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Abstract

This paper draws attention on the problem formulation and solution procedure of a bi-objective trans-
portation problem(TP). In this TP, one objective is to minimize the total transportation cost and other
is to minimize the time for completion of the transportation. In this TP, the transportation cost is not
constant; it varies by depending on the capacity of vehicles as well as amount of transport quantity. An
algorithm is used to determine unit transportation costs which deals this TP in a bi-level bi-objective math-
ematical model of mixed-integer type. To solve this model, use an initial allocation procedure like Modified
Vogels Approximation Method(MVAM) and then find optimal solution by well known UV-method. After
that find out the total elapsed time. This model suggests several cost-time pairs which is more realistic
today. Numerical examples is presented to support this model.
c©2017 World Academic Press, UK. All rights reserved.

Keywords: bi-objective transportation problem, cost varying transportation problem(CVTP), bi-level
programming, mixed-integer programming, MVAM

1 Introduction

Transportation problem is famous in operation research for its wide application in real life. This is a special
kind of the network optimization problems in which goods are transported from a set of sources to a set of
destinations subject to the supply and demand of the source and destination, respectively, such that the total
cost of transportation is minimized. The basic transportation problem was originally developed by Hitchcock
in 1941 [7]. The first solution procedure of TP was developed by G. B. Dantzig [5] and referred as North
West Corner Method (NWCM) by Charnes and Cooper [4]. This is the method of finding an IBFS of TP
which consider the north-west-corner cost cell at every stage of allocation. Then the Least Cost Method
(LCM) [1, 8] consists in allocating as much as possible in the lowest cost cell of the Transportation Table
(TT) in making allocation in every stage. Vogels Approximation Method (VAM) [24, 12, 3, 11] and Extremum
Difference Method (EDM) [9] provides comparatively better Initial Basic Feasible Solution. The problem of
minimizing transportation cost has been studied since long and is well known [24, 9, 3, 23, 11]. TP in general
are concerned with distributing any single commodity from any group of supply centre, called sources, to any
group of receiving centre, called destinations. A destination can receive its demand from one or more sources.
Each source has a fixed supply of units, where the entire supply must be distributed to the destinations.
Similarly, each destination has fixed demand of units, where the entire demand must be received from the
sources.

In TP the following information are to be needed:
(P1) Available amount of the commodity at different origins.
(P2) Amounts demanded at different destinations.
(P3) The transportation cost of one unit of commodity from various origin to various destination.

In [20] Panda and Das considered that ”the transportation cost of one unit of commodity from various
origin to various destination” is not constant and it is varied by depending on capacity of vehicles. This
type of transportation problem is named by us as cost varying transportation problem (CVTP). In [13, 14,
15, 17, 16, 18, 19] Panda and Das introduced some multi-objective CVTP models,but these objectives are
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homogeneous type(i.e. directly related to quantity). This paper represents a bi-objective CVTP where one
objective is cost minimization and other is time minimization. The cost is directly related to quantity but
time is not. The solution is made through proposed MVAM to allocate the initial basic feasible solution and
optimality test.

In Classical TP is a single/multi objective problem where objective(s) is minimize total transportation cost
or minimize to total time or both. But in proposed model not only variable cost is consider but maximum
time taken for transporting the quantities is determined. This time is not total time of transportation.
This time is obtained after determining the optimal allocation for cost i.e. after determining minimum
transportation cost. Proposed model suggests trade pairs that means if any one need very urgent to fulfill his
demands(requirements) he will have to pay more. The initial allocation and optimal techniques are similar.
The mathematical model of a classical TP is LPP where as in proposed TP is a bi-level model.

Section 1 represents brief introduction. Section 2 presents basic model, some definitions, theorems, proce-
dure of initial allocations and determination of optimal solution of classical TP. In subsection 2.2, proposed
CVTP model with bi-objective is builded by determining unit transportation cost through an algorithm. Sec-
tion 3 discusses the similar methodologies of initial allocation like North West Corner Rule(NWCR), Modified
Matrix Minimum Method(MMMM),Modified Row Minimum Method(MRMM), Modified Column Minimum
Method(MVAM), Modified Vogel’s Approximation Method(MVAM) etc. and Solution procedure of proposed
model. Lastly in this section give little discussion about proposed model. In section 4 numerical examples are
presented which support the discission of proposed model. Finally in section 5, some conclusions are given.

2 Mathematical Description and Model Formulation

2.1 Classical Transportation Problem

Transportation problem is a special type of networks problems that for shipping a commodity from source
(e.g., factories) to destinations (e.g., warehouse). Transportation model deal with get the minimum-cost plan
to transport a commodity from a number of sources (m) to number of destination (n). Let ai is the number
of supply units required at source i(i = 1, 2, . . . ,m), bj is the number of demand units required at destination
j (j = 1, 2, . . . , n) and cij represent the unit transportation cost for transporting the units from sources i to
destination j. Using linear programming method to solve transportation problem, we determine the value of
objective function which minimize the cost for transporting and also determine the number of unit can be
transported from source i to destination j.

If xij is number of units shipped from source i to destination j; the equivalent linear programming model
will be Model 1 as follows:
Model 1

min

m∑
i=1

n∑
j=1

cijxij ,

subject to

n∑
j=1

xij = ai, i = 1, . . . ,m (1)

m∑
i=1

xij = bj , j = 1, . . . , n (2)

m∑
i=1

ai =

n∑
j=1

bj

xij ≥ 0 ∀i, ∀j.

A transportation problem can be represent in the following tabulated form.
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Table: Tabular representation of a multi-objective transportation problem
D1 D2 .. Dn stock

O1 c11 c12, .... c1n, a1
O2 c21 c22, .... c2n, a2
.... .... .... .... .... ....
Om cn1 cn2, .... cnn, am
Demand b1 b2 .... bn

where ai is the quantity of material available at source Oi, i = 1, . . . ,m, bj is the quantity of material required
at destination Dj , j = 1, . . . , n, cij is the unit cost of transportation from st source Oi to destination Dj .

The following terms are to be defined with reference to the transportation problems.
Definition 1: Feasible Solution (F.S.):
A set of non-negative allocations xij ≥ 0 which satisfies (1), (2) is known as feasible solution.
Definition 2: Basic Feasible Solution (B.F.S.):
A feasible solution to a m-origin and n-destination problem is said to be basic feasible solution if number of
positive allocations are (m+ n− 1).

If the number of allocations in a basic feasible solutions are less than (m+n-1), it is called degenerate basic
feasible solution (DBFS) otherwise non-degenerate basic feasible solution (NDBFS).
Definition 3: Optimal Solution:
A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total transportation cost.
Theorem 2.1: The number of basic variables in a Transportation Problem(T.P.) is at most (m+ n− 1).
Theorem 2.2: There exits a F.S. in each Transportation Problem(T.P.).
Theorem 2.3: In each T.P. there exits at least one B.F.S. which makes the objective function a minimum.
Theorem 2.4: The solution of a T.P. is never unbounded.
Definition 4: Loop:
In the Transportation table, a sequence of cells is said to form a loop, if
(i) each adjacent pair of cells either lies in the same column or in the same row;
(ii) not more than two consecutive cells in the sequence lie in the same row or in the same column;
(iii) the first and the last cells in the sequence lie either in the same row or in the same column;
(iv) the sequence must involve at least two rows or two columns of the table.
Theorem 2.5: A sub-set of the columns of the coefficient matrix of a T.P. are linearly dependent, iff, the
corresponding cells or a sub-set of them can be sequenced to form a loop.

There are many procedures to determine initial basic feasible solution like North West Corner Rule, Row
minimum method, Column minimum method, VAM method etc. In the following subsection,VAM method is
depicted.

2.1.1 Vogel’s Approximation Method(VAM)

In this method the allocation is made on the basis of the opportunity (or penalty or extra) cost that would
be incurred if allocation in certain cells with minimum unit transportation cost were missed. The steps in
Vogel’s approximation method(VAM) are as follows:
Step i. Calculate the penalties for each row(column) by taking the differences between the smallest and
next smallest unit transportation cost in the same row (column) and write them in brackets against the
corresponding row (column).
Step ii. Select the row or column with the largest penalty. If there is a tie in the values of penalties, then it
can be broken by selecting the cell where the maximum allocation can be made.
Step iii. Allocate as much as possible in the lowest cost of the row( or column) which is defined by the Step
ii.
Step iv. Adjust the supply and demand and cross-out the satisfied row or column.
Step v. Repeat Step i. Step ii. until the entire available supply at various sources and demand at various
destinations are fully satisfied.

2.1.2 Optimality Test:

In order to test for optimality we should follow the procedure as given bellow:
Step O1. Start with B.F.S. consisting of m+ n− 1 allocation in independent positions.
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Step O2. Determine a set of m+ n numbers ui, i = 1, . . . ,m and vj , j = 1, . . . , n such that in each cell (i, j)
cij = ui + vj .
Step O3. Calculate cell evaluations (unit cost difference) dij for each empty cell (i, j) by using formula
dij = cij − (ui + vj).
Step O4. Examine the matrix of cell evaluation dij for negative entries and conclude that
(i) If all dij > 0, then Solution is optimal and unique.
(ii) If all dij ≥ 0 and at least one dij = 0, then solution is optimal and alternative solution also exists.
(iii) If at least one dij < 0, then solution is not optimal.
If it is so, further improvement is required by repeating the above process after Step 5 and onwards.
Step O5. (i) See the most negative cell in the matrix [dij ].
(ii) Allocate θ to this empty cell in the final allocation table. Subtract and add the amount of this allocation
to other corners of the loop in order to restore feasibility.
(iii) This value of θ, in general is obtained by equating to zero the minimum of the allocations containing −θ
(not +θ) only at the corners of the closed loop.
(iv) Substitute the value of θ and find a fresh allocation table.
Step O6. Again, apply the above test for optimality till we find dij ≥ 0.

2.2 Cost Varying Transportation Problem

Cost varying transportation problem (CVTP) represented as follows.
Model 2

min

m∑
i=1

n∑
j=1

cijxij ,

subject to

n∑
j=1

xij = ai, i = 1, . . . ,m (3)

m∑
i=1

xij = bj , j = 1, . . . , n (4)

m∑
i=1

ai =

n∑
j=1

bj

xij ≥ 0 ∀i, ∀j
where cij is not constant. (5)

Panda and Das [16, 20] considered that there are two types off vehicles V1, V2 from each source to each
destination. Let C1 and C2(> C1) are the capacities(in unit) of the vehicles V1 and V2 respectively. Rij =
(R1

ij , R
2
ij) represent transportation cost for each cell (i, j); where R1

ij is the transportation cost from source

Oi, i = 1, . . . ,m to the destination Dj , j = 1, . . . , n by the vehicle V1. And R2
ij is the transportation cost from

source Oi, i = 1, . . . ,m to the destination Dj , j = 1, . . . , n by the vehicle V2. So, cost varying transportation
problem can be represent in the following tabulated form.

Table: Tabular representation of cost varying transportation problem

D1 D2 .. Dn stock
O1 R1

11, R
2
11 R1

12, R
2
12 .... R1

1n, R
2
1n a1

O2 R1
21, R

2
21 R1

22, R
2
22 .... R1

2n, R
2
2n a2

.... .... .... .... .... ....
Om R1

m1, R
2
m1 R1

m2, R
2
m2 .... R1

mn, R
2
mn am

Demand b1 b2 .... bn

2.2.1 Determining cij

Algorithm A1:
Step A1.1. Since unit cost is not determined (because it depends on quantity of transport), so North-west
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corner rule (because it does not depend on unit transportation cost) is applicable to allocate initial B.F.S.
Step A1.2. After the allocate xij by North-west corner rule, for basic cell we determine crij (unit transporta-
tion cost from source Oi to destination Dj) as

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(6)

where p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integer solution of

min p1ijR1ij + p2ijR2ij

s.t. xij ≤ p1ijC1 + p2ijC2.

Step A1.3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith row and jth

column (for possible loop). If possible allocation be xij , then for non-basic cell cij (unit transportation cost
from source Oi to destination Dj) as

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(7)

where p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integer solution of

min p1ijR1ij + p2ijR2ij

s.t. xij ≤ p1ijC1 + p2ijC2.

In this manner we convert cost varying transportation problem to a usual transportation problem but cij is
not fixed, it may be changed (when this allocation will not serve optimal value) during optimality test.
Step A1.4. During optimality test some basic cell changes to non-basic cell and some non-basic cell changes
to basic cell, depends on running basic cell we first fix cij by Step A1.2 and for non-basic we fix cij by Step
A1.3.
Step A1.5. Repeat Step A1.2. to Step A1.4. until we obtain optimal solution.

2.2.2 Bi-level Mathematical Programming Cost Varying Transportation Problem

The Bi-level mathematical programming for 2-vehicle cost varying transportation problem is formulated in
Model 3 as follows:
Model 3

min

m∑
i=1

n∑
j=1

cijxij , (8)

where cij is determined by following mathematical programming

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min p1ijR1ij + p2ijR2ij (9)

s. t. xij ≤ p1ijC1 + p2ijC2

m∑
i=1

xij = ai, i = 1, . . . ,m

n∑
j=1

xij = bj , j = 1, . . . , n

m∑
i=1

ai =

n∑
j=1

bj

xij ≥ 0 ∀i, ∀j
where p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integers.
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2.2.3 Bi-criteria Cost Varying Transportation Problem

Most of the practical transportation problems have two objectives : minimizing of cost and minimizing of time.
The cost minimizing problem and time minimizing problem cannot be viewed as two independent problems.
Most of the methods develop so far have given importance to minimize cost then time or to minimize time
then cost. If one is interested in obtaining a solution which minimizes cost and time simultaneously is called
bi-criteria transportation problem.

A bi-criteria cost varying transportation problem formulated as
Model 4

min Z =

m∑
i=1

n∑
j=1

cijxij , (10)

min T = max[tij /xij > 0] (11)

where cij is determined by following mathematical programming

cij =

{
p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min p1ijR1ij + p2ijR2ij (12)

s. t. xij ≤ p1ijC1 + p2ijC2

m∑
i=1

xij = ai, i = 1, . . . ,m

n∑
j=1

xij = bj , j = 1, . . . , n

m∑
i=1

ai =

n∑
j=1

bj

xij ≥ 0 ∀i, ∀j
where p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integers.

3 Solution Procedure of CVTP

3.1 Determination of IBFS

Example 1: Consider a cost varying transportation problem as

D1 D2 D3 stock
O1 7, 16 12, 16 8, 12 45
O2 4, 6 14, 18 9, 15 35
O3 10, 15 17, 22 5, 7 10
Demand 30 20 40

The capacities of vehicles of V1 and V2 are respectively, C1 = 8 and C2 = 14.

To determine the IBFS we apply any one of the following procedure
North-West corner Method (NWCM)
Step 1. Compute min (a1, b1). If a1 < b1, min (a1, b1) = a1 and if a1 > b1, min (a1, b1) = b1. Select x11 =
min (a1, b1) allocate the value of x11 in the cell (1, 1).
Step 2. If a1 < b1, compute min (a2, b1 − a1). Select x21 = min (a2, b1 − a1) and allocate the value of x21 in
the cell (2, 1).

If a1 > b1, compute min (a1 − b1, b2). Select x12 = min (a1 − b1, b2) and allocate the value of x12 in the
cell (1, 2).

Let us now make an assumption that a1 − b1 < b2. With this assumption the next cell for which some
allocation is to made, is the cell (2, 2).
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If a1 = b1 then allocate 0 only in one of two cells (2, 1) or (1, 2). The next allocation is to be made cell
(2, 2).

In general, if an allocation is made in the cell (i + 1, j) in the current step, the next allocation will be
made either in cell (i, j) or (i, j + 1).

The feasible solution obtained by this away is always a BFS.

D1 D2 D3 stock
O1 x11 = 30 x12 = 15

7, 16 12, 16 8, 12 45
O2 x22 = 5 x23 = 30

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Modified row-minima method(MRMM)

In this method, we first consider the first row and find the minimum cost cell. Let (1, k) cell be the
cell in the first row with minimum cost entities (R1

l,k, R
2
l,k). We allot in this cell the maximum allocation,

i.e,x1k = min(a1, bk).If a1 < bk, then x1k = a1 and we cross out the first row and consider the remaining
tableau and proceed in same way. Again if a1 > bk, then x1k = bk and we cross out the kth column and
consider the remaining row of the tableau and proceed next in the same way. If a1 = b1,then either 1st row
or the kth column will be crossed out and the remaining tableau will be consider.

By MRMM, the IBFS Example 1 is given as follows.

D1 D2 D3 stock
O1 x11 = 30 x13 = 15

7, 16 12, 16 8, 12 45
O2 x22 = 10 x23 = 25

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Modified column-minima method(MCMM) This method is exactly same as the Row-minima method.
In this method, we are to start with first column instead of first row and the successive steps we consider only
columns.

By MCMM, the IBFS of Example 1 is given as follows.

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Modified matrix-minima method(MMMM)

This method finds a better starting solution. In this method we first find out the cell with minimum cost
entities in the cost matrix and allocate in that cell the maximum allowable amount. We then cross out the
satisfied row or column and adjust the amounts of supply and demand accordingly. We repeat the process
with uncrossed out matrix and we are left at the end with exactly one uncrossed out row or column. If the
cell with minimum cost is not unique, then any one of these cells may be selected for allotment.

By MCMM, the IBFS of Example 1 is given as follows.
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D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Modified Vogel’s Approximation Method(MVAM)
In this method the allocation is made on the basis of the opportunity (or penalty or extra) cost entities that

would be incurred if allocation in certain cells with minimum unit transportation cost entities were missed.
The steps in modified Vogel’s approximation method(MVAM) are as follows:
Step V.1. Calculate the penalties for each row(column) by taking the differences between the smallest and
next smallest transportation cost entities in the same row (column) and write them in brackets against the
corresponding row (column).
Step V.2. Select the row or column with the largest penalty entities. If there is a tie in the values of penalties
entities, then it can be broken by selecting the cell where the maximum allocation can be made.
Step V.3. Allocate as much as possible in the lowest cost entities of the row( or column) which is defined
by the Step V.2.
Step V.4. Adjust the supply and demand and cross-out the satisfied row or column.
Step V.5. Repeat Step V.1. Step V.2. until the entire available supply at various sources and demand at
various destinations are fully satisfied.

The solution of Model 4 is described by following proposed algorithm. By modified VAM method initial
B.F.S. of Example 1 is

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

3.2 Solution Algorithm

Algorithm A2:
Step 1. Find the initial basic feasible solution {xij} by MVAM method ( One can calculate any other
method). Let B is the basis matrix.
Step 2. Determine all cij by Algorithm A1:
Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B.
Step 4. Find ∆ij = cij − zij . If ∆ij ≥ 0 goto Step 5 else goto Step 2. as (i, j) enters the basis.
Step 5. Let Z1 be the optimal cost of Model 2 yielded by the basic feasible solution {x1ij}.
Step 6. Find T 1 = max[tij /x1ij > 0]. Then the corresponding pair (Z1, T 1) is the first cost-time trade off
pair for the Model 3. To find the next best cost-time trade-off pair, goto Step 7.
Step 7. Define cij = M if tij ≥ T 1. Where M is sufficiently large positive number.

Repeat the above process till we get the problem to be infeasible.
The complete set of cost-time trade off pairs of Model 3 at the end of the qth iteration is given by (Z1, T 1),

(Z2, T 2) , . . . , (Zq, T q) where Z1 < Z2 < · · · < Zq and T 1 > T 2 > · · · > T q.
Discussion:

In TP, the main objective is to minimize the total transportation cost so maximum needed time is de-
termined after determining the optimal allocation for optimal cost. If time is first priory then optimal cost
is not determined. Various trade pairs are obtained through proposed technique( in solution methodology).
But this model does not serve minimum cost and minimum time.

Numerical examples are presented in the following section.
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4 Numerical Example

Example 1: Recall the cost varying transportation problem as

D1 D2 D3 stock
O1 7, 16 12, 16 8, 12 45
O2 4, 6 14, 18 9, 15 35
O3 10, 15 17, 22 5, 7 10
Demand 30 20 40

The capacities of vehicles of V1 and V2 are respectively, C1 = 8 and C2 = 14. The time is taken to deliver the
quantities in the following table

D1 D2 D3 stock
O1 8, 6 14, 10 4, 3 45
O2 7, 5 5, 4 11, 9 35
O3 12, 9 9, 7 16, 12 10
Demand 30 20 40

By Algorithm A2 the results are as follows:
Iteration 1:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij =
max(t1ij , t2ij)

(1, 2) x12 = 20 1 1 1 ∗ 12 + 1 ∗ 16 = 28 c12 = 28
20 14 10 14

(1, 3) x13 = 25 0 2 0 ∗ 8 + 2 ∗ 12 = 24 c13 = 24
25 0 3 3

(2, 1) x321 = 30 2 1 2 ∗ 4 + 1 ∗ 6 = 14 c21 = 14
30 7 5 7

(2, 3) x23 = 5 1 0 1 ∗ 9 + 0 ∗ 15 = 9 c23 = 9
5 11 0 11

(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7
10 0 12 12

Total cost Z = 82 Time T = 14

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 25 2 1 2 ∗ 7 + 1 ∗ 16 = 30 c11 = 30

25
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
30

25
, c12 =

28

20
, c13 =

24

25
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.
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Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
24

25
, u2 =

9

5
, u3 =

7

10
, v1 = −4

3
, v2 =

11

12
, v3 = 0.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z1 = 82 and optimal time is T 1 = 14. Therefore first optimal cost-time trade pair
is (82, 14).
Step 6. Before going to next iteration setting R112 = 150 = M1 and R212 = 200 = M1.
Iteration 2:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x13 = 40

7, 16 150, 200 8, 12 45
O2 x21 = 30 x22 = 5

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) :Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij =
max(t1ij , t2ij)

(1, 1) x11 = 5 1 0 1 ∗ 7 + 0 ∗ 16 = 7 c11 = 7
5 8 0 8

(1, 3) x13 = 40 5 0 5 ∗ 8 + 0 ∗ 12 = 40 c13 = 40
40 4 0 4

(2, 1) x21 = 25 0 2 0 ∗ 4 + 2 ∗ 6 = 12 c21 = 12
25 0 5 5

(2, 2) x22 = 10 0 1 0 ∗ 14 + 1 ∗ 18 = 18 c22 = 18
10 0 4 4

(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22
10 0 7 7

Total cost Z = 99 Time T = 8

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 5 1 0 1 ∗ 150 + 0 ∗ 200 = 150 c12 = 150

5
(2, 3) x23 = 25 0 2 0 ∗ 9 + 2 ∗ 15 = 30 c23 = 30

25
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 3) x32 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10

Therefore unit cost in all cells are as follows:
Determine all cij by Algorithm A1.

c11 =
7

5
, c12 =

150

5
, c13 =

40

40
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 = −23

25
, u3 = −13

25
, v1 =

7

5
, v2 =

68

25
, v3 = 1.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z2 = 99 and optimal time is T 2 = 8. Therefore second optimal cost-time trade pair
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is (99, 8).
Step 6. Before going to next iteration selling.

After this iteration, solution is infeasible. Then two cost-time trade off pairs (Z, T ) are (82,14), (99,8).
N.B. Solution by NWCR, MMMM, MRMM, MCMM are shown in Appendix.
Example 2: Suppose there are three of production of berk. They are at kolaghat, Burdwan and Bhubaneswar.
Three units produces 40, 30, 50 thousands respectively. A infrastructure company need berks at Midnapore,
Arambag and Bhubaneswar 35, 55, 30 thousands respectively. It is seen that only two types of vehicles, DCM
and Track. DCM can carry 2 thousand berks and Track. DCM can carry 4 thousand berks in a single trip.

It is observed that the single trip cost( in thousand Rupees) for DCM from source station to destination
cities are given in following table.

Consider a CVTP as

Midnapore(D1) Arambag(D2) Bhubaneswar(D3)
Kolaghat(O1) 3 4 5
Burdwan(O2) 5 2 7
Bhubanewar(O3) 6 8 4

where as the single trip cost( in thousand Rupees) for track from source station to destination cities are

Midnapore(D1) Arambag(D2) Bhubaneswar(D3)
Kolaghat(O1) 5 6 8
Burdwan(O2) 7 3 10
Bhubanewar(O3) 8 11 6

The time(in hour) taken by DCM are

Midnapore(D1) Arambag(D2) Bhubaneswar(D3)
Kolaghat(O1) 4 5 4
Burdwan(O2) 5 3 7
Bhubanewar(O3) 4.7 4.5 4

The time(in hour) taken by truk are

Midnapore(D1) Arambag(D2) Bhubaneswar(D3)
Kolaghat(O1) 2 3 3
Burdwan(O2) 3 2.5 5
Bhubanewar(O3) 3.8 2.5 2

So the problem is formulated in CVTP as

D1 D2 D3 stock
O1 3, 5 4, 6 5, 8 40
O2 5, 7 2, 3 7, 10 30
O3 6, 8 8, 11 4, 6 50
Demand 35 55 30

The capacities of vehicles of V1 and V2 are respectively, C1 = 2 and C2 = 4.
The time is taken to deliver the quantities in the following table

D1 D2 D3 stock
O1 4, 2 5, 3 4, 3 40
O2 5, 3 2, 2.5 7, 5 30
O3 4.7, 3.8 4.5, 2.5 7, 5 50
Demand 35 55 30

By Algorithm A2 the results are as follows:
Iteration 1:
Step 1. By modified VAM method initial B.F.S. is
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D1 D2 D3 stock
O1 x11 = 15 x12 = 25

3, 5 4, 6 5, 8 40
O2 x22 = 30

5, 7 2, 3 7, 10 30
O3 x31 = 20 x33 = 30

6, 8 8, 11 4, 6 50
Demand 35 55 30

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij =
max(t1ij , t2ij)

(1, 1) x11 = 15 0 4 0 ∗ 3 + 4 ∗ 5 = 20 c11 = 20
15 0 2 2

(1, 2) x12 = 25 1 6 1 ∗ 4 + 6 ∗ 6 = 40 c12 = 40
25 5 3 5

(2, 2) x22 = 30 1 7 1 ∗ 2 + 7 ∗ 3 = 23 c22 = 23
30 3 2.5 3

(3, 1) x31 = 20 0 5 0 ∗ 6 + 5 ∗ 8 = 40 c31 = 40
20 4.7 3.8 4.7

(3, 3) x33 = 30 1 7 1 ∗ 4 + 6 ∗ 7 = 46 c33 = 46
20 4 2 4

Total cost Z = 169 Time T = 5

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 3) x13 = 15 0 4 0 ∗ 5 + 4 ∗ 8 = 32 c13 = 32

15
(2, 1) x21 = 15 0 4 0 ∗ 5 + 4 ∗ 7 = 28 c21 = 28

15
(2, 3) x23 = 30 1 7 1 ∗ 7 + 7 ∗ 10 = 77 c23 = 77

30
(3, 2) x32 = 20 0 5 0 ∗ 8 + 5 ∗ 11 = 55 c32 = 55

20

Therefore unit cost in all cells are as follows:

c11 =
20

15
, c12 =

40

25
, c13 =

32

15
, c21 =

28

15
, c22 =

23

30
, c23 =

77

30
, c31 =

40

20
, c32 =

55

20
, c33 =

46

30
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 =
−6

5
, u3 =

3

5
, v1 =

20

15
, v2 =

40

25
, v3 =

14

15
.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z1 = 169 and optimal time is T 1 = 5. Therefore first optimal cost-time trade pair
is (169, 5).
Step 6. Before going to next iteration setting R112 = 40 = M1 and R212 = 60 = M1.
Iteration 2:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x11 = 35 x13 = 5

3, 5 4, 6 5, 8 40
O2 x22 = 30

5, 7 2, 3 7, 10 30
O3 x32 = 25 x33 = 25

6, 8 8, 11 4, 6 50
Demand 35 55 30
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Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) :Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij =
max(t1ij , t2ij)

(1, 1) x11 = 35 0 9 0 ∗ 3 + 9 ∗ 5 = 45 c11 = 45
35 0 2 2

(1, 3) x13 = 5 1 1 1 ∗ 5 + 1 ∗ 8 = 13 c13 = 13
5 4 3 4

(2, 2) x22 = 30 1 7 1 ∗ 2 + 7 ∗ 3 = 23 c22 = 23
30 3 2.5 3

(3, 2) x32 = 25 1 6 1 ∗ 8 + 6 ∗ 11 = 74 c32 = 74
25 4.5 2.5 4.5

(3, 3) x33 = 25 1 6 1 ∗ 4 + 6 ∗ 6 = 40 c33 = 40
25 4 2 4

Total cost Z = 195 Time T = 4.5

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2): Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 5 1 1 1 ∗ 40 + 1 ∗ 60 = 100 c12 = 100

5
(2, 1) x21 = 30 1 7 1 ∗ 5 + 7 ∗ 7 = 54 c21 = 54

30
(2, 3) x23 = 25 1 6 1 ∗ 7 + 6 ∗ 10 = 67 c23 = 67

25
(3, 1) x31 = 25 1 6 1 ∗ 6 + 6 ∗ 8 = 54 c31 = 54

25

Therefore unit cost in all cells are as follows: Determine all cij by Algorithm A1.

c11 =
45

35
, c12 =

100

5
, c13 =

13

5
, c21 =

54

30
, c22 =

23

30
, c23 =

67

25
, c31 =

54

25
, c32 =

74

25
, c33 =

40

25
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 = −479

150
, u3 = −1, v1 =

45

35
, v2 =

99

25
, v3 =

13

5
.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z2 = 195 and optimal time is T 2 = 4.5. Therefore second optimal cost-time trade
pair is (195, 4.5).
Step 6. Before going to next iteration selling.

After this iteration, solution is infeasible. Then two cost-time trade off pairs (Z, T ) are (169,5), (195,4.5).

5 Conclusion

This paper, develop time dependent two-vehicle cost varying transportation problem. Time dependent cost
varying transportation problem is transferred to usual transportation problem by by proposed algorithm
with initial allocation by modified VAM method. Then apply optimality test where unit transportation cost
vary from one table to another table. Finally, achieve optimal cost and then calculate total elapse time and
get optimal time & pay-off pair. Several time & pay-off pairs are also calculated for various trade which
lead more realistic. From numerical example it is seen that if transport the quantities in shortest time then
transportation cost is higher. In other words if transportation cost is minimum then more time is needed.
This problem is more real life problem than usual transportation problem. This model can be formulated by
considering several vehicles. Multi-objective time dependent economic model also be formulated through this
proposed model.

Appendix

NWCR
For example, (NWCR) Example 1: Consider a cost varying transportation problem as
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D1 D2 D3 stock
O1 7, 16 12, 16 8, 12 45
O2 4, 6 14, 18 9, 15 35
O3 10, 15 17, 22 5, 7 10
Demand 30 20 40

The capacities of vehicles of V1 and V2 are respectively, C1 = 8 and C2 = 14.
Step 1. By modified NWCR method initial B.F.S. is Iteration 1

D1 D2 D3 stock
O1 x11 = 30 x12 = 15

7, 16 12, 16 8, 12 45
O2 x22 = 5 x23 = 30

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) :Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 30 0 4 4 ∗ 7 + 0 ∗ 16 = 28 c11 = 28

30
(1, 2) x12 = 15 2 0 2 ∗ 12 + 0 ∗ 16 = 24 c12 = 24

15
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(2, 3) x23 = 30 2 1 2 ∗ 9 + 1 ∗ 15 = 33 c23 = 33

30
(3, 2) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 3) x13 = 15 2 0 2 ∗ 8 + 0 ∗ 12 = 16 c13 = 16

15
(2, 1) x21 = 5 1 0 1 ∗ 4 + 0 ∗ 6 = 4 c21 = 4

5
(3, 1) x31 = 10 0 1 0 ∗ 10 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 1 0 1 ∗ 17 + 0 ∗ 22 = 17 c32 = 17

5

Therefore unit cost in all cells are as follows:
Determine all cij by Algorithm A1.

c11 =
28

30
, c12 =

24

15
, c13 =

16

15
, c21 =

4

5
, c22 =

14

5
, c23 =

33

30
, c31 =

15

10
, c32 =

17

5
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
28

30
, u2 =

54

30
, u3 =

51

30
, v1 = 0, v2 =

20

30
, v3 =

−21

30
.

Step 4. ∆13 < 0,∆21 < 0,∆31 < 0,∆32 < 0.

Iteration 2

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40
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Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij max(t1ij , t2ij)
(1, 2) x12 = 20 1 1 1 ∗ 12 + 1 ∗ 16 = 28 c12 = 28

20 14 10 14
(1, 3) x13 = 25 0 2 0 ∗ 8 + 2 ∗ 12 = 24 c13 = 24

25 0 3 3
(2, 1) x321 = 30 2 1 2 ∗ 4 + 1 ∗ 6 = 14 c21 = 14

30 7 5 7
(2, 3) x23 = 5 1 0 1 ∗ 9 + 0 ∗ 15 = 9 c23 = 9

5 11 0 11
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10 0 12 12
Total cost Z = 82 Time T = 14

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 25 2 1 2 ∗ 7 + 1 ∗ 16 = 30 c11 = 30

25
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
30

25
, c12 =

28

20
, c13 =

24

25
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
24

25
, u2 =

9

5
, u3 =

7

10
, v1 = −4

3
, v2 =

11

12
, v3 = 0.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z1 = 82 and optimal time is T 1 = 14. Therefore first optimal cost-time trade pair
is (82, 14).
Step 6. Before going to next iteration setting R112 = 150 = M1 and R212 = 200 = M1.

Iteration 2:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x13 = 40

7, 16 150, 200 8, 12 45
O2 x21 = 30 x22 = 5

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) :Unit cost in basic cell
cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)

(1, 1) x11 = 5 1 0 1 ∗ 7 + 0 ∗ 16 = 7 c11 = 7
5 8 0 8

(1, 3) x13 = 40 5 0 5 ∗ 8 + 0 ∗ 12 = 40 c13 = 40
40 4 0 4

(2, 1) x21 = 25 0 2 0 ∗ 4 + 2 ∗ 6 = 12 c21 = 12
25 0 5 5

(2, 2) x22 = 10 0 1 0 ∗ 14 + 1 ∗ 18 = 18 c22 = 18
10 0 4 4

(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22
10 0 7 7

Total cost Z = 99 Time T = 8
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For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 5 1 0 1 ∗ 150 + 0 ∗ 200 = 150 c12 = 150

5
(2, 3) x23 = 25 0 2 0 ∗ 9 + 2 ∗ 15 = 30 c23 = 30

25
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 3) x32 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10

Therefore unit cost in all cells are as follows:
Determine all cij by Algorithm A1.

c11 =
7

5
, c12 =

150

5
, c13 =

40

40
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 = −23

25
, u3 = −13

25
, v1 =

7

5
, v2 =

68

25
, v3 = 1.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z2 = 99 and optimal time is T 2 = 8. Therefore second optimal cost-time trade pair
is (99, 8).
Step 6. Before going to next iteration selling.

After this iteration, solution is infeasible. Then two cost-time trade off pairs (Z, T ) are (82,14), (99,8).

MMMM

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)
(1, 2) x12 = 20 1 1 1 ∗ 12 + 1 ∗ 16 = 28 c12 = 28

20 14 10 14
(1, 3) x13 = 25 0 2 0 ∗ 8 + 2 ∗ 12 = 24 c13 = 24

25 0 3 3
(2, 1) x21 = 30 2 1 2 ∗ 4 + 1 ∗ 6 = 14 c21 = 14

30 7 5 7
(2, 3) x23 = 5 1 0 1 ∗ 9 + 0 ∗ 15 = 9 c23 = 9

5 11 0 11
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10 0 12 12
Total cost Z = 82 Time T = 14

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 25 2 1 2 ∗ 7 + 1 ∗ 16 = 30 c11 = 30

25
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10
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Therefore unit cost in all cells are as follows:

c11 =
30

25
, c12 =

28

20
, c13 =

24

25
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
24

25
, u2 =

9

5
, u3 =

7

10
, v1 = −4

3
, v2 =

11

12
, v3 = 0.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z1 = 82 and optimal time is T 1 = 14. Therefore first optimal cost-time trade pair
is (82, 14).
Step 6. Before going to next iteration setting R112 = 150 = M1 and R212 = 200 = M1.

Iteration 2:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x13 = 40

7, 16 150, 200 8, 12 45
O2 x21 = 30 x22 = 5

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) :Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)
(1, 1) x11 = 5 1 0 1 ∗ 7 + 0 ∗ 16 = 7 c11 = 7

5 8 0 8
(1, 3) x13 = 40 5 0 5 ∗ 8 + 0 ∗ 12 = 40 c13 = 40

40 4 0 4
(2, 1) x21 = 25 0 2 0 ∗ 4 + 2 ∗ 6 = 12 c21 = 12

25 0 5 5
(2, 2) x22 = 10 0 1 0 ∗ 14 + 1 ∗ 18 = 18 c22 = 18

10 0 4 4
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10 0 7 7
Total cost Z = 99 Time T = 8

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 5 1 0 1 ∗ 150 + 0 ∗ 200 = 150 c12 = 150

5
(2, 3) x23 = 25 0 2 0 ∗ 9 + 2 ∗ 15 = 30 c23 = 30

25
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 3) x32 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10

Therefore unit cost in all cells are as follows:
Determine all cij by Algorithm A1.

c11 =
7

5
, c12 =

150

5
, c13 =

40

40
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 = −23

25
, u3 = −13

25
, v1 =

7

5
, v2 =

68

25
, v3 = 1
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Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z2 = 99 and optimal time is T 2 = 8. Therefore second optimal cost-time trade pair
is (99, 8).
Step 6. Before going to next iteration selling.

After this iteration, solution is infeasible. Then two cost-time trade off pairs (Z, T ) are (82,14), (99,8).

MRMM

D1 D2 D3 stock
O1 x11 = 30 x13 = 15

7, 16 12, 16 8, 12 45
O2 x22 = 10 x23 = 25

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x12 = 30 2 1 2 ∗ 12 + 1 ∗ 16 = 30 c12 = 30

30
(1, 3) x13 = 15 2 0 2 ∗ 8 + 0 ∗ 12 = 16 c13 = 16

15
(2, 2) x22 = 10 0 1 0 ∗ 14 + 1 ∗ 18 = 18 c22 = 18

10
(2, 3) x23 = 25 0 2 0 ∗ 9 + 2 ∗ 15 = 30 c23 = 30

25
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 10 0 1 0 ∗ 12 + 1 ∗ 16 = 16 c12 = 16

10
(2, 1) x21 = 25 0 2 0 ∗ 4 + 2 ∗ 6 = 12 c21 = 12

25
(3, 1) x31 = 10 0 1 0 ∗ 10 + 1 ∗ 15 = 15 c31 = 15

10
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10

Therefore unit cost in all cells are as follows:

c11 =
30

30
, c12 =

16

10
, c13 =

16

15
, c21 =

12

25
, c22 =

18

10
, c23 =

30

25
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 =
2

5
, u3 =

8

15
, v1 = −30

30
, v2 =

5

3
, v3 =

16

15
.

Step 4. ∆33 < 0.

Iteration 2

D1 D2 D3 stock
O1 x11 = 30 x13 = 15

7, 16 12, 16 8, 12 45
O2 x22 = 20 x23 = 15

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40
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Step 2. For basic cell, determine cij by (6) of Algorithm A1 Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x12 = 30 2 1 2 ∗ 12 + 1 ∗ 16 = 30 c12 = 30

30
(1, 3) x13 = 15 2 0 2 ∗ 8 + 0 ∗ 12 = 16 c13 = 16

15
(2, 2) x22 = 20 1 1 1 ∗ 14 + 1 ∗ 18 = 32 c22 = 32

10
(2, 3) x23 = 15 2 0 2 ∗ 9 + 0 ∗ 15 = 18 c23 = 18

15
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c32 = 7

10

Step 3. For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following
table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 15 2 0 2 ∗ 12 + 0 ∗ 16 = 24 c12 = 24

15
(2, 1) x21 = 15 2 0 2 ∗ 4 + 0 ∗ 6 = 8 c21 = 8

25
(3, 1) x31 = 10 0 1 0 ∗ 10 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
30

30
, c12 =

24

15
, c13 =

28

30
, c21 =

8

15
, c22 =

32

20
, c23 =

18

15
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
16

15
, u2 =

18

15
, u3 =

7

10
, v1 = − 1

15
, v2 =

2

5
, v3 = 0.

Step 4. ∆21 < 0.

Iteration 3

D1 D2 D3 stock
O1 x11 = 15 x13 = 30

7, 16 12, 16 8, 12 45
O2 x21 = 15 x22 = 20

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 15 2 0 2 ∗ 7 + 0 ∗ 16 = 14 c11 = 14

15
(1, 3) x13 = 30 2 1 2 ∗ 8 + 1 ∗ 12 = 28 c13 = 28

30
(2, 1) x21 = 15 2 0 2 ∗ 4 + 0 ∗ 6 = 8 c21 = 8

15
(2, 2) x22 = 20 1 1 1 ∗ 14 + 1 ∗ 18 = 32 c22 = 32

10
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c32 = 7

10

Step 3. For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following
table:
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Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 15 2 0 2 ∗ 12 + 0 ∗ 16 = 24 c12 = 24

15
(2, 3) x23 = 15 2 0 2 ∗ 9 + 0 ∗ 15 = 18 c23 = 18

15
(3, 1) x31 = 10 0 1 0 ∗ 10 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
14

15
, c12 =

24

15
, c13 =

28

30
, c21 =

8

15
, c22 =

32

20
, c23 =

18

15
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
14

15
, u2 =

8

15
, u3 =

7

10
, v1 = 0, v2 =

16

15
, v3 = 0.

Step 4. ∆12 < 0.

Iteration 4

D1 D2 D3 stock
O1 x11 = 15 x13 = 30

7, 16 12, 16 8, 12 45
O2 x21 = 30 x22 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 15 2 0 2 ∗ 12 + 0 ∗ 16 = 24 c12 = 24

15
(1, 3) x13 = 30 2 1 2 ∗ 8 + 1 ∗ 12 = 28 c13 = 28

30
(2, 1) x21 = 30 2 1 2 ∗ 4 + 1 ∗ 6 = 14 c21 = 14

30
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c32 = 7

10

Step 3. For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following
table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 15 2 0 2 ∗ 7 + 0 ∗ 16 = 14 c11 = 14

15
(2, 3) x23 = 5 1 0 1 ∗ 9 + 0 ∗ 15 = 9 c23 = 9

5
(3, 1) x31 = 10 0 1 0 ∗ 10 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
14

15
, c12 =

24

15
, c13 =

28

30
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 =
18

15
, u3 =

−7

30
, v1 =

−11

15
, v2 =

24

15
, v3 =

14

15
.

Step 4. ∆23 < 0.
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Iteration 5

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)
(1, 2) x12 = 20 1 1 1 ∗ 12 + 1 ∗ 16 = 28 c12 = 28

20 14 10 14
(1, 3) x13 = 25 0 2 0 ∗ 8 + 2 ∗ 12 = 24 c13 = 24

25 0 3 3
(2, 1) x321 = 30 2 1 2 ∗ 4 + 1 ∗ 6 = 14 c21 = 14

30 7 5 7
(2, 3) x23 = 5 1 0 1 ∗ 9 + 0 ∗ 15 = 9 c23 = 9

5 11 0 11
(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10 0 12 12
Total cost Z = 82 Time T = 14

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 25 2 1 2 ∗ 7 + 1 ∗ 16 = 30 c11 = 30

25
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
30

25
, c12 =

28

20
, c13 =

24

25
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
24

25
, u2 =

9

5
, u3 =

7

10
, v1 = −4

3
, v2 =

11

12
, v3 = 0.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z1 = 82 and optimal time is T 1 = 14. Therefore first optimal cost-time trade pair
is (82, 14).
Step 6. Before going to next iteration setting R112 = 150 = M1 and R212 = 200 = M1.

Iteration 2:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x13 = 40

7, 16 150, 200 8, 12 45
O2 x21 = 30 x22 = 5

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40
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Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) : Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)
(1, 1) x11 = 5 1 0 1 ∗ 7 + 0 ∗ 16 = 7 c11 = 7

5 8 0 8
(1, 3) x13 = 40 5 0 5 ∗ 8 + 0 ∗ 12 = 40 c13 = 40

40 4 0 4
(2, 1) x21 = 25 0 2 0 ∗ 4 + 2 ∗ 6 = 12 c21 = 12

25 0 5 5
(2, 2) x22 = 10 0 1 0 ∗ 14 + 1 ∗ 18 = 18 c22 = 18

10 0 4 4
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10 0 7 7
Total cost Z = 99 Time T = 8

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 5 1 0 1 ∗ 150 + 0 ∗ 200 = 150 c12 = 150

5
(2, 3) x23 = 25 0 2 0 ∗ 9 + 2 ∗ 15 = 30 c23 = 30

25
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 3) x32 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10

Therefore unit cost in all cells are as follows:
Determine all cij by Algorithm A1.

c11 =
7

5
, c12 =

150

5
, c13 =

40

40
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 = −23

25
, u3 = −13

25
, v1 =

7

5
, v2 =

68

25
, v3 = 1.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z2 = 99 and optimal time is T 2 = 8. Therefore second optimal cost-time trade pair
is (99, 8).
Step 6. Before going to next iteration selling.

After this iteration, solution is infeasible. Then two cost-time trade off pairs (Z, T ) are (82,14), (99,8).

MCMM

D1 D2 D3 stock
O1 x12 = 20 x13 = 25

7, 16 12, 16 8, 12 45
O2 x21 = 30 x23 = 5

4, 6 14, 18 9, 15 35
O3 x33 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 1) : Unit cost in basic cell
cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)

(1, 2) x12 = 20 1 1 1 ∗ 12 + 1 ∗ 16 = 28 c12 = 28
20 14 10 14

(1, 3) x13 = 25 0 2 0 ∗ 8 + 2 ∗ 12 = 24 c13 = 24
25 0 3 3

(2, 1) x321 = 30 2 1 2 ∗ 4 + 1 ∗ 6 = 14 c21 = 14
30 7 5 7

(2, 3) x23 = 5 1 0 1 ∗ 9 + 0 ∗ 15 = 9 c23 = 9
5 11 0 11

(3, 3) x33 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7
10 0 12 12

Total cost Z = 82 Time T = 14



Journal of Uncertain Systems, Vol.11, No.4, pp.269-293, 2017 291

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 1) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 1) x11 = 25 2 1 2 ∗ 7 + 1 ∗ 16 = 30 c11 = 30

25
(2, 2) x22 = 5 1 0 1 ∗ 14 + 0 ∗ 18 = 14 c22 = 14

5
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10

Therefore unit cost in all cells are as follows:

c11 =
30

25
, c12 =

28

20
, c13 =

24

25
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 =
24

25
, u2 =

9

5
, u3 =

7

10
, v1 = −4

3
, v2 =

11

12
, v3 = 0.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z1 = 82 and optimal time is T 1 = 14. Therefore first optimal cost-time trade pair
is (82, 14).
Step 6. Before going to next iteration setting R112 = 150 = M1 and R212 = 200 = M1.

Iteration 2:
Step 1. By modified VAM method initial B.F.S. is

D1 D2 D3 stock
O1 x13 = 40

7, 16 150, 200 8, 12 45
O2 x21 = 30 x22 = 5

4, 6 14, 18 9, 15 35
O3 x32 = 10

10, 15 17, 22 5, 7 10
Demand 30 20 40

Step 2. For basic cell, determine cij by (6) of Algorithm A1. Now cij and corresponding required time are
presented in the following table:

Table-P1(BC : 2) :Unit cost in basic cell

cell(i, j) xij p1ij p2ij p1ijR1ij + p2ijR2ij cij t1ij t2ij Tij = max(t1ij , t2ij)
(1, 1) x11 = 5 1 0 1 ∗ 7 + 0 ∗ 16 = 7 c11 = 7

5 8 0 8
(1, 3) x13 = 40 5 0 5 ∗ 8 + 0 ∗ 12 = 40 c13 = 40

40 4 0 4
(2, 1) x21 = 25 0 2 0 ∗ 4 + 2 ∗ 6 = 12 c21 = 12

25 0 5 5
(2, 2) x22 = 10 0 1 0 ∗ 14 + 1 ∗ 18 = 18 c22 = 18

10 0 4 4
(3, 2) x32 = 10 0 1 0 ∗ 17 + 1 ∗ 22 = 22 c32 = 22

10 0 7 7
Total cost Z = 99 Time T = 8

For non-basic cell, determine cij by (7) of Algorithm A1. These are presented in the following table:

Table-P1(NBC : 2) : Unit cost in non-basic cell

cell(i, j) possible xij p1ij p2ij p1ijR1ij + p2ijR2ij cij
(1, 2) x12 = 5 1 0 1 ∗ 150 + 0 ∗ 200 = 150 c12 = 150

5
(2, 3) x23 = 25 0 2 0 ∗ 9 + 2 ∗ 15 = 30 c23 = 30

25
(3, 1) x31 = 10 0 1 0 ∗ 9 + 1 ∗ 15 = 15 c31 = 15

10
(3, 3) x32 = 10 0 1 0 ∗ 5 + 1 ∗ 7 = 7 c33 = 7

10
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Therefore unit cost in all cells are as follows:
Determine all cij by Algorithm A1.

c11 =
7

5
, c12 =

150

5
, c13 =

40

40
, c21 =

14

30
, c22 =

14

5
, c23 =

9

5
, c31 =

15

10
, c32 =

22

10
, c33 =

7

10
.

Step 3. Set ui + vj = cij ∀(i, j) ∈ B. ui + vj = zij ∀(i, j) /∈ B. Therefore,

u1 = 0, u2 = −23

25
, u3 = −13

25
, v1 =

7

5
, v2 =

68

25
, v3 = 1.

Step 4. ∆ij ≥ 0 ∀i, j.
Step 5. Optimal cost is Z2 = 99 and optimal time is T 2 = 8. Therefore second optimal cost-time trade pair
is (99, 8).
Step 6. Before going to next iteration selling.

After this iteration, solution is infeasible. Then two cost-time trade off pairs (Z, T ) are (82,14), (99,8).
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