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Abstract

In this paper, we describe a novel and practical uncapacitated single allocation p-hub median problem.
Aiming to emphasize green transportation, we take into account carbon emissions factor. The emphasis
of the present study is to propose a robust optimization method, in which carbon emissions uncertainty
are considered. Moreover, we study the uncertain parameters under two types of uncertainty sets. One
is the box uncertainty set, and the other is the budget uncertainty set. Based on duality theory, we turn
the robust optimization problem into its equivalent mixed-integer linear programming problem, which
can be solved by general-purpose optimization software. To show the advantages of the proposed robust
optimization method, a numerical experiment is conducted by the actual transportation problem, and
the data comes from the traffic map of Hebei Province. Comparing with the deterministic model, the
computational results demonstrate that the proposed robust model is more effective.
c©2018 World Academic Press, UK. All rights reserved.
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1 Introduction

The p-hub median problem is one of the most important logistic problems. It is a classical optimization
problem. For a given set of nodes with pairwise traffic, p nodes are chosen as hub locations and all the
traffic are routed through these hubs at a minimum cost. The p-hub median problem was first proposed by
Campbell [3, 4]. Early applications of the p-hub median problems involved the design and management of
telecommunication systems. Nowadays, the p-hub median problem is used in many new areas, such as air
transit [8], and post systems [21], freight transportation [23].

For the classical p-hub median problem, there are a lot of literatures on the deterministic formulation.
Sun et al. [18] proposed Taguchi method to find the best operating combination of controllable factors for a
deterministic p-hub median problem. An integer programming formulation was devised by Garcia et al. [5]
and Yaman [24] to approach the classical p-hub median problem. Parvaresh et al. [13] proposed the multiple
allocation p-hub median problem under intentional disruptions as a bi-level game model. Marti et al. [10]
tackled the uncapacitated r-allocation p-hub median problem, which consisted of minimizing the cost of trans-
porting the traffics between nodes of a network through special facilities that act as transshipment points.

In practice, most of the parameters defined in the models of the above studies on p-hub median problem
are not estimated accurately or approximated by using nominal values. Thus, the parameters are usually
uncertain. An optimal solution for a certain realization is not necessarily optimal for other realizations. For
example, in postal and cargo services, the demand is uncertain and cannot be estimated accurately. The
significance of uncertainty has motivated some researchers to address hub location problems with demand
uncertainty, travel time uncertainty, and travel cost uncertainty, etc. To describe the demand uncertainty in
a p-hub median problem, Talbi and Todosijevic [20] proposed several methods that gained a more innovative
robust solution. They also made an empirical study of robust solution. On the basis of credibility measure
theory [9], Yang et al. [25, 26, 27] dealt with p-hub center problem with uncertain travel time. Wang et
al. [22] combined hub location-allocation modeling approach and equilibrium chance programming method
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to model a hub-and-spoke network design problem with fuzzy random travel times. In order to deal with
the uncertainty of demand and time in a single distribution p-hub median problem without capacity limit,
Ghaderi and Rahmaniani [6] took the demand and transportation time as random variables. The above re-
search literature did not consider the uncertainty of carbon emissions. For an uncapacitated single allocation
p-hub median problem, this paper considers the carbon emissions as uncertain parameters.

Robust optimization is a methodology [2] that has attracted much attention of researchers during the last
few decades. The robust optimization method can be used to model the problem with uncertain parameters
which have no deterministic distributions. The key to robust optimization is to establish the corresponding
robust counterpart model of the original model. Iancu and Trichakis [7] extended the robust optimization
framework by proposing practical methods that verify Pareto optimality. Ardestani-Jaafari and Delage [1]
studied robust optimization of polyhedral uncertainty set for inventory problems. Meng et al. [11] proposed
a distributionally robust optimization approach for managing elective admissions to determine some quotas
in a public hospital, and the robust optimization problem was equivalent to a quadratic cone problem. The
literatures [15, 19] introduced robust optimization methods with different uncertainty sets. For the single
allocation p-hub median problem, Yang and Yang [28] used the robust optimization method to study the un-
certainty effects of discount factors. So far, the robust optimization method has not been applied to deal with
the carbon emissions uncertainty in p-hub median problem. In this paper, we propose robust optimization
method to resist the carbon emissions uncertainty.

In this paper, we build a robust optimization model to describe the uncapacitated single allocation p-hub
median problem under carbon emissions uncertainty. The robust counterpart model is a mixed integer linear
programming model which can be solved by the method called branch and cut. This solution method is
different from the heuristic algorithm used in the literatures [14, 16, 17] to solve the p-hub median problem.

The main contributions of this paper include the following three aspects: firstly, we study the uncapac-
itated single allocation p-hub median problem including carbon emission factors. Secondly, we develop a
robust optimization method to describe this problem. The proposed robust optimization problem can be
turned into its equivalent mixed-integer programming problem. Thirdly, we carry out numerical experiments
in line with the actual background.

The rest of the paper is organized as follows. In Section 2, we build a deterministic mathematical model
including carbon emission factors for a p-hub median problem. In Section 3, we propose the robust opti-
mization model based on the deterministic model, and derive the robust counterpart model. The numerical
experiments are carried out in Section 4. The outcomes of our numerical experiments are also discussed in
Section 4. We conclude this paper in Section 5.

2 Deterministic Model for p-hub Median Problem

In this section, we present the deterministic model for the p-hub median problem. This formulation was
originally proposed by Campbell [4], and the resulting model had fewer variables and constraints than previous
formulations found in the literature. In this paper, we improve the basic model by considering carbon emissions
constraint for p-hub median problem. Figure 1 shows a basic hub network with 2 hubs. Table 1 describes
some sets of indexes and model parameters.

Figure 1: A basic hub network
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Table 1: Notation

Notation Description

Indices
i, j The element of the nodes set N
s, n The symbols of the hubs
Parameters
cis Transportation cost for commodity to travel from node i to hub s
csn Transportation cost for commodity to travel from hub s to hub n
α The discount factor for transportation between hubs
δ The tax cost of the unit emission since carbon pollution
β The discount factor for carbon emission between hubs
eis The amount of carbon emission from node i to hub s in the transportation
esn The amount of carbon emission from hub s to hub n in the transportation
Ecap The emission capacity for total carbon emissions during transportation
Variables
Xisnj Binary decision variable indicating the transportation across link (i, s, n, j) or not
Xis Binary decision variable indicating node i is located to hub s or not

In this problem, we assume that the capacity of the hub is not limited. Moreover, hubs are completely
interconnected and transports should traverse either one or two hubs. Other assumptions are as follows:

(A1) The number of hubs is predetermined (p).
(A2) The nodes cannot connect with each other.
(A3) A node can only be connected to one hub.
Based on these assumptions and notations, we propose a deterministic mathematical programming model

for this problem in the following.

If node i is connected to hub s, we define Xis = 1, otherwise, we define Xis = 0. Here we deal with a
single allocation problem. Then we have the constraints

N∑
s=1

Xis = 1, ∀i ∈ N. (1)

Constraint (1) ensures that a node is connected only to one hub.

Since the nodes cannot connect with each other, the constraints

Xis ≤ Xss, ∀i, s ∈ N (2)

are introduced. These constraints indicate that the node i can be connected to s only when s is a hub, and
the node i must not be connected to s when s is a node.

Considering the assumption (A1), the number of hubs to be located is predetermined (p). The following
constraint

N∑
s=1

Xss = p (3)

is necessary.

For the route variables, we have the following inequality constraints

Xisnj ≥ Xis +Xnj − 1, ∀i, s, n, j ∈ N. (4)

Constraint (4) ensures that the route (i, s, n, j) is a valid path in the network if and only if nodes i and j are
assigned to hubs s and n, respectively.

For a valid path which from i to hub s, then from hub s to hub n, and finally from hub n to destination j,
the carbon emissions is eis +βesn + enj , and the transportation cost is cis +αcsn + cnj . Based on the policies
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given by the state, the total amount of carbon emissions generated during transportation is limited. This can
be described by the following constraint

N∑
i,j=1

N∑
s,n=1

(eis + βesn + enj)Xisnj ≤ Ecap. (5)

The left side of constraint (5) gives the sum of carbon emissions on all transportation routes, and the right
side is an allowance of the carbon emissions according to state policy.

The corresponding tax cost of the total carbon emission in this problem is

δ

N∑
i,j=1

N∑
s,n=1

(eis + βesn + enj)Xisnj .

The total transportation cost in this problem is

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj)Xisnj .

For this optimization problem, our aim is to minimize the total cost including transportation cost and tax
cost. Then the objective function of the optimization problem is

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(eis + βesn + enj))Xisnj . (6)

In summary, the deterministic uncapacitated single allocation p-hub median model is shown as

min

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(eis + βesn + enj))Xisnj

s.t. constraints (1)− (5). (7)

3 Robust Optimization Model for p-hub Median Problem

3.1 Carbon Emissions Uncertainty

In this section, we apply the robust optimization framework to describe the p-hub median problem. The
robust optimization specifies a suitable uncertainty set for imprecise input data and gives a solution that can
ensure the feasibility for all values of uncertain parameters within the uncertainty set.

In practice transportation, many factors, such as traffic conditions and temperature changes, may cause the
perturbations of the amount of carbon emissions. Hence the amount of carbon emissions in the transportation
is not unchanged, it has some uncertainty. But the uncertainty is not random, and there is no specific
distribution function. When we only know the range of the perturbations, we use some known uncertainty
sets to describe the uncertainties of carbon emissions and apply robust optimization method to deal with
the uncertain p-hub median problem. In this section, box and budget uncertainty sets are used to as much
as possible to resist the uncertainty of the parameters and a robust optimization model is proposed. In this
robust optimization model, eis, esn, and enj depict the parameters that are exposed to uncertainty. According
to the actual situation of carbon emissions, we choose box uncertainty sets to measure the perturbation of
uncertain parameters eis and enj , and the budget uncertainty set to measure the perturbation of esn. We
shall denote perturbation vector by ζ.

We consider that the uncertain parameter eis changes on the basis of the nominal value. Let eis = e0is+ζis,
where e0is is the nominal value, ζis is the specific perturbation value. We use a box uncertainty set to describe
the perturbation. The uncertainty set of eis is shown as

Ubox = {eis
∣∣eis = e0is + ζis, |ζis| ≤ θ}. (8)
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The uncertainty of enj is also described by box uncertainty set. We denote enj = e0nj + ζnj by the nominal

value e0nj and the specific perturbation value ζnj . Considering the differences between the actual parameters,
we assume that the perturbation range of enj is |ζnj | ≤ σ which is different from that of eis. It can be better
immune to the uncertainty.

For the uncertain parameter esn, let esn = e0sn + êsn, where e0sn is the nominal value and êsn is the specific
perturbation value. We use the budget uncertainty set to describe the perturbation of this parameter. In
order to simplify the corresponding calculation, we use ζsn = |esn − e0sn|/êsn to represent the perturbation,
and we know 0 ≤ ζsn ≤ 1. For the budget uncertainty set, we introduce perturbation control variable Γn to
limit the range of perturbation. The uncertainty set of esn is shown as follows

Ubudget = {esn
∣∣esn = e0sn ± ζsnêsn, 0 ≤ ζsn ≤ 1,

N∑
s=1

ζsn ≤ Γn}. (9)

3.2 The Robust Counterpart of Uncertain Constraint

In constraints (1)-(5), only constraint (5) contains uncertain parameters. We rewrite it as the following form:

N∑
i,j=1

N∑
s,n=1

(eis + βesn + enj)Xisnj ≤ Ecap, eis, esn ∈ Ubox, enj ∈ Ubudget. (10)

Now we discuss the robust counterpart of constraint (10). For its left side, we first give a worst case
formulation. Since the left side of constraint (10) is less than a constant, we can represent the worst case
formulation by the following integer linear programming (ILP) problem

max

N∑
i,j=1

N∑
s,n=1

(Xisnjeis + βXisnjesn +Xisnjenj)

s.t. eis, esn ∈ Ubox
enj ∈ Ubudget.

(11)

Substituting the uncertainty sets (8) and (9) of three kinds of uncertain parameters into the above linear
programming model, we obtain the following model

max

N∑
i,j=1

N∑
s,n=1

(Xisnj(e
0
is + ζis) + βXisnj(e

0
sn ± ζsnêsn) +Xisnj(e

0
nj + ζnj))

s.t. |ζis| ≤ θ
|ζnj | ≤ σ
N∑
s=1

ζsn ≤ Γn

0 ≤ ζsn ≤ 1.

(12)

For the uncertain parameters eis and enj , let ζnj and ζnj take value at endpoints, we can simplify them
directly. For the uncertain parameter esn, according to the constraint maximum protected criterion, e0sn ±
ζsnêsn ≤ e0sn + ζsnêsn, we introduce dual variables µsn and νsn. Using strong duality theory, we obtain
problem (13) as the dual programming problem of problem (12).

min

N∑
i,j=1

N∑
s,n=1

(e0is + βe0sn + e0nj + θ + σ)Xisnj +

N∑
s,n=1

(µsn + Γnνsn)

s.t. µsn + νsn ≥ βXisnj êsn ∀i, s, n, j ∈ N
µsn ≥ 0 ∀s, n ∈ N
νsn ≥ 0 ∀s, n ∈ N.

(13)
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As a consequence, we obtain the robust counterpart of the uncertain constraint (10) as follows:

N∑
i,j=1

N∑
s,n=1

(e0is + βe0sn + e0nj + θ + σ)Xisnj +

N∑
s,n=1

(µsn + Γnνsn) ≤ Ecap (14)

µsn + νsn ≥ βXisnj êsn ∀i, s, n, j ∈ N (15)

µsn ≥ 0 ∀s, n ∈ N (16)

νsn ≥ 0 ∀s, n ∈ N. (17)

3.3 The Robust Counterpart of Uncertain Objective

According to the theory of robust optimization, the objective function (6) is as follows:

min

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(eis + βesn + enj))Xisnj , eis, esn ∈ Ubox, enj ∈ Ubudget. (18)

We know that minimizing the objective function is equivalent to minimizing its upper bound. Therefore,
introducing an auxiliary variable t, we can transform problem (18) into the following robust optimization
problem

min t

s.t.

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(eis + βesn + enj))Xisnj ≤ t

eis, esn ∈ Ubox
enj ∈ Ubudget.

(19)

Through the above transformation, we have moved the objective function into the constraint. Hence we
can obtain the robust counterparts of these new constraints by the method used in section 3.2. According to
the constraints in the above model, we obtain the following problem:

max

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(eis + βesn + enj))Xisnj

s.t. eis, esn ∈ Ubox
enj ∈ Ubudget.

(20)

We substitute the uncertainty sets (8) and (9) of three kinds of uncertain parameters into the above model.
Therefore the following model (21) is obtained.

max

N∑
i,j=1

N∑
s,n=1

((cis + αcsn + cnj)Xisnj + δXisnj(e
0
is + ζis) + δβXisnj(e

0
sn ± ζsnêsn)

+ δXisnj(e
0
nj + ζnj))

s.t. |ζis| ≤ θ
|ζnj | ≤ σ
N∑
s=1

ζsn ≤ Γn

0 ≤ ζsn ≤ 1.

(21)

For the uncertain parameters eis and enj , we can simplify them directly. For the uncertain parameter
esn, according to the constraint maximum protected criterion, e0sn± ζsnêsn ≤ e0sn + ζsnêsn, we introduce dual
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variables γsn and τsn. Using strong duality theory, we obtain the dual programming problem (22) of this
maximization problem, which is the robust counterpart of the uncertain objective.

min

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(e0is + βe0sn + e0nj))Xisnj +

N∑
i,j=1

N∑
s,n=1

δ(θ + σ)Xisnj

+

N∑
s,n=1

(γsn + Γnτsn)

s.t. γsn + τsn ≥ δβXisnj êsn ∀i, s, n, j ∈ N
γsn ≥ 0 ∀s, n ∈ N
τsn ≥ 0 ∀s, n ∈ N.

(22)

3.4 The Robust Counterpart Model

According to the above discussion, the uncertain uncapacitated single allocation p-hub median model is shown
as

min

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(eis + βesn + enj))Xisnj

s.t. constraints (1)− (5) (23)

eis, esn ∈ Ubox
enj ∈ Ubudget.

Based on duality theory, combining the above results (14)-(17) and (22), the robust counterpart model of
model (23) is shown as follows:

min

N∑
i,j=1

N∑
s,n=1

(cis + αcsn + cnj + δ(e0is + βe0sn + e0nj))Xisnj +

N∑
i,j=1

N∑
s,n=1

δ(θ + σ)Xisnj

+

N∑
s,n=1

(γsn + Γnτsn)

s.t. γsn + τsn ≥ δβêsnXisnj ,∀i, s, n, j ∈ N
µsn + νsn ≥ βêsnXisnj , ∀i, s, n, j ∈ N
N∑

i,j=1

N∑
s,n=1

(e0is + βe0sn + e0nj + θ + σ)Xisnj +

N∑
s,n=1

(µsn + Γnνsn) ≤ Ecap

γsn ≥ 0, τsn ≥ 0, µsn ≥ 0, νsn ≥ 0, ∀s, n ∈ N
constraints(1)− (4).

(24)

The robust counterpart model (24) is a mixed integer linear programming model. It is because of this, that
the robust counterpart model is readily solved by standard optimization packages. In the next section, we
solve the corresponding mixed integer linear programming problems in the numerical experiments by CPLEX.

4 Numerical Experiments

This section consists of four parts. The following steps are taken in the following four subsections in order
to describe the numerical experiments for the p-hub median model: the description of a actual p-hub median
problem, computational results provided by the proposed robust optimization model, comparison study with
the nominal model, influence of parameters on the optimal solution.
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4.1 Problem Description

With the rapid development of “Beijing-Tianjin-Hebei”, the logistics and transportation pressure of Beijing
and Tianjin is growing. In order to effectively alleviate the pressure of Beijing and Tianjin, it is necessary to
establish hub distribution center in Hebei province. As a part of Beijing-Tianjin-Hebei region, Hebei province
is responsible to undertake this work. Therefore, based on this background, we consider to locate some hubs
in Hebei prefecture level cities. The transport routes may pass through Beijing or Tianjin.

There are 11 candidate prefecture level cities in Hebei province, from which we choose 2 cities as hub
distribution centers. That is N=11, p=2. The 11 prefecture level cities in Hebei province distribute as Figure
2.

Figure 2: Distribution map of 11 candidate cities in Hebei province

The aim of our research is to determine two hubs from these 11 nodes to minimize the total cost. The
total cost is composed of transportation cost and carbon emission cost. We use the product of transportation
distance d and the transportation cost cd per unit distance to measure transportation cost. The transportation
distance d is derived from the highway traffic map of Hebei province. Combined with the actual situation, let
the transportation cost per unit distance be cd=10U. There is a discount factor α between the hubs because
of the economies of scale. We select α = 0.75 which is the same as that in [12].

The carbon emission cost is measured by the product of the amount of carbon emitted and the unit
carbon cost. According to the actual data, the fuel consumption per unit distance is about 0.12 liter, the
corresponding carbon emission e is 2.7× 0.12. According to the price of carbon emission in recent years, the
tax cost δ of the unit carbon emission is 0.04U/kg since carbon pollution. For transportation between hubs,
there are significant reductions in the carbon emission. So there is a discount factor of the carbon emission
between the hubs, and the discount factor β is assumed to be 0.65. The uncertain parameter eis is evaluated
in a box uncertainty set. Considering that the range of perturbation is approximately 10% of the nominal
value, we take 15 as the value of the perturbation parameter θ of the carbon emissions eis. Meanwhile, the
perturbation parameter σ for enj is 20. The uncertain parameter esn is in a different case because it takes
values in a budget uncertainty set. Considering the number of nodes, we take 10 as the value of parameter
Γn. According to the total transportation distance of HeBei province and the government’s control policy on
carbon emissions, we adopt Ecap=5000t.
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4.2 Computational Results of Robust Model

We use the robust optimization method proposed in Section 3 to model this p-hub median problem. According
to the initial values of the parameters, we use CPLEX 12.6.3 software to solve model (24) on an Inter(R) Core
i5-7200 (can speed up to 3.1GHz) personal computer with 4GB RAM operating under Windows 10.

For the sake of simplicity, we use 11 integers from 1 to 11 to represent city nodes: ChengDe, ZhangJiaKou,
TangShan, QinHuangDao, LangFang, BaoDing, CangZhou, ShiJiaZhuang, HengShui, XingTai and HanDan,
respectively. CPLEX software outputs six hub schemes, as shown in Figure 3. Comparing the objective values
of different hub schemes, the optimal scheme is that nodes 5 and 8 are taken as hubs, the corresponding optimal
value of the robust model is 597960.631.

Figure 3: The objective values of the robust model under different hub schemes

When nodes 5 and 8 are selected as hubs, the optimal hub network is shown in Figure 4. As shown in Figure
4, LangFang and ShiJiaZhuang are hubs, ChengDe, ZhangJiaKou, TangShan, QinHuangDao and BaoDing
are allocated to LangFang, CangZhou, HengShui, XingTai and HanDan are assigned to ShiJiaZhuang.

Figure 4: The optimal hub network determined by the robust model

4.3 Comparison Study with the Nominal Model

In this section we compare the computational results provided by the robust model and the nominal model.
Solving the nominal model, CPLEX software outputs six hub schemes. For the sake of intuition, we add them
to Figure 3 and get the comparison results shown in Figure 5.
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Figure 5: Comparison of the objective values of the robust model and the nominal model

Figure 5 shows that the optimal values of the robust model and the nominal model are different. The
optimal value of the robust model is 597960.631, while the optimal value of the nominal model is 597779.791.
The former is greater than the latter. Therefore, compared with the nominal optimal solutions, it takes more
cost to perform the robust optimal solutions. The additional costs is the robust price since the robust optimal
solutions must be responsible for all realizations of the uncertain parameters. In other words, we gain robust
solutions as the return of increasing the cost, which is the meaning of robust feasible solution. The optimal
hub network determined by the nominal model is shown in Figure 6. The optimal hub locations provided by
the nominal model are 3 and 8. Then, the nodes connected to hub 3 are 1, 2, 4, 5 and 6, the nodes connected
to hub 8 are 7, 9, 10 and 11.

Figure 6: The hub network determined by the nominal model

Figures 4 and 6 show that the robust optimization approach can provide a different hub network design
from that provided by the corresponding deterministic approach. From Figures 4 and 6, we can see the
difference between the robust solution and the nominal solution. This is in line with the actual situation:
compared with node 3 (TangShan), node 5 (LangFang) is in the central area of Beijing-Tianjin-Hebei region
and more suitable to be a hub. In this sense, our robust model outperforms the nominal model.
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4.4 The Influence of Adjustable Parameter Variation

The robust model has three perturbation control parameters θ, σ,Γn. When the perturbation control param-
eters take different values, different robust formulations are derived. In the following study, we analyze the
effects of perturbation control parameters on the optimal value and hub network.

The uncertain parameters eis and enj are described by box uncertainty sets. The perturbation control
parameters are θ and σ. We limit θ to be within [15, 25], σ to be within [20, 40]. Our analysis shows that
the changes of θ and σ do not affect the optimal hub network. The location of the hub does not change, but
the optimal value changes accordingly, as shown in Figure 7. As we can see from Figure 7, the perturbation
control parameters θ and σ impact the robust optimal value. The optimal value of the robust model increases
linearly as θ and σ increase.

Figure 7: The optimal values under θ ∈ [15, 25] and σ ∈ [20, 40]

In the robust model, the uncertain parameter esn is described by a budget uncertainty set. Now we analyze
the influence of the perturbation control parameter Γn on the optimal hub network. We take values of Γn

from 4 to 10. Figure 8 shows the optimal values for different Γn.

Figure 8: The optimal values under different Γn

Figure 9 shows the optimal hub locations and the optimal network in the cases of Γn = 4 and Γn = 6.
When Γn = 4, the optimal hub locations provided by the robust model are 5 and 9. Then, the nodes connected
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to hub 5 are 1, 2, 3, 4 and 6, the nodes connected to hub 9 are 7, 8, 10 and 11. In the cases of Γn = 6, The
optimal hub locations given by the robust model are 1 and 8, and the nodes 2, 3, 4, 5 and 6 are connected to
hub 1, the nodes 7, 9, 10 and 11 are connected to hub 8. The specific results for other values of Γn are shown
in Table 2.

(a) The hub network under Γn = 4 (b) The hub network under Γn = 6

Figure 9: The influence of Γn on hub network

Table 2: The results of the robust model under different Γn

Γn The hub location The optimal value
4 (5,9) 597954.911
5 (2,8) 597956.535
6 (1,8) 597960.631
7 (5,8) 597960.631
8 (5,8) 597960.631
9 (5,8) 597960.631
10 (5,8) 597960.631

Table 2 shows that the perturbation control parameter Γn does not affect the optimal value greatly, but
it affects the optimal solution. When perturbation control parameters Γn = 7, 8, 9, 10, the optimal solutions
of the robust model are unchanged.

In summary, the robust model can resist the uncertainties of some parameters, and small data uncertainty
deserves significant attention. As the number of uncertain parameters increase, the impact of these uncertain
parameters on the optimal decision will increase. Therefore, changing the value of the parameter may cause
the optimal decision to change.

5 Conclusions

In this paper, we propose a robust optimization method for uncertain p-hub median problem which emphasizes
green transportation. We describe carbon emission quantity as uncertain parameters which takes values in
box and budget uncertainty sets, but precise distributions are not available. Based on dual theory, we turn the
robust optimization problem into its equivalent mixed-integer programming problem which is computationally
tractable. We discuss the influence of adjustable parameter variation on robust solution. The numerical
experiments show that the robust optimal solution can resist data uncertainty. Therefore, it is reasonable
that we use robust model to against the prediction error caused by uncertainty.
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We apply the proposed robust optimization method to an actual p-hub median problem. In the prob-
lem, there are 11 candidate prefecture level cities in Hebei province, from which we choose 2 cities as hub
distribution centers. The numerical experiments show that the robust model suggests LangFang, rather than
TangShan, to be a hub. In reality, LangFang city is in the central area of Beijing-Tianjin-Hebei region, and
ShiJiaZhuang has been the hub of logistics transportation in HeBei province. This result shows that the
optimal decision of the robust model has higher quality than that of the nominal model. It further proves
the effectiveness and application value of our robust optimization method. The proposed robust optimization
method in this paper can be applied to other actual p-hub median problem.

In our proposed p-hub median model, cost is taken as the objective to be optimized. However, for the
transport of certain perishable products, transportation time is also an important criterion that can not be
ignored. Multiple assignments p-hub median can make the network more flexible and efficient. Modeling mul-
tiple objectives and multiple assignments p-hub median problem using robust optimization method deserves
to be studied in future. Furthermore, we will study the application of heuristic algorithm in solving the robust
p-hub median problem.
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