, k4) m-polar ψ2 morphism from G2 to G3 for some non-zero real numbers k1, k2, k3 and

k4. Then, pi ◦ A2(ψ1(u)) = k1pi ◦ A1(u) for all u ∈ V1, pi ◦ B2(ψ1(u)ψ1(v)) = k2pi ◦ B1(uv) for all uv ∈ Ṽ 2
1

and pi ◦ A3(ψ2(u)) = k3pi ◦ A2(u) for all u ∈ V2 and pi ◦ B3(ψ2(u)ψ2(v)) = k4pi ◦ B2(uv) for all uv ∈ Ṽ 2
2 ,

i = 1, 2, . . . ,m.
Let ψ3 = ψ2 ◦ ψ1 : V1 → V3. Now,

pi ◦A3(ψ3(u)) = pi ◦A3(ψ2 ◦ ψ1(u)) = pi ◦A3(ψ2(ψ1(u))) = k3pi ◦A2(ψ1(u)) = k3k1pi ◦A1(u)

and

pi ◦B3(ψ3(u)ψ3(v)) = pi ◦B3(ψ2 ◦ ψ1(u)ψ2 ◦ ψ1(v)) = pi ◦B3(ψ2(ψ1(u))ψ2(ψ1(v)))

= k4pi ◦B2(ψ1(u)ψ1(v)) = k4k2pi ◦B2(uv), i = 1, 2, . . . ,m.

Thus, ψ3 is a (k3k1, k4k2) m-polar morphism from G1 to G3. Therefore, G1 ∼ G3 and hence ∼ is transitive.
So, the relation ∼ is an equivalence relation in the collection of all mFGs.

Theorem 3.12. Let G1 and G2 be two product mFGs and ψ be a (k1, k2) m-polar fuzzy morphism from G1

to G2 for some non-zero k1 and k2. Then the image of strong edges in G1 are also strong edges in G2 if and
only if k1 = k2.

Proof. Let u1v1 be a strong edge in G1 and k1 = k2. Since ψ is a (k1, k2) m-polar fuzzy morphism from G1

to G2, therefore for i = 1, 2, . . . ,m

pi ◦B2(ψ(u1)ψ(v1)) = k2pi ◦B1(u1v1)

= k2{pi ◦A1(u1)× pi ◦A1(v1)}
= k2pi ◦A1(u1)× k2pi ◦A1(v1)

= k1pi ◦A1(u1)× k1pi ◦A1(v1)

= pi ◦A2(u1)× pi ◦A2(v1).

So, the edge ψ(u1)ψ(v1) in G2 is strong.
Conversely, let u1v1 be a strong edge in G1 and its corresponding image ψ(u1)ψ(v1) in G2 is also strong.

Then we have,

k2pi ◦B1(u1v1) = pi ◦B2(ψ(u1)ψ(v1))

= pi ◦A2(ψ(u1))× pi ◦A2(ψ(v1))

= k1pi ◦A1(u1)× k1pi ◦A1(v1)

= k1{pi ◦A1(u1)× pi ◦A1(v1)}
= k1pi ◦B1(u1v1), i = 1, 2, . . . ,m.

This implies that k1 = k2. Hence the result.

Corollary 3.12.1. Let G1 and G2 be two product mFGs and G1 be a (k1, k2) m-polar fuzzy morphism to G2.
If G1 is strong, then G2 is strong if and only if k1 = k2.

Theorem 3.13. If the product mFG G1 is co-weak isomorphic to the product mFG G2 and G1 is regular,
then G2 is regular also.

Proof. Since G1 is co-weak isomorphic to G2, there exists a co-weak isomorphism φ : V1 → V2 which is bijective
such that pi ◦A1(u) ≤ pi ◦A2(φ(u)) and pi ◦B1(uv) = pi ◦B2(φ(u)φ(v)) for all u, v ∈ V1, i = 1, 2, . . . ,m.

Since G1 is regular, we have dG1
(u) = (c1, c2, . . . , cm) for all u ∈ V1.
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Now,

diG2
(φ(u)) =

∑
φ(u) 6=φ(v)
φ(u)φ(v)∈E2

pi ◦B2(φ(u)φ(v))

=
∑
u 6=v
uv∈E1

pi ◦B1(uv)

= ci, for all u ∈ V1, i = 1, 2, . . . ,m.

Hence, G2 is regular.

Remark 3.14. If the product mFG G1 is co-weak isomorphic to G2 and G1 is strong, then G2 need not be
strong.

Theorem 3.15. Let G1 and G2 be two product mFGs. If G1 is weak isomorphic to G2 and G1 is strong,
then G2 is also strong.

Proof. Since G1 is weak isomorphic to G2, there exists a weak isomorphism φ : V1 → V2 which is bijective

such that pi ◦ A1(u) = pi ◦ A2(φ(u)) for all u ∈ V1 and pi ◦ B1(uv) ≤ pi ◦ B2(φ(u)φ(v)) for all uv ∈ Ṽ 2
1 ,

i = 1, 2, . . . ,m.
As G1 is strong, pi ◦B1(uv) = pi ◦A1(u)× pi ◦A1(v) for all uv ∈ E1, i = 1, 2, . . . ,m. Now,

pi ◦B2(φ(u)φ(v)) ≥ pi ◦B1(uv)

= pi ◦A1(u)× pi ◦A1(v)

= pi ◦A2(φ(u))× pi ◦A2(φ(v))

and by definition of product mFG G2

pi ◦B2(φ(u)φ(v)) ≤ pi ◦A2(φ(u))× pi ◦A2(φ(v)) for φ(u)φ(v) ∈ E2, i = 1, 2, . . . ,m.

From the above, it follows that

pi ◦B2(φ(u)φ(v)) = pi ◦A2(φ(u))× pi ◦A2(φ(v)) for φ(u)φ(v) ∈ E2, i = 1, 2, . . . ,m.

Hence, G2 is strong.

Corollary 3.15.1. Let G1 and G2 be two product mFGs. If G1 is weak isomorphic to G2 and G1 is regular,
then G2 need not be regular.

Theorem 3.16. If the product mFG G1 is co-weak isomorphic with a strong regular product mFG G2, then
G1 is strong regular product mFG.

Proof. Since G1 is co-weak isomorphic to G2 there exists a co-weak isomorphism φ : V1 → V2 which is

bijective such that pi ◦A1(u) ≤ pi ◦A2(φ(u)) for all u ∈ V1 and pi ◦B1(uv) = pi ◦B2(φ(u)φ(v)) for all uv ∈ Ṽ 2
1 ,

i = 1, 2, . . . ,m. Now,

pi ◦B1(uv) = pi ◦B2(φ(u)φ(v))

= pi ◦A2(φ(u))× pi ◦A2(φ(v)) (Since G2 is strong)

≥ pi ◦A1(u)× pi ◦A1(v).

But by definition of mFG G1,

pi ◦B1(uv) ≤ pi ◦A1(u)× pi ◦A1(v) for all uv ∈ Ṽ 2
1 .

So, from the above we have pi ◦ B1(uv) = pi ◦ A1(u)× pi ◦ A1(v) for all uv ∈ E1, i = 1, 2, . . . ,m. Hence,
G1 is strong.
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Also, for i = 1, 2, . . . ,m and u ∈ V1,∑
u6=v
uv∈E1

pi ◦B1(uv) =
∑

φ(u)6=φ(v)
φ(u)φ(v)∈E2

pi ◦B2(φ(u)φ(v))

= constant (Since G2 is regular).

Hence, G1 is regular.

Theorem 3.17. Let G1 and G2 be two isomorphic product mFGs. Then G1 is strong regular if and only if
G2 is strong regular.

Proof. As G1 is isomorphic to G2, there exists an isomorphism φ : V1 → V2 which is bijective and satisfies

the relation pi ◦ A1(u) = pi ◦ A2(φ(u)) for all u ∈ V1 and pi ◦ B1(uv) = pi ◦ B2(φ(u)φ(v)) for all uv ∈ Ṽ 2
1 ,

i = 1, 2, . . . ,m. Now,

G1 is strong ⇔ pi ◦B1(uv) = pi ◦A1(u)× pi ◦A1(v)for alluv ∈ E1, i = 1, 2, . . . ,m

⇔ pi ◦B2(φ(u)φ(v)) = pi ◦A2(φ(u))× pi ◦A2(φ(v))for allφ(u)φ(v) ∈ E2, i = 1, 2, . . . ,m

⇔ G2 is strong.

Again,

G1 is regular ⇔
∑
u6=v
uv∈E1

pi ◦B1(uv) = constantfor allu ∈ V1

⇔
∑

φ(u)6=φ(v)
φ(u)φ(v)∈E2

pi ◦B2(φ(u)φ(v)) = constantfor allφ(u) ∈ V2

⇔ G2 is regular.

Theorem 3.18. A strong mFG G is strong regular if and only if its complement G is strong regular.

Proof. From [7], we have if G = (V,A,B) is a strong product mFG, then G = (V,A,B) is also a strong
product mFG where A = A and B is defined by

pi ◦B(xy) = pi ◦A(x)× pi ◦A(y)− pi ◦B(xy)

for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m. Now,

G is strong regular

⇔ pi ◦B(xy) = pi ◦A(x)× pi ◦A(y)

⇔ pi ◦B(xy) = pi ◦A(x)× pi ◦A(y)− pi ◦B(xy) = pi ◦B(xy)− pi ◦B(xy) = 0

⇔
∑

pi ◦B(xy) = 0

⇔ G is strong regular.

4 Modeling of Products Design in a Company as Product mFG

Here, we model a real life situation of a company where a group of people decides which product design to
manufacture. This type of network is an ideal example of product mFGs. It is very important for a company
to decide which product design to manufacture so that they can make profit as much as possible. A very
good product design is gladly acceptable to the peoples if it is also cheap in price. The determination of
which product design to manufacture is called the decision making problem. By taking the very good decision
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(very good product design), one company can spread their product all over the world keeping in mind that
the product design is very good, demandable, cheap, easily accessible etc. Before manufacturing a product
design, engineers and manufacturers test several important things in a product. Suppose a company has to
decide to manufacture a product design among five products, say D1, D2, D3, D4 and D5. A product design
is manufactured by a company keeping in mind its market demand, price, time taken to manufacture and
accessibility.

t

t t

t

t
@
@
@
@
@
@

(0.6, 0.5, 0.6, 0.7) D4

(0.6, 0.7, 0.6, 0.6) D5

D1(0.7, 0.5, 0.5, 0.8)

D2(0.8, 0.4, 0.6, 0.7)

D3(0.9, 0.3, 0.4, 0.9)

(0.3, 0.3, 0.3, 0.4)

(0.4, 0.3, 0.3, 0.4) (0.5, 0.2, 0.3, 0.5)

(0.6, 0.1, 0.2, 0.6)

(0.5, 0.1, 0.2, 0.6)

�
�
�
�
�
�

(0.3, 0.2, 0.3, 0.4)

(0.6, 0.1, 0.2, 0.4)

Figure 4: Modeling of products design in a company as a product 4-polar fuzzy graph G

We consider the above as a set, say M = {demand, price, time, accessibility} and the set of product
designs as D = {D1, D2, D3, D4, D5}. Since all the above characteristics of a product design according to the
different company are uncertain in real life, therefore we consider a 4-polar fuzzy subset A of the set D. This
situation can be represented as a product 4-polar fuzzy graph by considering the different product design
as the nodes and edges between them represent the relationship between two product designs (see Fig. 4).
The membership value of each node represents the degree of demand, price, time taken to manufacture and
accessibility to people in global market. Edge membership values which represent the relationship between
the product design can be calculated by using the relation

pi ◦B(uv) ≤ pi ◦A(u)× pi ◦A(v)

for all u, v ∈ D, i = 1, 2, . . . , 4.
The edge between two product designs represents the degree of using common power equipments, raw

materials, engineer employs and agencies involved for both products.
From the Fig. 4, we see that G = (D,A,B) is a product 4-polar fuzzy graph and the product design

D3 has maximum demand, minimum price, minimum time to manufacture and has maximum accessibility
compared to all others product designs.

5 Conclusions

The fuzzy graph theory is one of the most developing area of research, which has a variety of applications
in different fields including computer science, communication networks, biological sciences, social networks,
decision-making and optimization problems. A product mFG can be used to represent real world problems
which involve multi-case of information and uncertainty. No other graphs can be used to model such types of
problems. This is how m-polar fuzzy graph is a generalized version of all other graphs. Actually, if m = 1,
then the 1-polar fuzzy graph becomes our usual fuzzy graph. A product mFG plays a vital role in many
research domains and gives more precision, flexibility and comparability to the system as compared to the
fuzzy and bipolar fuzzy models. In this paper, we have introduced the notion of m-polar ψ-morphism on
product mFGs. The action of m-polar ψ-morphism on product mFGs is studied and established some results
on weak and co-weak isomorphism. d2-degree and total d2-degree of a vertex in product mFGs are defined and
studied (2, k)-regularity and totally (2, k)- regularity. A real life situation has been modeled as an application
of product mFG.
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