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Abstract

In this manuscript, a new 4D autonomous hyperchaotic system has been introduced which is obtained by the three
dimensional autonomous chaotic system. We analyse the hyperchaotic properties of the new system such as dissipa-
tion, equilibrium, Lyapunov exponent, stability, time series, phase portraits, Poincare map and bifurcation diagram.
Furthermore, the projective synchronization of the new hyperchaotic system is analysed by using the active nonlinear
control method. Brief theoretical analysis and numerical results are presented to prove the dynamical behaviour of the
new 4D hyperchaotic system.
c©2017 World Academic Press, UK. All rights reserved.
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1 Introduction
Chaotic dynamics is a fascinating area of nonlinear sciences which has been extensively studied during the past few
decades. Chaotic behaviour is observed in different fields for instance chemical systems, electrical engineering, bio-
logical systems, secure communication and so on [3]. Since Pecora and Carrol (1990) has proposed chaos synchro-
nization [20]. In current years more and more attention has been diverted towards the control and synchronization of
chaotic systems [22, 10]. Various kinds of synchronization phenomena have been studied, such as complete synchro-
nization [15], anticipated synchronization [27], hybrid synchronization [8], projective synchronization [30] etc. Among
all projective synchronization is one of the particular type of synchronization which has been suggested by [16]. In
projective synchronization the master and slave systems could be synchronized up to a scaling factor, which can be
used to widen binary digital to M-nary digital communications for obtaining rapid communication [25].

Hyperchaos dynamics has been comprehensively studied over the last two - three decades due to its great potential
applications in many engineering oriented practical fields, such as secure communication [24], nonlinear circuits [1],
laser’s [26], control [6], synchronization [11, 9] and many more. In secure communication, the message to be transmit-
ted is masked by a chaotic signal. We know that, the chaotic systems have one positive Lyapunov exponent. Perez and
Cerderia justified that the messages masked by chaotic systems are not always secure [21]. However, Pecora established
that this situation can be overwhelmed by adapting the higher dimensional - hyperchaotic systems, that have growing
randomness and higher unpredictability [19]. A hyperchaotic system in general is a chaotic system having atleast two
positive Lyapunov exponents, indicating that its dynamics is spreading in various distinct directions simultaneously.
It establishes that the hyperchaotic systems possesses higher complex dynamical behaviour, which is used to enhance
the safety of chaotic communication systems. Therefore, the analytical design and circuitry recognition of numerous
hyperchaotic signals have currently become the interesting area of research [12].

Historically, Rossler in 1979 was the first who reported hyperchaos and noted 4D hyperchaotic Rössler system [23].
But in electronic circuits Matsumoto and his colleagues first discovered hyperchaos [17]. There are various systems
which were discovered over the last two - three decades from the higher dimensional systems. There are Rössler’s
hyperchaotic system [23], Lorenz - Haken hyperchaotic system [18], Chau’s hyperchaotic system [7], hyperchaotic
finance system [31]. Since the past few years, hyperchaos was found experimentally and numerically by adding another
state variable to the chaotic systems [13, 14, 5], in the generalized Lorenz system [2], Chen system [4], and a modified
Lü system [28].

∗Corresponding author.
Emails: akhan12@jmi.ac.in (A. Khan), mzfar012@gmail.com (M.A. Bhat).



258 A. Khan and M.A. Bhat: Analysis and Projective Synchronization of New 4D Hyperchaotic System

In this manuscript, a new 4D hyperchaotic system is designed which is based on the 3D chaotic system [32] by
introducing one more state variable in order to get the new 4D system. Firstly some basic analysis of the new 4D
hyperchaotic system has been done by means of dissipation, equilibrium, stability, time series, phase portrait, Lyapunov
exponents, Poincare map and bifurcation diagram. Then a projective synchronization approach is applied on the new
4D hyperchaotic system via active nonlinear control method. Simulations results are used to demonstrate the efficiency
and feasibility of the applied synchronization scheme.

The paper is arranged as. In Section 2, the new 4D hyperchaotic system and its construction is described. In
Section 3, some dynamical analysis of the new 4D hyperchaotic system has been numerically investigated. In Section 4,
Lyapunov exponents and Kaplan -Yorke dimension has been calculated. In Section 5, the Poincare map and bifurcation
diagram of the new 4D system has been established. In Section 6, the projective synchronization via nonlinear control
method has been examined. Numerical results are used to verify this technique. Finally in Section 7, conclusions are
being drawn.

2 The New 4D Hyperchaotic System and Its Construction

First,consider the newly constructed 3D chaotic system, constructed by Zhu et. al [32], described as

ẋ =−x−ay+ yz

ẏ = by− xz

ż =−cz+ xy
(1)

where a, b and c are all positive real parameters. For a = 1.5, b = 2.5 and c = 4.9, the system shows the chaotic
behaviour.

In order to generate hyperchaos from the dissipative autonomous system, following two basic conditions should be
satisfied by the state equations which are as follows:
• The dimension of the state equation should be atleast four and the order of the state equations should be atleast two.
• The system has atleast two positive Lyapunov exponents satisfying the condition that the sum of all Lyapunov expo-
nents is less than zero.

The new hyperchaotic system which is based on the system (1) and the above two properties can be generated by
adding an additional variable w, described as:

ẋ =−x−ay+ yz

ẏ = by− xz−w

ż =−cz+ xy

ẇ = dw+ y

(2)

where (x, y, z, w) ∈ R4 is a state vector. a, b, c, and d are the positive real parameters of the system (2). The
corresponding phase portraits and time series of the new hyperchaotic system (2), for a = 1.5, b = 2.5, c = 4.9 and
d = 0.10 are illustrated in Figs. 1(a-d) and Figs. 2(a-d).

3 Dynamical Analysis of the Newly Constructed Hyperchaotic System

In this section, some basic properties of the new hyperchaotic system (2) are investigated. For that, Lyapunov exponents,
Poincare section and bifurcation diagram are used to illustrate the dynamics of the hyperchaotic system. The new
hyperchaotic system has the following properties:

3.1 Symmetry

We define the set of new coordinates as (x,y,z,w)→ (−x, − y, z, −w), then under this coordinate transformation, the
new hyperchaotic system is invarient.Therefore it follows that our new hyperchaotic system (2) has the rotational axis
about z-axis.
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Figure 1: (a) Strange attractor in x-y-z space (b) Strange attractor in x-y-w space (c) Strange attractor in y-z-w space (d)
Strange attractor in x-z-w space

3.2 Dissipation and Existence of Hyperchaotic Attractors

In vector notation, the new hyperchaotic system (2) can be expressed as

x′ = f (x) =


f1(x,y,z,w)
f2(x,y,z,w)
f3(x,y,z,w)
f4(x,y,z,w)


where

f1(x,y,z,w) =−x−ay+ yz

f2(x,y,z,w) = by− xz−w

f3(x,y,z,w) =−cz+ xy

f4(x,y,z,w) = dw+ y.

Let χ be any region in R4 with a smooth boundary and also let χ(t) = Ψ(t), where Ψ(t) is the flow of f . Furthermore
let V (t) denotes the volume of χ(t). By Liouville’s theorem, we have

V ′(t) =
∫

χ(t)
(∇• f )dxdydzdw. (3)
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Figure 2: (a) Time series of state variable x (b) Time series of state variable y (c) Time series of state variable z (d)
Time series of state variable w

The divergence of the vector field ’f’ of the system (2) can be found as

∇• f =
∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂ z
+

∂ f4

∂w

= −1+b− c+d

= −α

where α = 1−b+ c+d. For a system to be dissipative it is required that ∇• f < 0. For the choice of parameter values
as given in (2), we find that α > 0.

Therefore from (3), we get

V ′(t) =
∫

χ(t)
(−α)dxdydzdw (4)

= −αv(t). (5)

Integrating (4), we get

V (t) = exp(−αt)V (0). (6)

Since α > 0, this follows from (6) that V (t)→ 0 exponentially as t → ∞. It means that each volume containing the
trajectory of this dynamical system (2) shrinks to zero. Subsequently, all the trajectories of the new system ultimately
arrive to an attractor. This shows that the new hyperchaotic system (2) is dissipative.
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3.3 Invariance
The invariant motion characterized by the scalar dynamics along z- axis

z′ =−cz, (c > 0)

which is globally exponentially stable.

3.4 Equilibrium Points and Their Stability
The equilibrium points of the new hyperchaotic system (2) are obtained by solving the followig equations

−x−ay+ yz = 0
by− xz−w = 0
−cz+ xy = 0

dw+ y = 0.

(7)

In the above system of equations we take the parameter values as in the equation (2) and on solving, we get the five
equilibrium points.

E1 = (0,0,0,0), E2 = (7.82624,2.73243,4.36421,−27.3242), E3 = (−7.82624,1.79328,−2.86421,−17.9328),

E4 = (7.82624,−1.74328,−2.86421,17.9328), E5 = (−7.82624,−2.73243,4.36421,27.3243).

3.4.1 Proposition:

The equilibrium point E1 of the system with chosen parameter a = 1.5, b = 2.5, c = 4.9 and c = 0.10 is a saddle and
unstable point.
Proof: For the equilibrium point E1, the jacobian matrix is as follows

J =


−1 −a 0 0
0 b 0 −1
0 0 −c 0
0 1 0 d

 .

The eigenvalues of J are

λ1 = 4.9, λ2 = 1.96332, λ3 =−1, λ4 = 0.636675.

Here λ1 and λ3 are negative real numbers, λ2 and λ4 are positive real numbers. This implies that the equilibrium point
E0 is saddle and unstable.

3.4.2 Proposition:

The equilibrium points E2,E3,E4 and E5 of the system (2) with chosen parameter a= 1.5, b= 2.5, c= 4.9, and d = 0.10
are saddle - focus and unstable.
Proof: For the equilibrium point E2, the jacobian matrix J is as follows

−1 −a+4.36421 2.73243 0
−4.36421 b −7.82624 −1
2.73243 7.82624 −c 0

0 1 0 d

 . (8)

The corresponding eigenvalues of jacobian matrix J are as follows

λ1 = 0.598476+7.9126i, λ2 = 0.598476−7.9126i, λ3 =−4.6036, λ4 = 0.10665.

Here λ1, λ2 are complex but have a positive real part, λ4 is also positive and λ3 is also negative. It follows that the
eigenvalue E2 is a saddle focus and unstable.
Remark: The equilibrium points E3, E4 and E5 are also saddle - focus and unstable and can be shown in a similar way
as proved in Proposition 3.4.2.
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4 Lyapunov Exponents and Kaplan-Yorke Dimension

Based on the chaos theory, Lyapunov exponent is a key component of Chaotic dynamics, and also tells the rate of
convergence and divergence of nearby trajectories in the phase space of the system. As it is known that for a four
dimensional autonomous system to be hyperchaotic, there should be more than one positive Lyapunov exponent.

For the new system (2) we set the parameters values and initial conditions as, a = 1.5, b = 2.5, c = 4.9, d = 0.10.
and (x0, y0, z0, w0) = (−0.5, 2, 3.5, 3.3), the corresponding spectrum Lyapunov exponents which are calculated by
using Wolf Algorithm [29], shown in Fig. 3. The numerical values of the Lyapunov exponents are L1 = 0.41812, L2 =
0.107, L3 = 0, L4 = −3.7988. By theoretical analysis and numerical simulations, the Kaplan - Yorke dimension is
given by

DY K = j+
1

| λL j+1 |

j

∑
i=1

λLi (9)

where j is the largest number satisfying ∑
j
i=1 λLi ≥ 0 and ∑

j+1
i=1 λLi < 0. Therefore the Kaplan- Yorke dimension for

the hyperchaotic system (2) is DY K = 3.13135332, which shows that the Kaplan - Yorke dimension of system (2) is a
fractional dimension.

 

Figure 3: Lyapunov Exponent diagram

5 Poincare Section and Bifurcations Analysis

The Poincare section or surface of section is a very effective technique to describe the bifurcation and folding properties
of chaos. The Poincare section of system (2) projected on x-y plane are shown in Fig.4.

In order to analyse the dynamics of the new system (2) with respect to parameter b, we let the parameter b to vary
in the interval [0, 2.6] and all the other parameters fixed. we fix a = 1.5, b = 2.5, c = 4.9 and d = 0.10, with initial
conditions given as (−0.5, 2, 3.5, 3.3). According to numerical and theoretical analysis, the function of the bifurcation
diagram is to demonstrate how the hyperchaotic system (2) alters with increasing values of the parameter b, see Fig. 5.
It displays generous and complex dynamical behaviour. From Fig. 5, it is clear that when b varies between 0.8 and 2.6,
the hyperchaotic behaviour of the system (2) arises. When b = 2.5 the strange attractors occurs as shown in Fig. 1(a-d).

6 Projective Synchronization of New 4D Hyperchaotic System

Projective Synchronization is attractive because of its equivalence between the synchronized dynamical states, which
has a very wide application in secure communication. In this section, we investigate the projective synchronization of
the new 4D hyperchaotic system via active nonlinear control approach. The master and slave systems are respectively
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Figure 4: Poincare map and Bifurcation diagram of system (2)

defined as
ẋ1 =−x1−ay1 + y1z1

ẏ1 = by1− x1z1−w1

ż1 =−cz1 + x1y1

ẇ1 = dw1 + y1

(10)

and
ẋ2 =−x2−ay2 + y2z2 +u1

ẏ2 = by2− x2z2−w2 +u2

ż2 =−cz2 + x2y2 +u3

ẇ2 = dw2 + y2 +u4

(11)

where u1, u2, u3, u4 are nonlinear controllers to be constructed such that the two new hyperchaotic systems synchronize
in the way of projective synchronization.

Define the error system for the projective synchronization as follows:

e = y−θx

where θ is a constant called as scaling factor.
From systems (10) and (11), the error dynamical system is as follows

ė1 =−e1−ae2 +(y1z1)−θy2z2)−θu1

ė2 = be2− (x1z2−θx2z2)− e4−θu2

ė3 =−ce3 +(x1y1−θx2y2)−θu3

ė4 = de4 + e2−θu4.

(12)

By using the technique of active control method, we define the four controller functions ui (i = 1, 2, 3, 4) as:

u1 =
y1z1

θ
− y2z2−

v1

θ

u2 =
−x1z1

θ
+ x2z2−

v2

θ

u3 =
x1y1

θ
− x2y2−

v3

θ

u4 =
−v4

θ
.

(13)
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Subsequently the error dynamical system (11) becomes

ė1 =−e1−ae2 + v1

ė2 = be2− e4 + v2

ė3 =−ce3 + v3

ė4 = de4 + e2 + v4.

(14)

Thus the system (14) which is to be controlled is a linear system with control inputs v1, v2, v3 and v4 which are the
functions of e1, e2, e3 and e4. Now in order to stabilize the system (14) we must choose the controllers v1, v2, v3 and
v4 such that e1, e2, e3 and e4 converges to zero as time tends to infinity., which shows that projective synchronization
between the systems (10) and (11) is achieved with a scaling factor θ . There are various choices for selecting the
controllers v1, v2, v3 and v4. Let us suppose that

v1
v2
v3
v4

= A


e1
e2
e3
e4

 (15)

where A is a 4×4 matrix to be determined, we choose the matrix A as follows

A =


0 a 0 0
0 −2b 0 1
0 0 0 0
0 −1 0 −2d

 .

Now consider the Quadratic Lyapunov function

V (e) =
1
2

eT e =
1
2
(e2

1 + e2
2 + e2

3 + e2
4) (16)

which is positive definite in R4. Differentiating (16) along the trajectories of the system (14), we get

V̇ (e) =−e2
1−be2

2− ce2
3−de2

4 (17)

which is negative definite in R4. Thus by Lyapunov stability theory we conclude that the system (14) is stable and the
projective synchronization between the systems (10) and (11) is achieved.

6.1 Numerical Results

In this subsection, we investigate the theoretical results which are being defined in the section 6. The parameter val-
ues of the new 4D hyperchaotic system are taken as a = 1.5, b = 2.5, c = 4.9 and d = 0.10. The initial values of
the master system (10) and slave system (10) are taken as (x1(0), y1(0), z1(0), w1(0)) = (−0.5, 2, 3.5, 3.3) and
(x2(0), y2(0), z2(0), w2(0)) = (0.3, 1.3, 1.5, 1.8) respectively. Now we consider two cases:
Case I: When the scaling factor θ is taken to be 2. Simulations results of the new 4D hyperchaotic system using projec-
tive synchronization via active nonlinear controller are exhibited in fig 5 and fig 6 . In Figs. 5(a-d) , the concrete lines
indicates the states of the drive system (10) and the dotted lines indicates the states of the response system (11). From
Figs. 5(a-d), we see that the states of the response system (11) is declined by a half in contrast with the master system
(10) in the same phase synchronization design. The synchronization errors e1,e2,e3 and e4 tend to zero when t > 12
as indicated in Fig. 6, it shows that the state variables are synchronized in a proportional way. This concludes that the
projective synchronization of the new 4D hyperchaotic system is accomplished.
Case II: When the scaling factor θ is taken to be 1. Simulations results of the new 4D hyperchaotic system using projec-
tive synchronization via active nonlinear controller are exhibited in Fig.7 and Fig. 8. In Figs. 7(a-d), the concrete lines
indicates the states of the drive system (10) and the dotted lines indicates the states of the response system (11). From
Figs. 7(a-d), we see that the states of the response system (11) are completely synchronized with the master system
(10). The synchronization errors e1, e2, e3 and e4 tend to zero, as indicated in Fig. 8, it shows that the state variables
are synchronized in a proportional way.
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Figure 5: Numerical results of generalized projective synchronization of systems (10) and (11) with θ = 2: (a) Time
series of x1(t) and x2(t) (b) Time series of y1(t) and y2(t) (c) Time series of z1(t) and z2(t) (d) Time series of w1(t)
and w2(t)

 

Figure 6: Time series of synchronization errors
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Figure 7: Numerical results of generalized projective synchronization of systems (10) and (11) with θ = 1: (a) Time
series of x1(t) and x2(t) (b) Time series of y1(t) and y2(t) (c) Time series of z1(t) and z2(t) (d) Time series of w1(t)
and w2(t)
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Figure 8: Time series of synchronization errors

7 Conclusions
In this manuscript, a new four - dimensional continuous autonomous hyperchaotic system has been presented, in which
each equation consists of almost single cross - product term. Basic properties of the new system have been analysed in
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terms of Lyapunov exponents, equilibria, fractal dimension, Poincare mapping, and hyperchaotic behaviour. Further-
more, the projective synchronization approach via active nonlinear control method has been simultaneous performed.
By establishing the suitable controllers, we have achieved the synchronization. Lastly, numerical results are given
to confirm the efficiency of the proposed synchronization scheme. Theoretical and numerical results are in excellent
argument.
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