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Abstract 

 

A problem of reducing interval uncertainty is considered. The interval contains admissible values of an object’s 

parameter (property). The observed object’s parameter cannot be measured directly or deductively computed, so it is 

evaluated by expert judgments and estimations. Terms of observations are short, and the object’s statistical data are 

poor. Besides, the term of the parameter’s application tends to be the shortest, so any statistical methods to reduce the 

interval uncertainty are unreliable. Thus an algorithm of reducing interval uncertainty is designed via adjusting the 

parameter by expert procedures. The interval reduction ensues from the adjustment. While the parameter is adjusted 

forward, the interval becomes narrower after every next expert procedure and the interval uncertainty seems to be 

progressively reduced. The narrowing is performed via division-by-2 dichotomization cutting off the halves from the 

left and right. If the current parameter’s value falls outside of the interval, forward adjustment is canceled. Then 

backward adjustment is executed, where one of the endpoints is moved backwards. For conforming the rate of experts’ 

proficiencies and quality of the adjustment, hard and softer backward adjustment modes can be switched. If the current 

parameter’s value belonging to the interval is too close to either left or right endpoint, then this endpoint is not 

changed. The closeness is treated differently from both sides by the given relative tolerances. Adjustment is not 

executed when the current parameter’s value enclosed within the interval is simultaneously too close to both left and 

right endpoints. On this base, an early stop condition is given.  

© 2018 World Academic Press, UK. All rights reserved.  

Keywords: interval uncertainty reduction, expert procedure, expert estimations, an object’s parameter adjustment, 

dichotomization 

 

1 Introduction 
 

Any parameters or attributes of the predicted and controlled processes (events, mechanisms, systems, etc.) are either 

identified or defined by experience. The identification relates to statistical observations and their successive handling 

for correcting the mathematical model, which is identified [6, 31]. Otherwise, if the observed object’s properties 

cannot be measured directly or deductively computed, they are evaluated by expert judgments and estimations [2, 15]. 

Practically, those evaluations are enclosed within intervals including probable values fit to be applied on equal 

footing when no probability distributions are available [11, 13, 14]. Thus interval uncertainty commonly issues. 

Mathematical modeling deals with interval uncertainties also. One of its main problems is to reduce interval 

uncertainty rather than execute calculations based on interval analysis. When identifying a model, uncertainty is 

reduced step-by-step, going to be ultimately removed if possible and desired [6, 23]. For expert procedures, number 

of those steps is generally lesser. Besides, expert data are not so reliable due to their subjectivity [24]. And, moreover, 

expert procedures themselves need some additional parameters (sometimes called hyperparameters) to be properly 

and effectively conducted [2, 15, 26, 36]. So, reduction of interval uncertainty by expert estimations and procedures is 

much harder than that by statistical observations (measurements) and stronger mathematical frameworks (modeling). 
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2 Related Works and Motivation 
 

Although intervals are common type of estimation in statistics and socio-environmental sciences, they bring us 

undesirable uncertainties. In statistics, in contrast to point estimation, which is a single number, interval estimation is 

the use of sample data to calculate an interval of possible (or probable) values of an unknown population parameter 

[28, 30]. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible 

intervals (a Bayesian method). In Bayesian statistics, a credible interval is an interval in the domain of a posterior 

probability distribution or predictive distribution used for interval estimation [4]. Credible intervals are analogous to 

confidence intervals in frequentist statistics, although they differ on a philosophical basis treating the interval bounds 

differently. Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas 

frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value [19, 30, 35]. 

Other common approaches to interval estimation, which are encompassed by statistical theory, are tolerance, 

prediction, and likelihood intervals [8, 10, 22, 30]. Fiducial inference, another approach to statistical inference, also 

considers interval estimation [9, 32]. A lot of non-statistical methods including fuzzy logic lead to interval estimates 

as well [12, 17, 25]. 

The interval estimate is an outcome of statistical analysis and related fields of study. The wider interval is, the 

severer uncertainty grows, though some probabilistic properties may be applied to that interval [7, 14, 16, 18]. 

Reduction of interval uncertainty is motivated by both statisticians and engineers. This is because any practically 

reliable and robust decisions on short-term processes (events, objects) can be made only by outcomes, which are point 

estimates [27, 33]. Nothing but long-term processes allow us practicing with Bayesian decisions using expected 

values as a version of point estimates [5, 30]. However, assumptions on validity of long-term strategies usually fail 

due to unpredictable volatility of natural circumstances and engineering conditions. Therefore, interval estimates or 

interval data are practically inconsistent (Figure 1), where an acceptable decision should be single and precise, rather 

than an expected value or a set of satisfactory values. 

 

 

Figure 1: A sketch explaining practical inconsistency of interval estimates whose reliable probabilistic properties,      

if any, are tied to only short-termed objects 

 

A real challenge is to reduce interval uncertainty under conditions of short-termed observations and poor 

knowledge [1, 3, 34]. Unlike mathematical modeling based on direct measurements or deductive computations, expert 

procedures are widely subjected to such conditions. Mainly, the following six causes build them [20, 21, 26]: 
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1. Judgments and estimations of experts are susceptible to personal impressions, making subjectivism influence 

dominant. 

2. In specific fields of study, expert estimations may be biased, especially if experts’ competences and 

proficiencies are poor. 

3. Numbers of expert procedures and estimations commonly are much less than those of manipulations with 

ready data taken from computer-aided observations for mathematical model identification. 

4. Number of experts is usually strongly limited, unless they put their finite set judgments through social 

computer networks. 

5. For the most ingenuous expert judgments similar to likes and dislikes through social computer networks, 

finding a valid consensus concerning the considered interval is an issue. 

6. A lot of criteria to find the consensus have similar ranks, and thus taking a superior single criterion is 

impossible. 

An adjuvant condition to expert procedures is that often experts have an interval whose bounds are exaggerated, 

but they do not know how much. In such cases, the interval uncertainty can be actually reduced. Whatever the case, 

interval uncertainty reduction is additionally motivated by that the shorter interval uncertainty is always better to 

make decisions. Compared to longer interval uncertainty, it is nearer to removal for obtaining a single point decision. 

 

3 Goals and Tasks to be Fulfilled 
 

There are two chief goals of this work. They are to design an algorithm of reducing interval uncertainty via adjusting 

a parameter by expert procedures, and provide regulating distinctness of the adjustment. The regularization is needful 

to conform the rate of experts’ proficiencies and quality of the adjustment. Naively, high quality of adjustment based 

on estimations of experts with poor proficiencies is not required. 

To achieve those goals, the eight tasks are going to be fulfilled: 

1. To state principles of every step of the adjustment. 

2. To unify these steps into a definite disambiguated sequence. 

3. To provide a condition when, at a definite step, the adjustment is not necessary and thus it is not executed. 

4. To develop a condition of an early stop. 

5. To provide regularization of the adjustment distinctness. 

6. To describe specificities of application of the designed algorithm. 

7. To discuss merits and drawbacks of reducing interval uncertainty according to the designed algorithm. 

8. To conclude and explain a further work outline. 

The work is organized according to the sequence of these tasks. In the two last sections corresponding to the task 

#7 and task #8, a place of the designed algorithm within the field of interval uncertainty reduction is going to be 

described and sketched. This should help in fairly comprehending the contribution to the field. 

 

4 Forward Adjustment 
 

Let an initial interval  ;a b   by b a  be fixed. The interval is supposed to be at least a little bit wider than it is 

in reality. A parameter  ;Y a b  is to be determined more accurately. Formally, this is to find a strict inclusion 

    ; ;a b   (1) 

using data of expert procedures of adjusting the parameter Y . In every procedure, experts deliver their single-point 

judgments or estimations on the parameter’s value. A new subinterval  ;   is desired to be as narrow as possible. 

Let H  be a number of expert procedures to be conducted,  \ 1H  . This number is optional. After the h -th 

expert procedure, h  and h H , a value y  of the parameter Y  is deduced or calculated based on the experts’ 

estimations (say, it can be a consensus). Number of experts is not specified. As of the first procedure, preassumptions 

 
2

y b
  (2) 

and 
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2

a y
  (3) 

are irrejectable. Note that partitions (2) and (3) give a half of the initial interval. Since the second procedure, such 

dichotomy should be kept if  ;y   . 

Let j  be a counter for the previously determined left endpoints of the subinterval  ;   and k  be a counter for 

the previously determined right endpoints of this subinterval, j  and k . Those endpoints become obsolete as 

new endpoints are determined. The first obsolete endpoints are 
1

obs b  and 
1

obs a  prior to preassumptions (2) and 

(3). If  ;y    then both the counters j  and k  are increased by 1, and 

 new
2

y 



 ,  

obs

k
  ,  

new  , (4) 

 new
2

y



 ,  
obs

j
  ,  

new  . (5) 

Steps (2) and (3), (4) and (5) constitute forward adjustment of the parameter Y . While the parameter is adjusted 

forward, subinterval  ;   becomes narrower after every next expert procedure and the interval uncertainty seems to 

be progressively reduced (Figure 2). 

 

 

Figure 2: An example of the forward adjustment executed in the start three procedures 

 

If  ;y    and the current parameter’s value y  is too close to either left or right endpoint, then this endpoint 

must not be changed. Of course, the same happens if y   or y   . The closeness can be treated differently from 

both sides. Given a relative tolerance   for the left side, the inequality 

 
y

b a






  (6) 

for y   implies that the counter j  is not increased (remains the same), and the left endpoint   is not updated (to 

 

a by 

Procedure #1 

a by2

obs
2
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obs
3
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the right). Obviously, setting the tolerance within the unit interval  0; 1  is purely formal and 0.5  is meaningless. 

At the most, tolerance 0.25  can be actuated just after the second procedure. Therefore, tolerance  0; 0.25  

but a chance of infinitely small tolerance is purely formal again (it is straitened to put any constraints on the relative 

tolerance from bottom). In real applications, however, the relative tolerance cannot exceed 0.1 (or 0.2) or about that. 

Similarly to inequality (6), if 

 
y

b a






  (7) 

for y   by a relative tolerance   for the right side, the counter k  remains the same, and the right endpoint   is not 

moved to the left. Although  0; 0.25  and 0.1  for overwhelming majority of practicable reductions, orders of 

the left and right tolerances may be dissimilar treating closeness from both sides differently. 

Theorem 1. After the h -th expert procedure, contributed to h  successive forward adjustments where neither 

inequality (6) nor inequality (7) was true, h , the length of the subinterval  ;   is 2h  times shorter than the 

length of the initial interval  ;a b . 

Proof. After the first procedure, as it was above-mentioned, partitions (2) and (3) give a half of the initial interval. 

While forward adjustment, updates (4) and (5) give a new subinterval  new new;   whose length is 

 new new
2 2 2

y y  
   

   
   (8) 

meaning that every new length is twice shorter than the previous one. For h  successive forward adjustments, it gives 

a new subinterval, which is 2h  times shorter than the length of the initial interval  ;a b . 

 

Clearly, the assertion of Theorem 1 breaks if either inequality (6) or inequality (7) turns true. Thus the interval 

uncertainty reduction is retarded. When  ;y    after some procedure, forward adjustment breaks as well. Whether 

it should retard the reduction or should not, the answer is going to be given below, where the endpoints’ obsolescence 

is exploited. 

It is an obvious fact that, for the forward adjustment, sequences of obsolete endpoints are monotonic. A sequence 

of obsolete right endpoints is monotonic decreasing (i. e., it moves to the left), and a sequence of obsolete left 

endpoints is monotonic increasing (moves to the right). In strict words, inequalities 

 
1

obs obs

k k
   (9) 

and 

 
1

obs obs

j j
   (10) 

must hold for any counters k  and j . However, rate of monotonicity is not monotonic itself. This means that 

inequalities 

 
1 1 2

obs obs obs obs

k k k k  
      (11) 

and 

 
1 2 1

obs obs obs obs

j j j j  
      (12) 

do not necessarily hold simultaneously for any k  and j . The example in Figure 2, where (11) and (12) both are true 

for 1k j  , is an occurrence typical for the three starting expert procedures. An occurrence when both (11) and (12) 

are false is impossible, because for the pure forward adjustment, due to Theorem 1, 

 1 1 1 2 2 1

obs obs obs obs obs obs obs obs2
k k j j k k j j     
               

that cannot violate inequalities (11) and (12) simultaneously. It also should be noted that strictness of inequalities (9) 
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and (10) can be violated when  ;y   . 

 

5 Backward Adjustment 
 

If  ;y    then, at the current stage, forward adjustment is canceled. If y    then the current right endpoint   is 

discarded and not counted to be an obsolete one, being updated to the right as (2). Along with that, the counter j  is 

increased by 1 and the left endpoint   is updated to the right as (5). This is backward adjustment (Figure 3), where 

one of the endpoints is moved backwards. 

 

 

Figure 3: An example of the backward adjustment executed straight after the third procedure 

 

Similarly, if y   then the left endpoint   is discarded and not counted to be an obsolete one, being updated to 

the left as (3). Along with that, the counter k  is increased by 1 and the right endpoint   is updated to the left as (4). 

Since here the left endpoint is moved to the left, the left backward adjustment and right backward adjustment are 

discerned. 

The example in Figure 3, which is scaled precisely, shows that the new subinterval  ;   became wider after 

the right backward adjustment. But does it descend always? Does backward adjustment imply a new subinterval 

 ;   becomes wider? The answer to this question is negative owing to a counterexample. 

Theorem 2. When backward adjustment occurs in the second expert procedure, the new subinterval  ;   is always 

shorter than the initial interval  ;a b . 

Proof. Suppose that y    in the second procedure. Then the length of the new subinterval  ;   is 

 

a by 

Procedure #1 

a by2

obs
2

obs 

Procedure #2 

a by3

obs  

Procedure #3 



This is not counted as an 

obsolete right endpoint,  
it is discarded 
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2 2

obs obs

2 2 2

y by b  
 
 

. (13) 

The length of the first subinterval is ( ) 2b a , so the difference 

2 2

obs obs

2 2 2

b ab a  
 

 
 

is always positive as 
2

obs a , confirming the theorem assertion for the right backward adjustment. For the left 

backward adjustment, y   in the second procedure, and the length of the new subinterval  ;   is 

 

2 2

obs obs

2 2 2

y aa y 
 

 
. (14) 

The difference 

2 2

obs obs

2 2 2

a bb a  
 
 

 

is always positive as 
2

obsb   . This completes confirmation of the theorem assertion. 

 

Surely, the length of the new subinterval  ;   after backward adjustment occurring in the h -th expert 

procedure is calculated similarly to (13) and (14),  \ 1h . It is 

 obs obs

2 2 2

h h
y by b  

 
 

 (15) 

and 

 obs obs

2 2 2

h h
y aa y 

 
 

 (16) 

for the right and left backward adjustment, respectively. This is kind of hard backward adjustment inasmuch as new 

lengths (15) and (16) may come much (unexpectedly) longer compared to preceding ones. 

 

6 Softer Backward Adjustment 
 

Backward adjustment updates (2) and (3) may be good at a few starting procedures. However, when the interval 

 ;   is sufficiently narrow, those updates appear grosser. A prompt is in Figure 3, where instead of (2), the new 

value of   can be found as 
2

obs( ) 2y   . 

Generally, if 

 
obs

k
y   (17) 

then a new right endpoint is 

 obs

2

k
y 




 . (18) 

While (17) is false, the counter k  is decreased by 1. And a new left endpoint is 

 obs

2

j
y




  (19) 

by 
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obs

j
y  . (20) 

While inequality (20) is false, the counter j  is decreased by 1. An appropriate right endpoint must not be changed if 

 obs

k
y

b a






  (21) 

by inequality (17), i.e. the current parameter’s value y  is too close to this endpoint. Passing down with (21), the 

appropriate endpoint 
obs

k
   is set. If 

 obs

j
y

b a






  (22) 

by inequality (20) then an appropriate left endpoint is not changed as well, and 
obs

j
  . No obsolescence counter is 

increased. 

The backward adjustment by (17), (18), and (20), (19), and (21), (22), is far softer than that by hard updates (2) 

and (3). The softer updates (18) and (19) ensure higher quality of adjustment fitting experts with improved 

(improvable) proficiencies. Commonly, getting started with hard backward adjustment, it is shifted to softer backward 

adjustment after a few starting procedures. 

 

7 An Early Stop Condition 
 

Adjustment is not executed when the current parameter’s value y  enclosed within the subinterval  ;   is 

simultaneously too close to both left and right endpoints. Algebraically, this occurs when  ;y    and both 

inequalities (6) and (7) are true. Apparently, if this both-sided closeness recurs in succession, the corresponding 

statistical stability is likely to be induced. Then the further uncertainty reduction is unlikely, and so the adjustment 

can be stopped. 

Let 
*H  be a maximal number of successive expert procedures, during which the both-sided closeness recurred, 

whereupon the adjustment is stopped. Of course, 
*H H  by  * \ 1H   if H  is given, but then 

*H  is optional. If 

H  is not given, then 
*H  must be given obligatorily as that  * \ 1H  . 

For algorithmic representation of a condition of an early stop, we need flags indicating directions of branching 

and subsequent actions. Denote the flags by r  and r  for the left and right endpoints, respectively. A convention is 

that the flag is equal to 2 when  ;y    and the current parameter’s value y  is too close to the endpoint. If 

 ;y    but y  is not close to the endpoint, and while the hard backward adjustment, the flag is set to 0. While the 

softer backward adjustment, the flag is set to 1 if y  is too close to the endpoint, otherwise it is set to 0. It is easy to 

see that a case 1r r    is impossible because only one of the endpoints is moved backwards while the backward 

adjustment. 

The flag for the given H  is 1d  . The flag for the given *H  is * 1d  . So when 4r r    and * 1d  , a counter 

*h  for successive expert procedures, during which the both-sided closeness recurred, is increased by 1. The 

adjustment is stopped when the counter 
*h  reaches its maximum, that is, * *h H . When 2r r    and 

* 1d  , the 

counting for those successive expert procedures starts afresh by setting 
* 1h   back. 

 

8 Interval Uncertainty Reduction Algorithm 
 

The above-described adjustment steps constitute a partially-paralleled sequence represented as an algorithm of 

reducing interval uncertainty via adjusting the parameter by expert procedures (Figure 4). Depending on the rate of 

experts’ proficiencies, hard and softer backward adjustment modes can be switched. The backward adjustment modes 

of the endpoints do not necessarily coincide, especially since a single endpoint is backwards updated at a stage. These 

modes are regularized so that the adjustment distinctive quality conforms to the rate of experts’ proficiencies. 
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Parallelization begins when the next expert procedure conduction is completed and a value y  of the parameter 

Y  is deduced (calculated). Parallelization ends in gathering data 

    1 1

1 1

obs obs
1 1

, , ,
j k

j k

j k 
     

before deciding on whether to continue or stop. The early stop is possible after a succession of 
*H  forward 

adjustments, when the endpoints are not changed. 

Theorem 3. If 

     min , ,b a b a          (23) 

then a changeover of the subinterval  ;   is possible. Otherwise, if 

     min , ,b a b a         (24) 

then a changeover happens if only y   or y    (i. e., outside of the subinterval). 

Proof. From inequality (23), we can get either 

  b a       (25) 

or 

  b a      . (26) 

Inequality (25) implies that 

   b a         

by sufficiently small 0 , that gives the inverse inequality (6) 

y

b a







  

for y   and y  . Similarly, inequality (26) implies that 

   b a         

by sufficiently small 0 , that gives the inverse inequality (7) 

y

b a









 

for y   and y  . Both cases are followed with the changeover by updates (5) and (4), respectively. On the other 

hand, inequality (24) gives simultaneous inequalities (6) and (7) implying no changes for   and   if only  ;y   . 

If the current parameter’s value falls outside of the subinterval, a changeover is inevitable. 
 

Clearly, forward adjustment is meant to be, but backward adjustment is undesirable. If experts learn to make their 

judgments or estimations more accurate then, as procedures go by, backward adjustment is expected to disappear 

completely. This is very urgent for unlimited number of procedures to be conducted, when just integer *H  is given. 

In this case,  once next backward adjustment is made,  a succession of forward adjustments or non-changed endpoints 

must happen before the early stop. Then, what is the length of the subinterval  ;   expected to be? The following 

assertion answers this question. 
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Theorem 4. For unlimited number of procedures to be conducted, if the ultimate backward adjustment is made at a 

stage, the length of the final subinterval  ;   can be less than 

     max ,b a b a      (27) 

followed a succession of forward adjustments or non-changed endpoints and the corresponding early stop. 

Proof. Suppose that 

    b a         (28) 

after the ultimate backward adjustment is made at a stage. Without losing generality, let   . We always can take 

  and   such that 

m      by   \ 1m  

and 

     b a b a              , 

whence  

 1m     

and 

       1 2 .b a m b a b a m                 
                                 

(29) 

Assume that, after a procedure, 

 y      by   b a    . (30) 

Then  ;y   , inequality (6) is true, and inequality (7) is false. Therefore, the left endpoint remains the same, and 

the new right endpoint is 

*

obs

new
2

k
y 




   by  *

obs

k
    for  some  

*k  . 

With statement (29), 

  *

obs

new

2

2 2

k y b a my     
 

  
  

  2 2

2

b a m    


   
. 

The new subinterval length is 

*

obs

new
2

k
y 

  


    

   

  

  

2 2

2

2

2 2

b a m

b a m

    
 

  
 

   


 
 

         

    1

2 2 2

b a m b a   
  

  
. 
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It must be compared to 

          max , 1b a b a b a b a m             . (31) 

Inasmuch as 

 b a      and   b a    , 

we conclude that 

 
2

b a


  
 

 , 

whence 

 
       

new

1 3 4

2 2 2

b a m b a b a m      
   

  
  . (32) 

The difference between (31) and the right term of inequality (32) is 

  
  

 
4

1 1
2 2

b a m m
b a m b a

    
       

 


  , 

which is positive by 2m   and turns into zero by 2m  . Thus the length of the current subinterval  

   new; ;      

is less than (27): 

     max ,b a b a         . (33) 

If a succession of forward adjustments or non-changed endpoints follows further, this subinterval is either narrowed, 

due to inequality (23) until inequality (24) turns true, or not changed, until the corresponding early stop becomes. 

Another assumption of that    induces a symmetrically proof for inequality (33). 

 

Theorem 4 shows possibility of inequality (33) owing to the assumption (30) and the condition of that the current 

parameter’s value y  is ―trapped‖ in the subinterval  ;  . Hence one more question is what the maximal length of 

the final subinterval  ;   is when the conditions of Theorem 4 hold. 

Theorem 5. For unlimited number of procedures to be conducted, if the ultimate backward adjustment is made at a 

stage, the maximal length of the final subinterval  ;   is limited to 

    b a     (34) 

but never reaches the value (34). 

Proof. Suppose that inequality (28) holds after the ultimate backward adjustment is made at a stage. Then, after every 

next procedure, value    becomes smaller due to forward adjustments for both endpoints by 

     ;y b a b a          , (35) 

or by a non-changed endpoint and the other endpoint’s update by either 

  ;y b a         (36) 

or 

  ;y b a        . (37) 
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Consequently, in a finite number of stages, we get 

         min ,b a b a b a                . (38) 

If, in the next procedure, membership (35) is true, then the new subinterval length is 

   
new new

2 2

y b a b a y        
  

    
   

                      

   
   

2

b a b a
b a

     
    
  

  , 

where (38) is used. Otherwise, if either membership (36) or (37) is true, then the new subinterval length is either 

   
new

2

y b a b a       
  

   
    

                             

   
   

2

y b a b a
b a

       
   

   
   

by using (38) and (36), or 

   new
2

y
b a b a


         


       

                             
       

2

y
b a b a b a


          


      

by using (38) and 2y    ensuing from (37), respectively. Nonetheless, if the event with the equality 

    b a         (39) 

happens, there is zero probability of that  y b a      in any next procedure before the early stop, because the 

current parameter’s value y  here is a value of a factual continuous variate co-named by Y . 

 

Assertions of Theorem 4 and Theorem 5 might appear those whose dealing with ideal conditions (without 

backward adjustment) is unrealizable. This is really so for inexperienced experts and poorly selected endpoints of the 

initial interval  ;a b  along with groundlessly diminished   and  . Nevertheless, a  and b  are presumed to be taken 

such that the initial interval would be a little bit wider than it would have been according to non-preconceived 

estimation. This lets experts learn longer and get more proficient before estimating and deciding on pretty narrow 

subinterval  ;  . Thus, along with appropriate tolerances, conditions of Theorem 4 and Theorem 5 seem realizable. 

These theorems and Theorem 3 help to reckon an aftermath of the interval uncertainty reduction algorithm application. 

 

9 Application 
 

The algorithm is applicable in study fields engaging expert estimations and procedures prior to any statistical 

inferences or point estimations. Figure 4 suggests a preparatory refinement of the initial interval using only data of 

expert judgments. One should remember that the interval uncertainty reduction is realized by the adjustment of the 

parameter belonging to a subinterval, which is to be finally found at early stop or when all the scheduled procedures 

are conducted. Although one of integers H  and *H  is optional, them both are recommended to be set. Both 

tolerances should be equal, i. e.   , unless there are significant reasons to set them unequal. Figure 5 features a 

real-scaled interval uncertainty reduction in 18 stages by three backward adjustments, where equal tolerances are one 

eighth of the initial interval, and * 5H   by non-specified number H . The parameter is a duration of the warm run-in 

process of a four-stroke engine. In such a way, the duration is time interval  ;  -optimized by minimizing wear. 
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Figure 5: An example of the run-in process duration uncertainty reduction applied for settling a low-cost run-in [27] 
(the wear experience is poorer at the starting stages, but it is bettering further and its trace is the decreasing scatter of 
the current parameter’s values, which are like to become stable; so the early stop has fired after the 18-th procedure) 
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In addition to the reasonable run-in duration settling, the uncertainty reduction algorithm in Figure 4 can be 

applied for non-destructive checkup, production (assembly) line supervision, construction works (handling the 

building tolerances), and for solving other problems in technical and technological systems dealing with intervals. 

Many rules of thumb are to be rationalized more. This concerns problems with time windows, dispatching, scheduling, 

etc. Besides, the algorithm is ready to adjust parameters of neural networks whose values are ordinarily set loose for 

new statistical approximation problems. The adjustment fits to be straightforwardly applied in modeling social 

systems, where ranges of uncertainty are very high and the observed object’s properties cannot be studied without 

expert judgments. 

The algorithm, however, does not guarantee that the width of the interval will be reduced by half or whatsoever. 

If a number of expert procedures to be conducted is specified, then a situation with a series of alternating forward and 

backward adjustments is possible. Then the subinterval in (1) may be pretty much the same as the initial interval. 

Such situations may be caused with one or several of the following reasons: 

1. A specified number of expert procedures to be conducted is insufficient, i. e., it is too small. 

2. The initial interval does not reflect the real admissibility of the object’s parameter values, meaning that the 

initial interval is either biased or taken narrower (that is, not all admissible values of the object’s parameter are 

included). 

3. Small group of experts is involved (their consensus value is inconsistent). 

4. The interval uncertainty cannot be principally reduced due to its stochastic nature. For instance, the 

uncertainty reduction is impossible in weather prediction based only on expert judgments, without referring to 

statistical analysis of the corresponding natural factors and meteorological conditions. 

If an item of those four reasons is true, the interval uncertainty reduction may be canceled. It is absolutely 

canceled if items #1 and #2 are true. A small group of experts can render the uncertainty only when the number of 

expert procedures is sufficiently great or not specified. 

 

10 Discussion 
 

The adjustment herein is associated with uncertainty reduction and vice versa. Forward adjustment is naturally 

favorable, but backward adjustment is practically inevitable. Too many backward adjustments is a bad event hinting 

at we got poor initial endpoints or/and inexperienced experts. The worse event is when forward and backward 

adjustments shift one another for a long series. At such an event, the early stop cannot fire (in the run-in process 

duration uncertainty reduction example by Figure 5, the early stop is thwarted twice — at the 10-th stage and directly 

at the 14-th stage). The interval uncertainty reduction algorithm, after all, does not predict a series of alternating 

forward and backward adjustments. If such a series happens, integers H  and 
*H  are unlikely of their influence. 

Probably, endpoints of the initial interval were selected inappropriately or (and) the tolerances are smaller than they 

should have been. 

The example of the run-in process duration uncertainty reduction in Figure 5 is a pattern where the closeness is 

not treated differently from both sides. Indeed, wear and its intensity come at saturation for longer run-in processes. 

But even if it is so, the tolerances are seen to be set equal at the opening studies. Any complexifications may lead to 

the interval reduction misinterpretation and delays. 

The adjustment is performed by dichotomization. An important question is raised thereof. Why do we divide 

exactly by 2? Not, say, by 3, cutting off the thirds from the left and right? The answer is the dichotomization should 

be the simplest, which is the division by 2. All the above-mentioned fields are studied under conditions of  

short-termed observations and poor knowledge, so any other division cannot be perfectly substantiated. 

The proved theorems prompt us about plausible trends of the algorithm. Theorem 5 states that once y  is 

―trapped‖ within    b a    -length interval, the subinterval  ;   will not become wider and 

   b a         

for accurate enough expert estimations following it. However, if y  was restricted to discrete values, then equality (39) 

would be possible. In general, for discrete interval uncertainty, the uncertainty reduction algorithm in Figure 4 is 

hardly applicable. 

An open issue exists in the adjustment stop by having conducted all H  procedures and not reaching the 

statistical stability related to the number *H . This issue seems grander when the adjustment stops after a backward 
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adjustment update. Another drawback is that the designed algorithm is weakly connected to the law of large numbers. 

For sufficiently great 
*H  serving to reach the statistical stability, however, the connection is clearer. 

The designed algorithm contributes a short-termed interval narrowing to the field of interval uncertainty 

reduction. As number of observations increases (duration of observations extends) by the longer term of application, 

the algorithm tends to be a statistical method for cutting off outermost parts of the initial interval, which are hit the 

least (Figure 6). Operations over intervals (interval calculus) have no relation to the algorithm. An influence upon 

fuzzy optimization and decision making is revealed when short-termed events are studied by minor number of 

observations [12, 17, 25, 29]. A critical number of observations exists (some H  or 
*H ), below which the algorithm 

cannot produce credible results. Above this number and a little bit up (to the right), operations over intervals still 

make sense. 

 

Figure 6: The designed algorithm within the field of interval uncertainty reduction 

    

11  Conclusion 
 

The designed algorithm allows reducing interval uncertainty based on expert estimations and weak statistical 

inferences. The weakness implies immediately narrowing an interval towards an average-like (consensus) of expert 

observations (judgments). The narrowing is equivalent to successive adjustment performed via division-by-2 

dichotomization. In fact, the reduction of an interval of the parameter’s values is equivalent to the adjustment of this 

parameter. This is a supplement ―under‖ statistical methods to the field of interval uncertainty reduction. 

The rate of experts’ proficiencies is conformed to the adjustment quality by switching hard and softer backward 

adjustment modes. Despite estimations of experts with poor proficiencies, the adjustment quality is improved by 

proper switching. At a few starting procedures, hard backward adjustment updates may be good, especially if the 

initial interval is given intentionally wider. As the number of the passed procedures grows and the interval becomes 

narrower, it is reasonable to stand by at the softer backward adjustment. 

Applicability of the interval uncertainty reduction algorithm calls for the fine-tuned integers H  and 
*H  by 

appropriate tolerances. The algorithm is applicable to processes whose stochastic nature is minimal or moderate. It 

fits best when the object’s statistical data are poor and terms of observations are short. Despite the integer *H  is more 

crucial (in particular, for the early stop condition), number of procedures to be conducted is recommended to be 

specified, or else it is running to be unlimited. The infiniteness of expert procedures may happen if 
*H  is too great or 

tolerances are small. Nevertheless, parallelization of the algorithm ensures twice faster data processing. 

For further research development, division-by- q  dichotomization must be considered for 2q  . The value q  

implies cutting off the 1q -th parts from the left and right, so 1q  . It is believed to be an adaptation to various 

situations while expert procedures are conducted. At a few starting procedures, taking 2q   is suitable. As the 

interval becomes narrower, taking 2q   is prudent for cutting off fewer parts. Cutting fewer parts is also reasonable 

for the shorter terms of observations. 

 



V.V. Romanuke: Interval Uncertainty Reduction via Division-by-2 Dichotomization 

 

 

20 

Acknowledgments 

This work was technically supported by the Center of parallel computations at Khmelnitskiy National University, 

Ukraine. 

 

References 
 

[1] Alhassan, E., Sjöstrand, H., Helgesson, P., Österlund, M., Pomp, S., Koning, A.J., and D. Rochman, On the use of integral 

experiments for uncertainty reduction of reactor macroscopic parameters within the TMC methodology, Progress in Nuclear 

Energy, vol.88, pp.43–52, 2016. 

[2] Bazerman, M.H., and D.A. Moore, Judgment in Managerial Decision Making (8th ed.), Wiley, 2013. 

[3] Dong, C., Huang, G.H., Cai, Y.P., and Y. Xu, An interval-parameter minimax regret programming approach for power 

management systems planning under uncertainty, Applied Energy, vol.88, no.8, pp.2835–2845, 2011. 

[4] Ghashim, E., Marchand, É., and W.E. Strawderman, On a better lower bound for the frequentist probability of coverage of 

Bayesian credible intervals in restricted parameter spaces, Statistical Methodology, vol.31, pp.43–57, 2016. 

[5] González, M., Minuesa, C., and I. del Puerto, Maximum likelihood estimation and expectation-maximization algorithm for 
controlled branching processes, Computational Statistics & Data Analysis, vol.93, pp.209–227, 2016. 

[6] Goodwin, G.C., and R.L. Payne, Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, 
New York, 1977. 

[7] Guo, P., and H. Tanaka, Decision making with interval probabilities, European Journal of Operational Research, vol.203, 
no.2, pp.444–454, 2010. 

[8] Han, Y., Liu, W., Bretz, F., Wan, F., and P. Yang, Statistical calibration and exact one-sided simultaneous tolerance 
intervals for polynomial regression, Journal of Statistical Planning and Inference, vol.168, pp.90–96, 2016. 

[9] Hannig, J., Lai, R.C.S., and T.C.M. Lee, Computational issues of generalized fiducial inference, Computational Statistics & 
Data Analysis, vol.71, pp.849–858, 2014. 

[10] Harris, I.R., A simple approximation to the likelihood interval for a binomial proportion, Statistical Methodology, vol.13, 

pp.42–47, 2013. 

[11] Jablonski, A., Barszcz, T., Bielecka, M., and P. Breuhaus, Modeling of probability distribution functions for automatic 
threshold calculation in condition monitoring systems, Measurement, vol.46, no.1, pp.727–738, 2013. 

[12] Lan, Y., Liu, Y.K., and G. Sun, Modeling fuzzy multi-period production planning and sourcing problem with credibility 
service levels, Journal of Computational and Applied Mathematics, vol.231, no.1, pp.208–221, 2009. 

[13] Lehmann, E.L., and G. Casella, Theory of Point Estimation (2nd ed.), Springer, New York, 1998. 

[14] Li, Y.P., Huang, G.H., and S.L. Nie, A robust interval-based minimax-regret analysis approach for the identification of 

optimal water-resources-allocation strategies under uncertainty, Resources, Conservation and Recycling, vol.54, no.2, 
pp.86–96, 2009. 

[15] Liebowitz, J., The Handbook of Applied Expert Systems, CRC Press, Boca Raton, FL, 1997. 

[16] Liu, P., Jin, F., Zhang, X., Su, Y., and M. Wang, Research on the multi-attribute decision-making under risk with interval 

probability based on prospect theory and the uncertain linguistic variables, Knowledge-Based Systems, vol.24, no.4, pp.554–

561, 2011. 

[17] Liu, Y.K., The completion of a fuzzy measure and its applications, Fuzzy Sets and Systems, vol.123, no.2, pp.137–145, 2001. 

[18] Lodwick, W.A., and K.D. Jamison, Interval-valued probability in the analysis of problems containing a mixture of 

possibilistic, probabilistic, and interval uncertainty, Fuzzy Sets and Systems, vol.159, no.21, pp.2845–2858, 2008. 

[19] Menéndez, P., Fan, Y., Garthwaite, P.H., and S.A. Sisson, Simultaneous adjustment of bias and coverage probabilities for 
confidence intervals, Computational Statistics & Data Analysis, vol.70, pp.35–44, 2014. 

[20] Nott, D.J., Marshall, L., Fielding, M., and S.-Y. Liong, Mixtures of experts for understanding model discrepancy in dynamic 
computer models, Computational Statistics & Data Analysis, vol.71, pp.491–505, 2014. 

[21] Palomares, I., and L. Martínez, Low-dimensional visualization of experts’ preferences in urgent group decision making 
under uncertainty, Procedia Computer Science, vol.29, pp.2090–2101, 2014. 

[22] Pan, L., and D.N. Politis, Bootstrap prediction intervals for Markov processes, Computational Statistics & Data Analysis, 
vol.100, pp.467–494, 2016. 

[23] Pasquier, R., and I.F.C. Smith, Robust system identification and model predictions in the presence of systematic uncertainty, 
Advanced Engineering Informatics, vol.29, no.4, pp.1096–1109, 2015. 

[24] Pham, H.V., and F.T.-C. Tsai, Bayesian experimental design for identification of model propositions and conceptual model 

uncertainty reduction, Advances in Water Resources, vol.83, pp.148–159, 2015. 

[25] Qin, R., Liu, Y.K., and Z. Liu, Modeling fuzzy data envelopment analysis by parametric programming method, Expert 

Systems with Applications, vol.38, no.7, pp.8648–8663, 2011. 



Journal of Uncertain Systems, Vol.12, No.1, pp.3-21, 2018                                                                                                           

 

 

 

21 

[26] Rajabi, M.M., and B. Ataie-Ashtiani, Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in 
parameter estimation, Journal of Hydrology, vol.536, pp.255–272, 2016. 

[27] Romanuke, V.V., Theoretic-game Methods of Identification of Models for Multistage Technical Control and Run-in under 

Multivariate Uncertainties, a Dissertation for the Doctoral Degree of Technical Sciences in Speciality 01.05.02 — 

Mathematical Modeling and Computational Methods, Vinnytsia National Technical University, Vinnytsia, Ukraine, 2014 (in 

Ukrainian). 

[28] Sae-tang, S., Srihera, R., Soontornpipit, P., Satitvipawee, P., and C. Viwatwongkasem, Interval estimation of diagnostic odds 
ratio in meta-analysis by means of profile likelihoods, Procedia Computer Science, vol.86, pp.212–215, 2016. 

[29] Tepavčević, B., and V. Stojaković, Procedural modeling in architecture based on statistical and fuzzy inference, Automation 
in Construction, vol.35, pp.329–337, 2013. 

[30] Walpole, R.E., Myers, R.H., Myers, S.L., and K. Ye, Probability & Statistics for Engineers & Scientists (9th ed.), Prentice 
Hall, Boston, Massachusetts, 2012. 

[31] Walter, É., and L. Pronzato, Identification of Parametric Models from Experimental Data, Springer, 1997. 

[32] Wandler, D.V., and J. Hannig, Fiducial inference on the largest mean of a multivariate normal distribution, Journal of 
Multivariate Analysis, vol.102, no.1, pp.87–104, 2011. 

[33] Xia, M., Cai, C.S., Pan, F., and Y. Yu, Estimation of extreme structural response distributions for mean recurrence intervals 
based on short-term monitoring, Engineering Structures, vol.126, pp.121–132, 2016. 

[34] Zeng, X., Wu, J., Wang, D., Zhu, X., and Y. Long, Assessing Bayesian model averaging uncertainty of groundwater 

modeling based on information entropy method, Journal of Hydrology, vol.538, pp.689–704, 2016. 

[35] Zhang, G., Simultaneous confidence intervals for several inverse Gaussian populations, Statistics & Probability Letters, 

vol.92, pp.125–131, 2014. 

[36] Zhou, Y., Fenton, N., and M. Neil, Bayesian network approach to multinomial parameter learning using data and expert 
judgments, International Journal of Approximate Reasoning, vol.55, no.5, pp.1252–1268, 2014. 

 


	JUS-12-1-2.pdf
	Introduction
	Deterministic Model for p-hub Median Problem
	Robust Optimization Model for p-hub Median Problem
	Carbon Emissions Uncertainty
	The Robust Counterpart of Uncertain Constraint
	The Robust Counterpart of Uncertain Objective
	The Robust Counterpart Model

	Numerical Experiments
	Problem Description
	Computational Results of Robust Model
	Comparison Study with the Nominal Model
	The Influence of Adjustable Parameter Variation

	Conclusions

	JUS-12-1-4.pdf
	Introduction
	Preliminaries
	Regularity and Isomorphism on mFGs
	Modeling of Products Design in a Company as Product mFG
	Conclusions

	JUS-12-1-5.pdf
	Introduction
	Formulation of Uncertain Cap Model
	The Objective Function
	The Carbon Emission Constraint
	The Uncertain Cap Model

	The Robust Counterpart of Cap Model
	Uncertainty Sets 
	The Robust Counterpart of the Cap Model

	The Extension of Uncertain Cap Model
	The Uncertain Cap-and-Trade Model
	The Robust Counterpart of the Cap-and-Trade Model

	Numerical Experiments
	Problem Description
	Computational Results and Analysis
	The Influence of Adjustable Parameters in the Cap Model
	 The Influence of Adjustable Parameters in the Cap-and-Trade Model


	Conclusions

	JUS-12-1-6.pdf
	Introduction
	Problem Description and Model Formulation
	Problem Description and Model Assumptions
	Problem description
	Model Assumptions

	Model Notations
	The Constraints
	Balance Constraints
	Capacity Constraints
	Constraints on the Flow of Items In and Out of a Facility
	Constraints about the Transportation between Facilities.
	Transportation Mode Capacity Constraints
	Joint Service Level Constraints

	The Objective Function

	Equivalent Mixed-integer Programming Model
	Numerical Experiments
	Description of the Numerical Example
	Sensitivity Analysis

	Conclusions




