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Abstract

The concept of m-polar fuzzy set is the generalization of bipolar fuzzy set. In this paper, the concept
of m-polar fuzzy set is applied to graphs and studied about the degree of a vertex in m-polar fuzzy graphs
which are obtained from two given m-polar fuzzy graphs G1 and G2 using the operations of Cartesian
product, composition, direct product, semi-strong product and strong product. We have investigated
several results for finding the degree of a vertex in these graphs. Finally, an application of 3-polar fuzzy
digraph is given as an example.
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1 Introduction

Graph theory has numerous applications to problems on computer science, electrical engineering, system
analysis, operations research, economics, networking routing, transportation etc. Presently, mathematical
models are developed to handle various types of system containing elements of uncertainty. A large number
of these models is based on fuzzy sets. In 1965, Zadeh [30] introduced the concept of fuzzy set. Since then,
the fuzzy set theory has become a growing topic of research in different fields including graph theory, decision
making, social science, medical field, management, artificial intelligence department, engineering etc.

In 1975, Rosenfeld [22] introduced the concept of fuzzy graphs by considering the fuzzy relations between
fuzzy sets and later on he developed the structure of fuzzy graphs. Mordeson and Nair [16] defined the
complement of fuzzy graph and it was further studied by Sunitha and Kumar [27]. The concept of weak
isomorphism, co-weak isomorphism and isomorphism between fuzzy graphs was introduced by Bhutani [4].
After that several researchers worked on fuzzy graphs like in [5, 3, 15, 18, 19]. Samanta and Pal introduced
different types of fuzzy graphs such as fuzzy competition graphs [25, 23], fuzzy planar graphs [26], etc.

In 1994, Zhang [31, 32] initiated the concept of bipolar fuzzy sets as a generalization of fuzzy sets. In 2011,
using the concepts of bipolar fuzzy sets, Akram [1] introduced the bipolar fuzzy graphs and defined different
operations on it. Rashmanlou et al. [20, 21] studied bipolar fuzzy graphs with categorical properties. Some
more work on bipolar fuzzy graphs may be found on [7, 13, 24, 28, 29].

In 2014, Chen et al. [6] introduced the notion of m-polar fuzzy set as a generalization of bipolar fuzzy
set and showed that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic mathematical notions and
that we can obtain concisely one from the corresponding one. The idea behind this is that ”multipolar
information” (not just bipolar information which correspond to two-valued logic) exists because data of real
world problems are sometimes come from multiple agents. For example, the exact degree of telecommunication
safety of mankind is a point in [0, 1]n (n ≈ 7 × 109) because different persons have been monitored different
times. There are many other examples such as truth degrees of a logic formula which are based on n logic
implication operators (n ≥ 2), similarity degrees of two logic formulas which are based on n logic implication
operators (n ≥ 2), ordering results of a magazine, ordering results of a university, and inclusion degrees
(accuracy measures, rough measures, approximation qualities, fuzziness measures, and decision preformation
evaluations) of a rough set.
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Chen et al. [6] first introduced the concept of m-polar fuzzy graphs. Ghorai and Pal studied many
properties of generalized m-polar fuzzy graphs [9], defined many operations and density of m-polar fuzzy
graphs [8], studied isomorphic properties of m-polar fuzzy graphs [10] and introduced the concept of m-polar
fuzzy planar graphs [11], faces and dual of m-polar fuzzy planar graphs [12]. In this paper, we study about the
degree of a vertex in m-polar fuzzy graphs which are obtained from two given m-polar fuzzy graphs G1 and
G2 using the operations of Cartesian product, composition, direct product, semi-strong product and strong
product. We also investigated several results for finding the degree of a vertex in these graphs. An application
of 3-polar fuzzy digraph is given as an example.

2 Preliminaries

In this section, we recall some definitions of fuzzy graphs, m-polar fuzzy sets and m-polar fuzzy relations. For
further study see references [14, 17].

Definition 2.1. [16] A fuzzy graph with V as the underlying set is a triplet G = (V, σ, µ), where σ : V → [0, 1]
is a fuzzy subset of V and µ : V × V → [0, 1] is fuzzy relation on σ such that µ(x, y) ≤ σ(x) ∧ σ(y) for all
x, y ∈ V .

The underlying crisp graph of G is denoted by G∗ = (σ∗, µ∗), where σ∗ = {x ∈ V : σ(x) > 0} and
µ∗ = {(x, y) ∈ V × V : µ(x, y) > 0}.

Definition 2.2. [3] A fuzzy graph G = (V, σ, µ) is complete if µ(x, y) = σ(x) ∧ σ(y) for all x, y ∈ V .

The purpose of this paper is to find the degree of vertices in the Cartesian product, composition, semi-
strong product, strong and direct product of two m-polar fuzzy graphs based on m-polar fuzzy set which is
defined below.

Throughout the paper, [0, 1]m (m-power of [0,1]) is considered to be a poset with point-wise order ≤,
where m is an natural number. “≤” is defined by x ≤ y ⇔ for each i = 1, 2, . . . ,m; pi(x) ≤ pi(y) where
x, y ∈ [0, 1]m and pi : [0, 1]m → [0, 1] is the i-th projection mapping.

Definition 2.3. [6] An m-polar fuzzy set (or a [0, 1]m-set) on X is a mapping A : X → [0, 1]m. The set of
all m-polar fuzzy sets on X is denoted by m(X).

Definition 2.4. [9] Let A and B are two m-polar fuzzy sets in X. Then A ∪B and A ∩B are also m-polar
fuzzy sets in X defined by: for i = 1, 2, . . . ,m and x ∈ X,

pi ◦ (A ∪B)(x) = max{pi ◦A(x), pi ◦B(x)} and pi ◦ (A ∩B)(x) = min{pi ◦A(x), pi ◦B(x)}.

A ⊆ B if and only if pi ◦A(x) ≤ pi ◦B(x) and A = B if and only if pi ◦A(x) = pi ◦B(x).

Definition 2.5. [9] Let A be an m-polar fuzzy set on a set X. An m-polar fuzzy relation on A is an m-polar
fuzzy set B of X ×X such that B(x, y) ≤ min{A(x), A(y)} for all x, y ∈ X i.e, for each i = 1, 2, . . . ,m, for
all x, y ∈ X, pi ◦B(x, y) ≤ min{pi ◦A(x), pi ◦A(y)}.

An m-polar fuzzy relation B on X is called symmetric if B(x, y) = B(y, x) for all x, y ∈ X.

For a given set V , define an equivalence relation ∼ on V × V − {(x, x) : x ∈ V } as follows:

(x1, y1) ∼ (x2, y2)⇔ either (x1, y1) = (x2, y2) or x1 = y2 and y1 = x2.

The quotient set obtained in this way is denoted by Ṽ 2, and the equivalence class that contains the element
(x, y) is denoted as xy or yx.

Throughout this paper, G∗ = (V,E) represents a crisp graph and G = (V,A,B) represents an m-polar
fuzzy graph of G∗.

Definition 2.6. [9] An m-polar fuzzy graph of a graph G∗ = (V,E) is a pair G = (V,A,B) where A :

V → [0, 1]m is an m-polar fuzzy set in V and B : Ṽ 2 → [0, 1]m is an m-polar fuzzy set in Ṽ 2 such that

pi ◦B(xy) ≤ min{pi ◦A(x), pi ◦A(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m and B(xy) = 0 for all xy ∈ (Ṽ 2 −E),
(0 = (0, 0, . . . , 0) is the smallest element in [0, 1]m).

A is called the m-polar fuzzy vertex set of G and B is called the m-polar fuzzy edge set of G, respectively.
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Figure 1: Example of 3-polar fuzzy graph G

Example 2.7. Let us consider the graph G∗ = (V,E) where V = {u, v, w} and E = {uv, vw, uw}. A 3-polar
fuzzy graph G of G∗ is shown in Fig. 1.

Definition 2.8. [9] The Cartesian product G1 × G2 of two m-polar fuzzy graphs G1 = (V1, A1, B1) and
G2 = (V2, A2, B2) of the graphs G∗1 = (V1, E1) and G∗2 = (V2, E2) respectively is defined as a pair (V1 ×
V2, A1 ×A2, B1 ×B2) such that for each i = 1, 2, . . . ,m,

(i) pi ◦ (A1 ×A2)(x1, x2) = pi ◦A1(x1) ∧ pi ◦A2(x2) for all (x1, x2) ∈ V1 × V2.
(ii) pi ◦ (B1 ×B2)((x, x2)(x, y2)) = pi ◦A1(x) ∧ pi ◦B2(x2y2) for all x ∈ V1, for all x2y2 ∈ E2.

(iii) pi ◦ (B1 ×B2)((x1, z)(y1, z)) = pi ◦B1(x1y1) ∧ pi ◦A2(z) for all z ∈ V2, for all x1y1 ∈ E1.

(iv) pi ◦ (B1 ×B2)((x1, x2)(y1, y2)) = 0 for all (x1, x2)(y1, y2) ∈ (Ṽ1 × V2
2
− E).

Definition 2.9. [9] The composition G1[G2] = (V1 × V2, A1 ◦ A2, B1 ◦ B2) of two m-polar fuzzy graphs
G1 = (V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗1 = (V1, E1) and G∗2 = (V2, E2) respectively is defined
as follows: for each i = 1, 2, . . . ,m,

(i) pi ◦ (A1 ◦A2)(x1, x2) = pi ◦A1(x1) ∧ pi ◦A2(x2) for all (x1, x2) ∈ V1 × V2.
(ii) pi ◦ (B1 ◦B2)((x, x2)(x, y2)) = pi ◦A1(x) ∧ pi ◦B2(x2y2) for all x ∈ V1, for all x2y2 ∈ E2.

(iii) pi ◦ (B1 ◦B2)((x1, z)(y1, z)) = pi ◦B1(x1y1) ∧ pi ◦A2(z) for all z ∈ V2, for all x1y1 ∈ E1.
(iv) pi ◦ (B1 ◦B2)((x1, x2)(y1, y2)) = pi ◦A2(x2)∧ pi ◦A2(y2)∧ pi ◦B1(x1y1) for all (x1, x2)(y1, y2) ∈ E0−E.

(v) pi ◦ (B1 ◦B2)((x1, x2)(y1, y2)) = 0 for all (x1, x2)(y1, y2) ∈ (Ṽ1 × V2
2
− E0).

Definition 2.10. [13] Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs of the graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2) respectively such that V1 ∩ V2 = ∅. The direct product of G1 and G2 is
defined to be the m-polar fuzzy graph G1 uG2 = (V1 × V2, A1 u A2, B1 u B2) of the graph G∗ = (V1 × V2, E)

where E = {(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} ⊆ Ṽ1 × V2
2

and for each i = 1, 2, . . . ,m,

(i) pi ◦ (A1 uA2)(x1, x2) = pi ◦A1(x1) ∧ pi ◦A2(x2) for all (x1, x2) ∈ V1 × V2.
(ii) pi ◦ (B1 uB2)((x1, x2)(y1, y2)) = pi ◦B1(x1y1) ∧ pi ◦B2(x2y2) for all x1y1 ∈ E1 and x2y2 ∈ E2.

(iii) pi ◦ (B1 uB2)((x1, x2)(y1, y2)) = 0 for all (x1, x2)(y1, y2) ∈ (Ṽ1 × V2
2
− E).

Definition 2.11. [13] The semi-strong product of two m-polar fuzzy graphs G1 = (V1, A1, B1) of G∗1 = (V1, E1)
and G2 = (V2, A2, B2) of G∗2 = (V2, E2), where it is assumed that V1 ∩ V2 = ∅, is defined to be the m-polar
fuzzy graph G1 •G2 = (V1×V2, A1 •A2, B1 •B2) of G∗ = (V1×V2, E), where E = {(u, v1)(u, v2)|u ∈ V1, v1v2 ∈
E2} ∪ {(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} ⊆ Ṽ1 × V2

2
satisfying the following: for each i = 1, 2, . . . ,m,

(i) pi ◦ (A1 •A2)(x1, x2) = pi ◦A1(x1) ∧ pi ◦A2(x2) for all (u, v) ∈ V1 × V2.
(ii) pi ◦ (B1 •B2)((x, x2)(x, y2)) = pi ◦A1(x) ∧ pi ◦B2(x2y2) for all x ∈ V1 and x2y2 ∈ E2.

(iii) pi ◦ (B1 •B2)((x1, x2)(y1, y2)) = pi ◦B1(x1y1) ∧ pi ◦B2(x2y2) for all x1y1 ∈ E1 and x2y2 ∈ E2.

(iv) pi ◦ (B1 •B2)((x1, x2)(y1, y2)) = 0 for all (x1, x2)(y1, y2) ∈ (Ṽ1 × V2
2
− E).

Definition 2.12. [13] The strong product of two m-polar fuzzy graphs G1 = (V1, A1, B1) of G∗1 = (V1, E1)
and G2 = (V2, A2, B2) of G∗2 = (V2, E2) such that V1 ∩ V2 = ∅, is defined to be the m-polar fuzzy graph
G1 ⊗ G2 = (V1 × V2, A1 ⊗ A2, B1 ⊗ B2) of G∗ = (V1 × V2, E), where E = {(u, v1)(u, v2)|u ∈ V1, v1v2 ∈
E2} ∪ {(u1, w)(u2, w)|w ∈ V2, u1u2 ∈ E1} ∪ {(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} ⊆ Ṽ1 × V2

2
such that the

following condition holds: for each i = 1, 2, . . . ,m,
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(i) pi ◦ (A1 ⊗A2)(x1, x2) = pi ◦A1(x1) ∧ pi ◦A2(x2) for all (x1, x2) ∈ V1 × V2.
(ii) pi ◦ (B1 ⊗B2)((x, x2)(x, y2)) = pi ◦A1(x) ∧ pi ◦B2(x2y2) for all x ∈ V1 and x2y2 ∈ E2.

(iii) pi ◦ (B1 ⊗B2)((x1, x)(y1, x)) = pi ◦B1(x1y1) ∧ pi ◦A2(x) for all x ∈ V2 and x1y1 ∈ E1.
(iv) pi ◦ (B1 ⊗B2)((x1, y1)(x2, x2)) = pi ◦B1(x1x2) ∧ pi ◦B2(y1y2) for all x1x2 ∈ E1 and y1y2 ∈ E2, and

(v) pi ◦ (B1 ⊗B2)((x1, y1)(x2, x2)) = 0 for all (x1, y1)(x2, x2) ∈ (Ṽ1 × V2
2
− E).

Definition 2.13. [2] Let G = (V,A,B) be an m-polar fuzzy graph of G∗ = (V,E). The open neighbor-
hood degree of a vertex v in G is defined by deg(v) = (p1 ◦ deg(v), p2 ◦ deg(v), · · · , pm ◦ deg(v)), where
pi ◦ deg(v) =

∑
u6=v
uv∈E

pi ◦B(uv), i = 1, 2, . . . ,m. If all the vertices of G have the same open neighborhood degree,

then G is called regular m-polar fuzzy graph.

Definition 2.14. [2] Let G = (V,A,B) be an m-polar fuzzy graph of G∗ = (V,E). The closed neighborhood
degree of a vertex v is defined by deg[v] = (p1 ◦ deg[v], p2 ◦ deg[v], · · · , pm ◦ deg[v]), where pi ◦ deg[v] =
pi ◦ deg(v) + pi ◦ A(v), i = 1, 2, . . . ,m. If each vertex of G has the same closed neighborhood degree, then G
is called totally regular m-polar fuzzy graph.

3 Degrees of Vertices in m-polar Fuzzy Graphs

Operations in m-polar fuzzy graph is a great tool to consider large m-polar fuzzy graph as a combination
of small m-polar fuzzy graphs and to derive its properties from those of the smaller ones. Also, they are
conveniently used in many combinatorial applications. In various situations they present a suitable construc-
tion means. For examples in partition theory we deal with complex objects. A typical such object is a fuzzy
graph and fuzzy hypergraph with large chromatic number that we do not know how to compute exactly the
chromatic number of these graphs. In such cases, these operations have the main role in solving problems.
Hence, in this section, we study about the degree of a vertex in m-polar fuzzy graphs which are obtained from
two given m-polar fuzzy graphs G1 and G2 using the operations of Cartesian product, composition, direct
product, semi-strong product and strong product.

4 Degree of a Vertex in Cartesian Product

Now, we compute the degree of a vertex in the Cartesian product. By the definition of Cartesian product,
for any vertex (x1, x2) ∈ V1 × V2, the degree of it is denoted by dG1×G2(x1, x2) = (p1 ◦ dG1×G2(x1, x2), p2 ◦
dG1×G2(x1, x2), · · · , pm ◦ dG1×G2(x1, x2)) and is defined by for i = 1, 2, . . . ,m,

pi ◦ dG1×G2
(x1, x2) =

∑
(x1,x2)(y1,y2)∈E

pi ◦ (B1 ×B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1).

Theorem 4.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs. If B2 ⊆ A1 and
B1 ⊆ A2, then dG1×G2(x1, x2) = dG1(x1) + dG2(x2) for all (x1, x2) ∈ V1 × V2.

Proof. For each i = 1, 2, . . . ,m, we have

pi ◦ dG1×G2
(x1, x2) =

∑
x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x1y1∈E1

pi ◦B1(x1y1)

= pi ◦ dG1(x1) + pi ◦ dG2(x2).

Hence, dG1×G2
(x1, x2) = dG1

(x1) + dG2
(x2).
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Example 4.2. Let us consider the 3-polar fuzzy graphs G1, G2 and their Cartesian product G1 × G2 (see
Fig. 2). Here, we see that B2 ⊆ A1 and B1 ⊆ A2 in Fig. 2. So, by Theorem 4.1,

p1 ◦ dG1×G2(x1, x2) = p1 ◦ dG1(x1) + p1 ◦ dG2(x2) = 0.4 + 0.3 = 0.7,
p2 ◦ dG1×G2(x1, x2) = p2 ◦ dG1(x1) + p2 ◦ dG2(x2) = 0.3 + 0.2 = 0.5,
p3 ◦ dG1×G2

(x1, x2) = p3 ◦ dG1
(x1) + p3 ◦ dG2

(x2) = 0.2 + 0.3 = 0.5.

So, dG1×G2
(x1, x2) = (0.7, 0.5, 0.5). Also, from the Fig. 2,

dG1×G2(x1, x2) = (0.3 + 0.4, 0.2 + 0.3, 0.3 + 0.2) = (0.7, 0.5, 0.5).

Hence, dG1×G2
(x1, x2) = (0.7, 0.5, 0.5). Similarly, we can find the degrees of all other vertices in G1×G2.

This can also be verified from the Fig. 2.
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Figure 2: Cartesian product of G1 and G2

Theorem 4.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs such that A1 ⊆ B2.
Then B1 ⊆ A2 and conversely.

Proof. By definition of m-polar fuzzy graphs, we have pi◦Bj(xy) ≤ min{pi◦Aj(x), pi◦Aj(y)} for all xy ∈ Ṽ 2,
i = 1, 2, . . . ,m and j = 1, 2.

Therefore, pi ◦Bj ≤ max{pi ◦Aj} and min{pi ◦Bj} ≤ pi ◦Aj for i = 1, 2, . . . ,m and j = 1, 2. Also, since
A1 ⊆ B2 therefore, max{pi ◦A1} ≤ min{pi ◦B2} for i = 1, 2, . . . ,m.

Hence, for i = 1, 2, . . . ,m, pi ◦B1 ≤ max{pi ◦A1} ≤ min{pi ◦B2} ≤ pi ◦A2, i.e., B1 ⊆ A2.

Theorem 4.4. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs.

(i) If A1 ⊆ B2 and A1 is constant function with A1(x) = (c1, c2, · · · , cm) = c for all x ∈ V1, then
dG1×G2

(x1, x2) = dG1
(x1) + cdG∗

2
(x2).

(ii) If A2 ⊆ B1 and A2 is constant function with A2(x) = (k1, k2, · · · , km) = k for all x ∈ V2, then
dG1×G2(x1, x2) = dG2(x2) + kdG∗

1
(x1).

Proof. (i) Because A1 ⊆ B2, by Theorem 4.3, B1 ⊆ A2. Then, for i = 1, 2, . . . ,m, we have

pi ◦ dG1×G2
(x1, x2) =

∑
x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦A1(x1) +
∑

x1y1∈E1

pi ◦B1(x1y1)

=
∑

x2y2∈E2

ci + pi ◦ dG1
(x1) = cidG∗

2
(x2) + pi ◦ dG1

(x1).

Hence, dG1×G2
(x1, x2) = dG1

(x1) + cdG∗
2
(x2).

(ii) Similarly to the above.
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5 Degree of a Vertex in Composition

Now, we calculate the degree of a vertex in the composition of two m-polar fuzzy graphs. By the definition
of composition, for any vertex (x1, x2) ∈ V1 × V2, the degree of it is denoted by dG1[G2](x1, x2) = (p1 ◦
dG1[G2](x1, x2), p2 ◦ dG1[G2](x1, x2), · · · , pm ◦ dG1[G2](x1, x2)) and is defined by for i = 1, 2, . . . ,m,

pi ◦ dG1[G2](x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 ◦B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x2 6=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦A2(y2) ∧ pi ◦B1(x1y1).

Theorem 5.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs. If B2 ⊆ A1 and
B1 ⊆ A2, then dG1[G2](x1, x2) = |V2|dG1

(x1) + dG2
(x2) for all (x1, x2) ∈ V1 × V2.

Proof. For each i = 1, 2, . . . ,m, we have

pi ◦ dG1[G2](x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x2 6=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦A2(y2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x2=y2,x1y1∈E1

pi ◦B1(x1y1)

+
∑

x2 6=y2,x1y1∈E1

pi ◦B1(x1y1) (Since pi ◦A1 ≥ pi ◦B2 and pi ◦A2 ≥ pi ◦B1)

= pi ◦ dG2(x2) + |V2|pi ◦ dG1(x1).

Hence, dG1[G2](x1, x2) = |V2|dG1(x1) + dG2(x2).
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Figure 3: Composition of G1 and G2

Example 5.2. Consider the 3-polar fuzzy graphs G1, G2 and their composition G1[G2] (see Fig. 3). Here,
B2 ⊆ A1 and B1 ⊆ A2. Therefore, by Theorem 5.1, we have

p1 ◦ dG1[G2](x1, x2) = p1 ◦ dG1(x1)|V2|+ p1 ◦ dG2(x2) = 0.3× 2 + 0.2 = 0.8,
p2 ◦ dG1[G2](x1, x2) = p2 ◦ dG1

(x1)|V2|+ p2 ◦ dG2
(x2) = 0.4× 2 + 0.3 = 1.1,

p3 ◦ dG1[G2](x1, x2) = p3 ◦ dG1
(x1)|V2|+ p3 ◦ dG2

(x2) = 0.5× 2 + 0.4 = 1.4.
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Therefore, dG1[G2](x1, x2) = (0.8, 1.1, 1.4).
Again from Fig. 3,

dG1[G2](x1, x2) = (p1 ◦ dG1[G2](x1, x2), p2 ◦ dG1[G2](x1, x2), p3 ◦ dG1[G2](x1, x2))

= (0.3 + 0.2 + 0.3, 0.4 + 0.3 + 0.4, 0.5 + 0.4 + 0.5)

= (0.8, 1.1, 1.4).

In the same way, we can find the degree of all vertices in G1[G2]. This can be verified from the Fig. 3.

Theorem 5.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs.

(i) If A1 ⊆ B2 and A1 is constant function with A1(x) = (c1, c2, · · · , cm) = c for all x ∈ V1, then
dG1[G2](x1, x2) = |V2|dG1

(x1) + cdG∗
2
(x2).

(ii) If A2 ⊆ B1 and A2 is constant function with A2(x) = (k1, k2, · · · , km) = k for all x ∈ V2, then
dG1[G2](x1, x2) = dG2

(x2) + k|V2|dG∗
1
(x1).

Proof. (i) Because A1 ⊆ B2, by Theorem 4.3, B1 ⊆ A2. Now for i = 1, 2, . . . ,m we have

pi ◦ dG1[G2](x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x2 6=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦A2(y2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦A1(x1) +
∑

x2=y2,x1y1∈E1

pi ◦B1(x1y1)

+
∑

x2 6=y2,x1y1∈E1

pi ◦B1(x1y1)

=
∑

x2y2∈E2

ci + |V2|
∑

x1y1∈E1

pi ◦B1(x1y1)

= cidG∗
2
(x2) + |V2|pi ◦ dG1

(x1).

Hence, dG1[G2](x1, x2) = |V2|dG1
(x1) + cdG∗

2
(x2).

(ii) Similarly to the above.

6 Degree of a Vertex in Direct Product

Degree of a vertex in the direct product is as follows. By definition of direct product for any vertex (x1, x2) ∈
V1×V2, the degree of (x1, x2) is denoted by dG1uG2(x1, x2) = (p1◦dG1uG2(x1, x2), p2◦dG1uG2(x1, x2), · · · , pm◦
dG1uG2

(x1, x2)) and is defined by for i = 1, 2, . . . ,m,

pi ◦ dG1uG2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 uB2)((x1, x2)(y1, y2))

=
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2).

Theorem 6.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs. If B1 ⊆ B2, then
dG1uG2(x1, x2) = dG1(x1). Also, if B2 ⊆ B1, then dG1uG2(x1, x2) = dG2(x2) for all (x1, x2) ∈ V1 × V2.

Proof. Let B1 ⊆ B2 i.e., pi ◦B2 ≥ pi ◦B1 for each i = 1, 2, . . . ,m. Then we have

pi ◦ dG1uG2(x1, x2) =
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2)

=
∑

x1y1∈E1

pi ◦B1(x1y1) = pi ◦ dG1
(x1) for i = 1, 2, . . . ,m.
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Hence, dG1uG2
(x1, x2) = dG1

(x1).
Similarly, if B2 ⊆ B1 then dG1uG2

(x1, x2) = dG2
(x2).
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Figure 4: The direct product of G1 and G2

Example 6.2. In this example we consider the direct product of two 3-polar fuzzy graphs and calculate the
degree of vertices in the direct product. Let us now consider the 3-polar fuzzy graphs G1, G2 and their direct
product G1 u G2 (see Fig. 4). Here, we see that pi ◦ B2 ≥ pi ◦ B1 for i = 1, 2, 3 i.e., B1 ⊆ B2. Hence by
Theorem 6.1, we have

p1 ◦ dG1uG2
(x1, x2) = p1 ◦ dG1

(x1) = 0.3,
p2 ◦ dG1uG2

(x1, x2) = p2 ◦ dG1
(x1) = 0.3,

p3 ◦ dG1uG2(x1, x2) = p3 ◦ dG1(x1) = 0.4.

So, dG1uG2
(x1, x2) = (0.3, 0.3, 0.4). Similarly, we can find the of all other vertices in G1 uG2. This can also

be verified from Fig. 4.

7 Degree of a Vertex in Semi-strong Product

Next, we consider the semi-strong product of two m-polar fuzzy graphs and calculate the degrees of vertices
of it. For any vertex vertex (x1, x2) ∈ V1 × V2 in the semi-strong product G1 • G2, the degree of (x1, x2) is
denoted by dG1•G2

(x1, x2) = (p1 ◦ dG1•G2
(x1, x2), p2 ◦ dG1•G2

(x1, x2), · · · , pm ◦ dG1•G2
(x1, x2)) and is defined

by for i = 1, 2, . . . ,m,

pi ◦ dG1•G2
(x1, x2) =

∑
(x1,x2)(y1,y2)∈E

pi ◦ (B1 •B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2).

Theorem 7.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs. If B1 ⊆ B2 ⊆ A1,
then dG1•G2

(x1, x2) = dG1
(x1) + dG2

(x2) for all (x1, x2) ∈ V1 × V2.

Proof. Let B1 ⊆ B2 ⊆ A1 i.e., pi ◦ A1 ≥ pi ◦ B2 ≥ pi ◦ B1 for each i = 1, 2, . . . ,m. Then, for i = 1, 2, . . . ,m
and (x1, x2) ∈ V1 × V2,

pi ◦ dG1•G2
(x1, x2) =

∑
x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi •B2(x2y2)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi •B2(x2y2)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x1y1∈E1

pi ◦B1(x1y1)

= pi ◦ dG2
(x2) + pi ◦ dG1

(x1).
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Hence, dG1•G2
(x1, x2) = dG1

(x1) + dG2
(x2) for all (x1, x2) ∈ V1 × V2.

Example 7.2. Consider the 3-polar fuzzy graphs G1, G2 and their semi-strong product G1 •G2 (see Fig. 5).
Here, we see that pi ◦ A1 ≥ pi ◦ B2 ≥ pi ◦ B1 for i = 1, 2, 3 i.e., B1 ⊆ B2 ⊆ A1. Hence by Theorem 7.1, we
have

p1 ◦ dG1•G2
(x1, x2) = p1 ◦ dG1

(x1) + p1 ◦ dG2
(x2) = 0.2 + 0.2 = 0.4,

p2 ◦ dG1•G2
(x1, x2) = p2 ◦ dG1

(x1) + p2 ◦ dG2
(x2) = 0.2 + 0.3 = 0.5,

p3 ◦ dG1•G2
(x1, x2) = p3 ◦ dG1

(x1) + p3 ◦ dG2
(x2) = 0.3 + 0.4 = 0.7.

So, dG1uG2(x1, x2) = (0.4, 0.5, 0.7).
Again from the Fig. 5, we see that dG1uG2

(x1, x2) = (0.2 + 0.2, 0.2 + 0.3, 0.3 + 0.4) = (0.4, 0.5, 0.7).
Similarly, we can find the degrees of all vertices in G1 •G2 which can be verified from the figure also.
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Figure 5: Semi-strong product of G1 and G2

8 Degree of a Vertex in Strong Product

Finally, we compute the degree of a vertex in strong product of m-polar fuzzy graphs. By definition of strong
product for any vertex (x1, x2) ∈ V1 × V2 in the strong product G1 ⊗ G2, the degree of (x1, x2) is denoted
by dG1⊗G2

(x1, x2) = (p1 ◦ dG1⊗G2
(x1, x2), p2 ◦ dG1⊗G2

(x1, x2), · · · , pm ◦ dG1⊗G2
(x1, x2)) and is defined by for

i = 1, 2, . . . ,m,

pi ◦ dG1⊗G2
(x1, x2) =

∑
(x1,x2)(y1,y2)∈E

pi ◦ (B1 ⊗B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2).

Theorem 8.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy graphs. If B2 ⊆ A1,
B1 ⊆ A2 and B1 ⊆ B2, then dG1⊗G2

(x1, x2) = |V2|dG1
(x1) + dG2

(x2) for all (x1, x2) ∈ V1 × V2.

Proof. For i = 1, 2, . . . ,m and (x1, x2) ∈ V1 × V2 we have

pi ◦ dG1⊗G2
(x1, x2) =

∑
(x1,x2)(y1,y2)∈E

pi ◦ (B1 ⊗B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦A2(x2) ∧ pi ◦B1(x2y2)
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+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x2=y2,x1y1∈E1

pi ◦B1(x1y1)

+
∑

x1y1∈E1

pi ◦B1(x1y1)

= pi ◦ dG2(x2) + |V2|pi ◦ dG1(x1).

This shows that, dG1⊗G2
(x1, x2) = |V2|dG1

(x1) + dG2
(x2).
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Figure 6: Strong product of G1 and G2

Example 8.2. Let us consider the 3-polar fuzzy graphs G1, G2 and their strong product G1⊗G2 (see Fig.6).
Here, pi ◦ A1 ≥ pi ◦ B2, pi ◦ A2 ≥ pi ◦ B1, and pi ◦ B1 ≤ pi ◦ B2 for i = 1, 2, 3 i.e., B2 ⊆ A1, B1 ⊆ A2 and
B1 ⊆ B2. Hence by Theorem 8.1, we have

p1 ◦ dG1⊗G2(x1, x2) = p1 ◦ dG2(x2) + |V2|p1 ◦ dG1(x1) = 0.3 + 2× 0.3 = 0.9,
p2 ◦ dG1⊗G2(x1, x2) = p2 ◦ dG2(x2) + |V2|p2 ◦ dG1(x1) = 0.2 + 2× 0.2 = 0.6,
p3 ◦ dG1⊗G2(x1, x2) = p3 ◦ dG2(x2) + |V2|p3 ◦ dG1(x1) = 0.3 + 2× 0.2 = 0.7.

So, dG1⊗G2(x1, x2) = (0.9, 0.6, 0.7). Again, from the Figure we see that, dG1⊗G2(x1, x2) = (0.3+0.3+0.3, 0.2+
0.2+0.2, 0.3+0.2+0.2) = (0.9, 0.6, 0.7). Similarly, we can find the degrees of all vertices in the strong product
from the Theorem 8.1 as well as from the Fig. 6 also.

9 Application of m-polar Fuzzy Graphs

A directed graph (or digraph) is a graph whose edges have direction and called arcs (edges). Arrows on arcs
are used to encode the directional information: an arc from vertex x to the vertex y indicates that one may
move from x to y but not from y to x.

We write xy ∈ E to mean x → y ∈ E, and if e = xy ∈ E, we say x and y are adjacent such that x is a
starting node and y is an ending node.

Definition 9.1. An m-polar fuzzy digraph of a digraph G∗ = (V,E) is a pair G = (V,A,B), where A :

V → [0, 1]m is an m-polar fuzzy set on V and B : Ṽ 2 → [0, 1]m is an m-polar fuzzy set in Ṽ 2 such that

pi ◦ B(xy) ≤ min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, for each i = 1, 2, . . . ,m and B(xy) = 0 for all

xy ∈ (Ṽ 2 − E). B need not be symmetric i.e., B(xy) 6= B(yx).

Graph models have broad application in many disciplines of mathematics, social sciences, natural sciences
and computer sciences. In studies of group behavior, it is inspected that many people can influence thinking
of others. A digraph can be use to model such behavior and this graph is called an influence graph. We will
present the influence of a person in a social group on Gtalk. Let V={Asit, Sankar,Kartik, Prabir, Shakti}
be the set of five persons in a social group. The influence degree depends on the legitimate prevailing, unity
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Figure 7: 3-polar fuzzy influence graph

building, and appealing to values. Then, we have a 3-polar fuzzy influence graph G = (V,A,B), where vertices
represent the person of a social group and edges represent the influence of a person on other.

From the above Fig. 7, we see that Kartik influence Asit, Sankar and Prabir. Kartik’s 60% hold on Asit
is due to legitimate prevailing, 40% is due to unity building, 50% is due to appealing to values. His 70% hold
on Sankar is due to legitimate prevailing, 60% is due to unity building, 50% is due to appealing to values.
Similarly, for Prabir also. Asit influence Sankar, Sankar influence Shakti and Prabir. So, we observe that
Kartik is the most influential person in the group.

10 Conclusions

The theory of graph is an extremely useful tool in solving the combinatorial problems in different areas
including algebra, number theory, geometry, topology, operation research, optimization, computer science,
etc. The m-polar fuzzy models are the generalization of fuzzy models and give more precision, flexibility,
and comparability to the system as compared to the classical and fuzzy models. So, in this paper we study
about the degree of a vertex in Cartesian product, composition, direct product, semi-strong product and
strong product of two m-polar fuzzy graphs. Our next plan is to extend our research work on m-polar fuzzy
intersection graphs, m-polar fuzzy interval graphs, traversal of m-polar fuzzy hypergraphs, etc.
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