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Abstract 

 

Three different fuzzy methods are applied in this work for the evaluation of student group geometric reasoning in 

terms of the van Hiele level theory: The group’s total possibilistic uncertainty and Triangular Fuzzy Numbers (TFNs) 

are used for assessing the group’s mean performance, while a special form of the Centre of Gravity defuzzification 

technique, known as the Rectangular Fuzzy Assessment Model (RFAM), is utilized to assess its quality performance.  

The calculation of the total possibilistic uncertainty is laborious and can be used for comparing the performance of 

different groups only under the assumption that the existing in these groups uncertainty is the same before the 

experiment. On the contrary, the application of the TFNs provides clear outcomes, which can be easily interpreted. 

Concerning the group quality performance the RFAM is useful to be preferred in cases where two groups share the 

same value of the traditional GPA index, because in such cases the application of the GPA index could not lead to 

logically based conclusions. The data of a paradigm for evaluating the acquisition of the van Hiele levels in three–

dimensional Geometry by three secondary student classes presented by Gutierrez et al.  are reused here to illustrate our 

fuzzy methods and to compare their outcomes with those of two traditional assessment methods of the bi-valued logic, 

the calculation of the mean value and the Grade Point Average index.  

© 2018 World Academic Press, UK. All rights reserved.  

Keywords: fuzzy sets, fuzzy logic, fuzzy system uncertainty, center of gravity defuzzification technique, rectangular 

fuzzy assessment model, triangular fuzzy numbers, grade point average index, van Hiele levels of geometric 

reasoning 

 

1 Introduction 
 

Situations appear frequently in our day to day life characterized by a degree of uncertainty and/or fuzziness. In 

Education for example, a teacher is frequently not sure about the degree of acquisition of the new knowledge by 

students, or for the proper mark to characterize a student’s performance. There used to be a tradition in science and 

engineering of turning to probability theory when a problem was faced in which uncertainty plays an important role. 

Today this is no longer the rule. Fuzzy Logic (FL), due to its property of characterizing the ambiguous cases with 

multiple values, provides a rich and meaningful addition to standard logic enabling the modeling under conditions 

which are imprecisely defined, despite the concerns of classical logicians. 

The present author, starting in 1999 with a model for the process of learning a subject matter in the classroom 

[20], has frequently utilized principles of FL in the past for describing and evaluating several human or machine (e.g. 

Case-Based Reasoning systems in computers [24]) activities. The assessment methods used in those works involve: 

 The measurement of a fuzzy system’s probabilistic or possibilistic uncertainty, e.g. [22, 23, 27], etc. 

 An adaptation of the Center of Gravity (COG) defuzzification technique that was called the Rectangular Fuzzy 

Assessment Model (RFAM), e.g. [13, 23, 25, 27], etc.  

 The Generalized Rectangular, the Triangular and the Trapezoidal Fuzzy Assessment Models (GRFAM, TFAM 

and TpFAM respectively), which are variations of RFAM, e.g. [14, 15, 27, 28], etc. It turns out [15] that all 

these models are equivalent to each other. Also, although not equivalent with RFAM in characterizing a group’s 

performance, they always provide the same assessment outcomes with it when comparing the performances of 

two or more groups [28]. 
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 The Triangular (TFNs) and Trapezoidal (TpFNs) Fuzzy Numbers, e.g. [26, 27], etc. 

In the present paper we use and compare to each other the fuzzy system’s probabilistic uncertainty, the RFAM 

and the TFNs to evaluate the acquisition by students of the van Hiele (vH) levels for geometric reasoning. The main 

contribution of the paper to the state of the art is that it provides fuzzy assessment methods that can be used in cases 

where the traditional assessment methods of the bi-valued logic either cannot be used (e.g. calculation of the mean 

value of student scores which are given by qualitative expressions and not numerically) or they could not lead to 

logically based conclusions (e.g. equal values of the GPA index for two different student groups).     

The rest of the paper is formulated as follows: In Section 2 we give a brief account of the vH level theory and of 

several previous researches on it connected to the present work. In Section 3 we deal with the main types of a fuzzy 

system’s uncertainty. In Section 4 we give a brief account of the development of RFAM and we compare it with the 

traditional Grade Point Average (GPA) index, since both measure a system’s quality performance. In Section 5 we 

present briefly the background on TFNs needed in this work. In Section 6 we give an example illustrating the 

applicability of the above fuzzy methods (possibilistic uncertainty, RFAM and TFNs) to evaluate the acquisition of 

the vH levels in Geometry by high school students. We close, in Section 7, with our conclusion and some hints for 

future research. 

For general facts on Fuzzy Sets (FS) and the uncertainty connected to them we refer to the book [6]. 

 

2 The van Hiele Levels of Geometric Reasoning 
 

The vH theory of geometric reasoning [18, 19] suggests that students can progress through five levels of increasing 

structural complexity. A higher level contains all knowledge of any lower level and some additional knowledge 

which is not explicit at the lower levels. Therefore, each level appears as a meta-theory of the previous one [2]. The 

five vH levels include: 

 L1 (Visualization): Students perceive the geometric figures as entities according to their appearance, without 

explicit regard to their properties. 

 L2 (Analysis): Students establish the properties of geometric figures be means of an informal analysis of their 

component parts and begin to recognize them by their properties. 

 L3 (Abstraction):  Students become able to relate the properties of figures, to distinguish between the necessity 

and sufficiency of a set of properties in determining a concept and to form abstract definitions. 

 L4 (Deduction):  Students reason formally within the context of a geometric system and they gasp the 

significance of deduction as means of developing geometric theory. 

 L5 (Rigor): Students understand the foundations of geometry and can compare geometric systems based on 

different axioms. 

Obviously the level L5 is very difficult, if not impossible, to appear in secondary classrooms, while level L4 also 

appears very rarely. 

Although van Hiele [19] claimed that the above levels are discrete – which means that the transition from a level 

to the next one does not happen gradually but all at once – alternative researches by Burnes & Shaughnessy [1], Fuys 

et al. [3], Wilson [30], Guttierrez et al. [4], and by Perdikaris [9] suggest that the vH levels are continuous 

characterized by transitions between the adjacent levels. This means that from the teacher’s point of view there exists 

fuzziness about the degree of student acquisition of each vH level. Therefore, principles of FL can be used for the 

assessment of student geometric reasoning skills. 

 

3 Uncertainty in Fuzzy Systems 
 

Uncertainty is the shortage of precise knowledge and of complete information on data, which describe together the 

state of the corresponding system. One of the key problems of artificial intelligence is the modelling of the 

uncertainty for solving real life problems and several models have been proposed for this purpose.  

The amount of information obtained by an action can be measured by the reduction of the uncertainty resulting 

from this action. Therefore, a system’s uncertainty is connected to its capacity for obtaining relevant information. 

Accordingly a measure of uncertainty could be adopted as a measure of a system’s effectiveness in solving related 

problems. The greater is the decrease of the uncertainty resulting from the action (i.e. the difference of the existing 

uncertainty before and after the action), the better the system’s performance with respect to the action.    
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In terms of the classical probability theory a system’s uncertainty and the information connected to it are 

measured by the Shannon’s formula, better known as the Shannon’s entropy* [12].  For use in a fuzzy environment 

Shannon’s formula has been adapted ([7], p.20) in the form:  

H = - .

                                                          

 (1)

 
If U is the universal set of the discourse, then m: U [0, 1] in formula (1) is the membership function of the 

corresponding FS, ms = m(s) denotes the membership degree of the element s of U and n denotes the total number of 

the elements of  U. The sum is divided by the natural logarithm of n in order to be normalized.  Thus H takes values 

within the real interval [0, 1]. Formula (1) measures a fuzzy system’s probabilistic uncertainty.   

It is recalled that the fuzzy probability of an element s of U is defined in a way analogous to the crisp probability, 

i.e. by  

Ps = s

s

s U

m

m



.                                                                                (2) 

However, according to Shackle [11] and many other researchers after him, human reasoning can be formulated more 

adequately by the possibility rather, than by the probability theory. The possibility, say rs, of an element s of U is 

defined by  

rs = ,                                                                              (3) 

where max {ms} denotes the maximal value of ms, for all s in U. In other words, the possibility of s expresses the 

relative membership degree of s with respect to max {ms}.  

Within the domain of possibility theory uncertainty consists of strife (or discord), which expresses conflicts 

among the various sets of alternatives, and of non-specificity (or imprecision), which indicates that some alternatives 

are left unspecified, i.e. it expresses conflicts among the sizes (cardinalities) of the various sets of alternatives ([7], 

p.28). For a better understanding of the above two types of uncertainty we give the following simple example:  

EXAMPLE: Let U be the set of integers from 0 to 120 representing human ages and let Y = young, A = adult and 

O = old be fuzzy subsets of U defined by the membership functions mY, mA and mO  respectively. People are 

considered as young, adult or old according to their outer appearance. Then, given x in U, there usually exists a 

degree of uncertainty about the values that the membership degrees mY(x), mA (x) and mO(x) could take, resulting to a 

conflict among the fuzzy subsets Y, A and O of U. For instance, if x = 18, values like mY(x) = 0.8 and mA (x) = 0.3 are 

acceptable, but they are not the only ones. In fact, the values mY(x) = 1 and mA (x) = 0.5 are also acceptable, etc.  The 

existing conflict becomes even greater if x =50. In fact, is it reasonable in this case to take mY(x) =0?  Probably not, 

because sometimes people being 50 years old look much younger than others aged 40 or even 30 years. But, there 

exist also people aged 50 who look older from others aged 70, or even 80 years! All the above are examples of the 

type of uncertainty that we have termed as strife. On the other hand, non - specificity is connected to the question: 

How many x in U should have non zero membership degrees in Y, A and O respectively? In other words, the existing 

in this case uncertainty creates a conflict among the cardinalities (sizes) of the fuzzy subsets of U. It is recalled that 

the cardinality of a fuzzy subset, say B, of U is defined to be the sum ( )B

x U

m x


 of all membership degrees of the 

elements of U in B.   

Strife is measured ([7]; p.28) by the function ST(r) on the ordered possibility distribution r:  r1=1  r2    rn 

 rn+1 of a group of a system’s entities defined by  

ST(r) = 1

2

1

1
( ) log

log 2
[ ]

m

i i i
i

j

j

i
r r

r









.                                                                  (4) 

Under the same conditions non-specificity is measured ([7]; p.28) by the function 

N(r) = 1

2

1
[ ( ) log ]

log 2

m

i i

i

r r i



 .                                                                      (5) 

The sum T(r) = ST(r)+N(r) measures of the total possibilistic uncertainty for ordered possibility distributions. 

                                                      
* This name is due to the mathematical definition of the information I by I= (log ) log2P , where P is the probability of appearance of one of 

the possible cases of the evolution of the corresponding real situation. This is analogous to the well known from Physics formula ΔS = Q T , 

where ΔS is the increase of a physical system’s entropy caused by an increase of the heat by ΔQ, when the absolute temperature T remains 

constant. 
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4 The COG Defuzzification Technique as an Assessment Method (RFAM) 
 

It is recalled that the solution of a problem in terms of FL involves the following steps:  

 Choice of the universal set U of the discourse. 

 Fuzzification of the problem’s data by defining the proper membership functions. 

 Evaluation  of the fuzzy data by applying rules and principles of FL to obtain a unique fuzzy set which 

determines the problem’s solution. 

 Defuzzification of the final outcomes in order to apply the solution found in terms of FL to the original, real 

world problem.  

One of the most popular in fuzzy mathematics defuzzification methods is the Centre of Gravity (COG) technique. 

To apply the COG technique, let A = {(x, m(x)):x U} be the fuzzy set determining the problem’s solution. In order 

to design the graph of y = m(x) one corresponds to each x U an interval of values from a prefixed numerical 

distribution, which actually means that U is replaced by a set of real intervals. There is a commonly used in FL 

approach to represent the system’s fuzzy data by the coordinates (xc, yc) of the COG, say Fc, of the area F contained 

between the graph of A and the X-axis [17]. The COG coordinates are calculated by the following well-known [29] 

from Mechanics formulas:  

,F F
c c

F F

xdxdy ydxdy

x y
dxdy dxdy

 
 

 
                                                     (6) 

Subbotin et al. [13], based on Voskoglou’s [20] fuzzy model for the process of learning a subject matter adapted 

the COG technique for use as an assessment method of student learning skills. Since then, Subbotin and Voskoglou, 

working either  jointly or individually improved and used the COG technique and several variations of it as 

assessment methods in many other human activities, e.g. [15, 23, 27], etc. For the needs of the present work this 

method is sketched below:  

Let G be a group of individuals (or of any other objects; e.g. CBR systems [24]). We choose as set of the 

discourse the set U = {A, B, C, D, F} of the fuzzy linguistic labels (characterizations) of excellent (A), very good (B), 

good (C), fair (D) and unsatisfactory (F) performance respectively of the group’s members. When a numerical value, 

say y, is assigned to a group’s member (e.g. a mark in case of a student), then its performance is characterized by F, if 

y  [0, 1) , by D, if y  [1, 2), by C, if y  [2, 3), by B if y  [3, 4) and by A if y  [4, 5] respectively. 

Consequently, we have that  y1 = m(x) = m(F) for all x in [0, 1), y2 = m(x) = m(D) for all x in [1, 2), y3 = m(x) = m(C) 

for all x in [2, 3), y4 = m(x) = m(B) for all x in [3, 4) and y5 = m(x) = m(A) for all x in [4, 5]. Therefore, the graph of 

the membership function y = m(x) takes in this case the form of Figure 1, where the area of the level’s section F 

contained between the graph and the X-axis is equal to the sum of the areas of the rectangles Si, i=1, 2, 3, 4, 5. 

 
 

Figure 1: The graph of the COG method 

 
Then, calculating the double integrals in formulas (1) ([23], Section 3), it is straightforward to check that  

xc = (y1+3y2+5y3+7y4+9y5),  yc = 
1

2
 (y1

2+y2
2+y3

2+y4
2+y5

2) ,                                      (7) 
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with x1=F, x2=D, x3=C, x4=B, x5=A and yi = 
5

1
( ) ( )i jj

m x m x
 , i = 1, 2, 3, 4, 5.  

Note that the membership function y = m(x) can be defined, as it happens with fuzzy sets in general, according to 

the user’s choice any compatible to the common logic way In this work we define y = m(x) in terms of the 

frequencies. For example, if n is the total number of the members of G and nA is the number of the members of G 

whose performance was characterized by the label A, we set y1 = An n , etc.  Then 
5

1
( )ii

m x
 = 1 (100%). 

Using elementary algebraic inequalities one finds that the minimal value of the y-coordinate corresponds to the 

COG FM ( 5 2 ,1 10 ) ([23], Section 3). Also, applying formulas (7) it is straightforward to observe that the group’s 

ideal performance (y5 =1 and yi = 0 for i  5) corresponds to the GOG FI( 9 2 ,1 2 ), while its worst performance 

corresponds to the GOG FW (1 2 ,1 2 ). Therefore the COG lies in the area of the triangle FMFIFW of Figure 2.  

 
Figure 2: The area where the COG lies  

 
Making elementary geometric observations on Figure 2 it is straightforward to obtain the following assessment 

criterion:     

 Between two groups, the group with the greater value of xc   performs better. 

 If two groups have the same xc     2.5, then the group with the greater yc performs better. 

 If two groups have the same xc < 2.5, then the group with the smaller yc performs better. 

As it becomes evident from the above criterion, a group’s performance depends mainly on the value of the x-

coordinate of the COG, which is calculated by the first of formulas (7). In this formula, greater coefficients (weights) 

are assigned to the higher grades. Therefore, the COG method focuses on the group’s quality performance.  

Since in case of the ideal performance the first of formulas (7) gives that xc= 9 2 , values of xc greater than half of 

the above value, i.e. greater than 9 4  = 2.25, could be considered as demonstrating a more than satisfactory group’s 

performance. 

REMARK (Comparison of the COG technique to the GPA index): A very popular in the USA and other Western 

countries assessment method of the traditional logic is the calculation of the Grade Point Average (GPA) index. This 

index is a weighted average in which greater coefficients (weights) are assigned to the higher scores. Therefore, in an 

analogy to the COG technique, it is connected to a group’s quality performance.  

The GPA, is calculated by the formula  

GPA = 
0 1 2 3 4F D C B An n n n n

n

   
,                                                         (8) 

where n is the total number of the group’s members and nA, nB, nC, nD and nF denote the numbers of the group’s 

members that demonstrated a performance characterized by A, B, C, D and F respectively [16]. Formula (8) can be 

written in terms of the frequencies defined in Section 4 in the form  

GPA = y2 + 2y3 +3y4 + 4y5.                                                                                                      (9) 

Therefore, in order to find the numerical relation between GPA and the x-coordinate of the COG technique, we 

write the first of formulas (7) as  
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xc = 
1

2
[2(y2+2y3+3y4+8y5)+( y1+y2+2y3+y4+y5)] 

= 
1

2
 (2GPA+1), or finally in the form xc = GPA+0.5.                                   (10) 

Consider now two groups, say G1 and G2 with GPA values GPA1 and GPA2 and values of the x-coordinates of 

their COG xc1 and xc2 respectively. Then, if GPA1> GPA2, equation (10) gives that xc1> xc2. Therefore, by the first case 

of the assessment criterion of Section 4, one concludes that the GPA index and the COG technique provide the same 

assessment outcomes. However, if GPA1=GPA2, equation (10) gives that xc1=xc1. Therefore, one of the last two cases 

of the assessment criterion of Section 4 is applicable now, which means that the GPA index and the COG technique 

provide different assessment outcomes in this case.  

The following example presented in ([15], Section 4, paragraph vii) shows that in case of the same GPA values 

the application of the GPA index could not lead to logically based conclusions. Therefore, in such situations, the 

assessment criterion of Section 4 becomes useful due to its logical nature. 

EXAMPLE: The student grades of two different classes are depicted in the following Table: 

Table 1:  Student grades 

Grades Class I Class II 

C 10 0 

B 0 20 

A 50 40 

The GPA index for the two classes is  

4*50 2*10 4*40 3*20
3.67

60 60

 
  , 

which means that the two Classes demonstrate the same quality performance. Further, equation (9) gives that xc 

4.17 > 2.5 for both Classes. But  
5

2

1

i

i

y


 =  2 21 5 26
( ) ( )
6 6 36

   

for the first and 
5 2

1 ii
y

 = 20 36  for the second Class. Therefore, by the second case of the assessment criterion for 

RFAM, Class I performed better.  

Now which one of the above two conclusions is closer to the reality? For this, let us consider the quality of 

knowledge, i.e. the ratio of the students received B or better to the total number of students, which is equal to 5 6  for 

the first and 1 for the second Class. Therefore, from the common point of view, the situation in Class II is better. 

Also, assigning, as it looks logical, to the grades A, B, C, D and F the numbers 5, 4, 3, 2, 1 respectively one finds 

the mean value 

3*10 5*50

60
X


  4.67    and    

2 2
2 3*10 5*50

213.33
60

X


   

for Classes I. Therefore the variance of X  is equal to 213.33 – (4.67)2   191.52. In the same way one finds that the 

variance of X for Class II is equal to 160 – (4.67)2  138.19 < 213.33. Therefore the standard deviation for the second 

Class is definitely smaller, which means that, from the statistical point of view, the situation in Class II is also better. 

However, some instructors could prefer the situation in Class I, which has more e3xcellent students. Everything 

is determined by the personal preference of the goals. The conclusion of the RFAM agrees with the second point of 

view, while the conclusion of the GPA looks as not having any logical basis. 

 

5 Assessment of a Student Group Performance Using TFNs  
 

For general facts on Fuzzy Numbers (FNs) we refer to the book [5] and to the article [26]. 

It is recalled here that a FN is a FS on the set R of the real numbers which is normal (i.e. there exists x in R such 

that the membership degree m(x) = 1) and convex (i.e. all its a-cuts with a in [0, 1] are closed real intervals), while its 

membership function y = m(x) is piecewise continuous. 

It is also recalled that a TFN (a, b, c), with a, b, c real numbers such that a<c<b, is a FN with membership 

function defined by 
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, [ , ]

( ) [ , ]

0,        or

x a
x a b

b a

c x
y m x x b c

c b

x a x c


 




   


  



 

Let A (a, b, c) and B (a1, b1, c1) be two TFNs and let k be a positive real number. Then the sum A + B = (a+a1, 

b+b1, c+c1) and the scalar product kA=(ka, kb, kc) ([26], paragraph 10). Further, given the TFNs Ai, i = 1, 2,…, n , 

where n a non negative integer, n  2, we define their mean value to be the TFN   

A= 
1

n
(A1 + A2 +  + An).                                                             (11) 

Our method of using TFNs for the assessment of a student group performance involves first the numerical 

evaluation of each student’s individual performance in a climax from 0 to 100. Then the student scores are attached to 

the fuzzy assessment grades of U defined in Section 4 as follows: A: 85-100, B: 75-84, C: 60-74, D: 50-59) and F: (0-

49)
†
. Further, a TFN of the form A=(85, 92.5, 100), B=(75, 79.5, 84), C=(60, 67, 74), D=(50, 54.5, 59) and F=(0, 

24,5, 48) respectively is attached to each of the above grades, denoted for reasons of simplicity of our notation with 

the same letter. Observe that the middle entry of the above TFNs is equal to the mean value of the student scores 

attached to the corresponding grade. Of course one could attach other kinds of FNs to each of the above grades, e.g. 

trapezoidal FNs. However the choice of TFNs was preferred because they are the simplest form of FNs, which means 

that the calculations needed become easier.   

In this way a TFN can be assigned to each student assessing his/her individual performance. Therefore, it is 

logical to accept the use of the mean value M of all those TFNs as means for evaluating the student group overall 

performance. Moreover, the COG technique is used for the defuzzification of the TFNs. This leads to the 

representation of a TFN T=(a, b, c) by the x-coordinate, say x(T), of the COG of its graph. Since this graph is a 

triangle ABC with A(a, 0), B(1, b) and C(0,c) ([26], Figure 2), 

 x(T)=
3

a b c 
       ([26], Proposition 1].                                                       (12) 

In particular, if T is one of the TFNs A, B, C, D, F, then by their definition we have that b= ( ) 2a c . Therefore, 

equality (12) gives that  

x(T)= 
3( )2

3 6

a c
a c

a c


 


 =b. 

But M=k1A+k2B+k3C+k4D+k5F, with ki non negative real numbers, i = 1, 2, 3, 4, 5. Therefore, if M(a, b, c), then 

obviously  

x(M) =  k1x(A)+k2x(B)+k3x(C)+k4x(D)+k5x(F) = b. 

 
REMARK (Comparison of x(M) with the Yager index): An alternative way for defuzzifying a TFN T=(a, b, c) is 

the use of the Yager Index Y(T), introduced in [31] in terms of the  -cuts of T with  in [0, 1] in order to help the 

ordering of FSs. It can be shown ([10], p. 62) that  

Y(T)=
2

4

b a c 
. 

Observe now that 

x(T)=Y(T) 
3

a b c 
=

2

4

b a c 
 4(a+b+c)=3(2b+a+c)  a+c=2b. 

The last equality is not true in general for a<b<c; e.g. take a=1, b=2.5 and c=3. In other words we have in general 

that x(T)   Y(T). However, for the TFNs A, B, C, D, and F the above equality holds. Therefore, since the mean value 

M is a linear combination of those TFNs, it is straightforward to check that x(M)=Y(M). In other words, the COG 

technique and the Yager index provide the same outcomes when applied in the assessment method described in 

Section 5.   

                                                      
†  The above correspondence of the student scores to the fuzzy assessment grades is not unique. For example, in a more strict assessment one could 

take A:90-100, B: 80-89, C: 70-79, D: 60-69, F: 0-59, etc.  
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6 Assessing the Acquisition of the van Hiele Levels 
 

Gutierrez et al. [4] presented a paradigm for evaluating the acquisition of the vH levels in three–dimensional 

Geometry by three different groups, say G1, G2 and G3, consisting of 20, 21 and 9 students respectively. Here, in 

order to illustrate the applicability of the fuzzy assessment methods described in Sections 3, 4 and 5 to the vH level 

theory, we shall use the data of this paradigm, which are depicted in Table 2.  
 

Table 2: Data of the paradigm  

                                                                                 [Degree of acquisition] 

Group vH level F D C B A 

G1 L1 0 0 0 0 20 

G1 L2 1 0 3 6 10 

G1 L3 2 3 6 6 3 

G2 L1 0 0 1 2 18 

G2 L2 0 3 4 13 1 

G2 L3 9 6 5 1 0 

G3 L1 0 2 4 2 1 

G3 L2 3 4 2 0 0 

G3 L3 9 0 0 0 0 

 
We start with the COG technique, which evaluates a group’s quality performance: 

i) Use of the COG Technique 

From the first row of Table 2 one finds that y5=1 and y1=y2=y3=y4=0 for L1 in G1. Therefore, the first of 

equations (7) gives that xc= 9 2 = 4.5. Similarly, from the fourth row of Table 2, one finds that y1=y2=0, y3=1 21 , y4=

2 21  and y5=18 21 . Therefore  

xc=
1

2
(

5

21


14

21

162

21
 ) 4.31 

for L1 in G2. In the same way one finds that the values of xc are 2.5 for L1 in G3, 3.7, 3.07, 1.39 for L2 in G1, G2, G3 

respectively and 2.75, 1.4, 0.5 for L3 in G1, G2, G3 respectively.  Therefore, according to the first case of the assessment 

criterion of Section 2, G1 demonstrated the best performance in the first three vH levels, followed by G2 and G3.  

Also, on comparing the above values with 2.25, one concludes that G1 demonstrated a more than satisfactory 

performance in these three levels, while G2 demonstrated a more than satisfactory performance in the first two levels 

and G3 demonstrated a more than satisfactory performance only in the first level.  

Finally, since the mean value  

4.5 3.7 2.75

3
=3.65, 

G1 demonstrated a more than satisfactory overall performance in the first three vH levels. In the same way, since the 

corresponding mean values for G2 and G3 are 2.93 and 1.46 respectively, G2 demonstrated also a more than 

satisfactory overall performance, while the performance of G3 was not satisfactory.   
The calculation of the mean value of the scores assigned to each one of its members is the classical method of 

the bi-valued logic for assessing a group’s mean performance with respect to an action. However, in cases involving a 

significant degree of uncertainty and/or fuzziness–as it happens with the data of Table 2 characterizing the student 

performance by qualitative grades and not by numerical scores–one can use either the TFNs instead or the 

corresponding system’s uncertainty, because both of these fuzzy assessment methods are connected to the group’s 

mean performance. We apply first the method of TFNs:  

ii) Use of the TFNs  

From the data of the first row of Table 1 one obtains that M=A and x(M)=92.5 for G1 in L1. Similarly, from the 

second row it is obtained that M= (F+3C+6B+10A)/20=(74, 81.38, 88.75) and x(M)=81.38 for G1 in L2. Therefore the 

first group demonstrates a very good (B) overall performance in level L2. We keep going in the same way with the 

remaining rows. All the assessment outcomes of the paradigm are depicted in Table 3. 
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Table 3: Assessment outcomes 

Group vH 

level 

M x(M) Group’s 

performance 

G1 L1 (85, 92.5, 100) 92.5 A 

G1 L2 (74, 81.38, 88.75) 81.38 B 

G1 L3 (60.75, 68.45, 76.15) 68.45 C 

G2 L1 (82.86, 90.05, 97.24) 90.05 A 

G2 L2 (69.05, 74.17, 79.69) 74.37 C 

G2 L3 (32.14, 45.81, 59.48) 45.81 F 

G3 L1 (63.89, 69.83, 75.78) 69.84 C 

G3 L2 (35.56, 47.28, 59) 47.28 F 

G3 L3 (0, 24.5, 59) 24.5 F 

 
Observing the values of x(M) in Table 3 it becomes evident that G1 demonstrates the best performance in all 

levels, followed by G2 and G3. Further, from the last column of Table 3 it turns out that. G1 demonstrates excellent 

performance in L1, very good in L2 and good in L3, G2 demonstrates excellent performance in L1, good in L2 and 

nonatisfactory in L3, while G3 demonstrates good performance in L1 and nonsatisfactory performance in L2 and L3. 

Finally, it seems logical to evaluate the overall performance of each group in the first three vH levels by calculating 

the mean value of its performances in each level. Thus, G1 demonstrated a very good 

( (92.5 81.38 68.45) 3 80.78   ), G2 demonstrated a good ( (90.05 7437 45.81) 3 70.08   ) and G3 demonstrated 

a nonsatisfactory ( (69.84 47.28 24.5) 3 47.21   ) overall performance. 

We shall finish the application of our fuzzy assessment methods by calculating the group total possibilistic 

uncertainty T(r): 

iii) Calculation of the group total possibilistic uncertainty 

Perdikaris [8] used fuzzy possibilities and the corresponding fuzzy system’s uncertainty to compare the 

intelligence of student groups in the vH level theory. He considered all the profiles of the form (x, y, z) with x, y and z 

in U representing a student’s performance in the vH levels L1, L2 and L3 respectively and he defined the membership 

degrees of those profiles by the product 

xn

n
. 

yn

n
. zn

n  
of the corresponding frequencies. However, this definition is problematic, since it assigns non–zero membership 

degrees to profiles like (A, B, A), (B, A, D), etc. in which the student’s performance in a vH level is assumed to be 

worse than that in the next level, which is impossible to happen.   

This problem was resolved by Voskoglou in [21], where he developed a similar model for the process of 

learning, by assigning non-zero membership degrees only to well defined student profiles (x, y, z). In such profiles x is 

a grade better or equal than y, which is better or equal than z. This method, although it performs a useful for the 

instructor/researcher quantitative analysis of all student profiles in terms of their possibilities, it is very laborious even 

in its revised form [21] requiring the calculation of the membership degrees of 53 in total student profiles and the 

corresponding possibilities by formulas (4) and (5) of Section 3 or by formula (1) when one uses the group 

probabilistic uncertainty.     

Here we shall sketch a much simpler (but still laborious) variation of the above method. For this, the data of the 

first row of Table 1, concerning the performance of G1 in level L1, imply that the ordered possibility distribution is 

r1=r(A)=1>r2=r3=r4=r5=0 and therefore from formulas (4) and (5) of Section 3  one finds immediately that the total 

possibilistic uncertainty for G1 in L1 is T1(r)= 0. Consider now the data of the second row of Table 1 concerning the 

performance of G1 in level L2. Then, one finds the membership degrees m(F)=1 20 , m(D)=0, m(C)= 3 20,  m(B)= 

6 20  and m(A)= 10 20 . Since m(A) is the maximal membership degree, the corresponding ordered possibility 

distribution is 

r1=r(A)=1>r2= r(B)= 
6

10
>r3=r(C)= 

3

10
>r4=r(F)= 

1

10
>r5=r(D)=0. 

Therefore, since rn+1 = r5, i.e. n=4, formula (4) gives that  

ST(r) = 
1

log 2
[(r2-r3) log

1 2

2

r r
 + (r3-r4) log

1 2 3

3

r r r 
 + (r4-r5) log

1 2 3 4

4

r r r r  
]  



Journal of Uncertain Systems, Vol.12, No.1, pp.36-46, 2018                                                                                                           

 

 

 

45 

= 
1

log 2
[

3

10
log (1.25) + +

2

10
log (1.58) + 

1

10
log 2)   0.29. 

Also, formula (5) gives that  

N(r) =
1

log 2
[

3

10
log2+

2

10
log3+

1

10
log4]  0.82. 

Therefore, the total possibilistic uncertainty for G1 in L2 is T2 (r)  1.11. In the same way one finds from the third row 

of Table 1 that T3 (r) = 0.89 for G1 in L3
‡
. Therefore, it is logical to accept that the mean value  

T(r) = 1 2 3( ) ( ) ( )

3

T r T r T r 
   0.66 

measures the total possibilistic uncertainty for G1 in the first three vH levels L1, L2  and L3. 

Repeating the same process for the groups G2 and G3 one finds for T(r) the values 1.05 and 2.01 respectively. 

Under the hypothesis that the existing uncertainty before the experiment was the same for the three groups (which is 

not true in general) this shows that G1 performed better than G2, which performed better than G3.    



7 Conclusion and Hints for Future Research  
 

In this work, using the data of an experiment performed by Gutierrez et al. [4], we applied three different fuzzy 

assessment methods for the evaluation of student group geometric reasoning in terms of the vH level theory.  More 

explicitly, the COG technique (RFAM) was used to assess the group quality performance, while the TFNs and the 

total possibilistic uncertainty were used for assessing the group mean performance. The calculation of the total 

possibilistic uncertainty, although it was performed in a simpler way than that used in earlier works, it remained still 

laborious. Moreover, this method can be used for comparing the performance of different groups only under the 

assumption that the existing in these groups uncertainty is the same before the experiment, which is not always true. 

On the contrary, the application of the TFNs provides clear outcomes, which can be easily interpreted. This suggests 

the use of the TFNs rather instead of the uncertainty, when one wants to evaluate the group mean performance under 

fuzzy conditions. Concerning the group quality performance the RFAM must be preferred in cases where the groups 

share the same value of the traditional GPA index, because in such cases the application of the GPA index could not 

lead to logically based conclusions.    

In closing, our plans for future research include the application of the above fuzzy methods for the evaluation of 

several other human activities in order to obtain stronger conclusions about their advantages and disadvantages. 
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