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Abstract

This paper investigates a hub-and-spoke (H&S) network design problem, in which the uncertain travel
times are characterized by fuzzy random variables. A new hybrid methodology by combining hub location-
allocation modeling approach and equilibrium chance programming method is developed to model this
problem. By analyzing the proposed model, we first handle equilibrium chance constraints and reduce
them to their equivalent probability ones in some special case. After that, we adapt sample average
approximation (SAA) method to probability constraint functions. Based upon the resulting SAA model, we
design a simulated annealing algorithm. Finally, we conduct some numerical experiments to demonstrate
the effectiveness of the proposed model and solution approach.
©2017 World Academic Press, UK. All rights reserved.
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1 Introduction

In a hub-and-spoke (H&S) network design, decisions regarding the location of hubs and the allocation of
the spokes (non-hub nodes) to the located hubs directly affect the operational performance of freight trans-
portation enterprises. One of the operational performance metrics is timeliness, which can be commonly
characterized by the travel time between the origin-destination (O-D) pairs in the delivery network. In light
of this, the freight companies strive to provide service within a predetermined delivery time requirement so
as to be able to meet the time-based service guarantees. For example, FedEx has strategically designed its
H&S network in order to serve the entire United States by providing overnight service to the entire nation
and serving 95% of the global economy customers within 24-48 hours. Neglecting this factor may result in
lost-opportunity and lost-goodwill, due to unsatisfied customers, which has a direct effect on the delivery
service performance. Therefore, it is necessary to take into account the timeliness in the designing of H&S
network.

During a design process in the H&S network, it is very difficult for decision makers to estimate the
precise travel time which includes the transportation time on the links and the operational time spent at the
hub(s). However, because of this scarcity of precise statistical travel time data, it is appropriate to use fuzzy
variables to model the decision makers’ experience. When asked about the travel time, a decision maker is
only able to expresses his subjective judgment by the terms “about ¢ days”, which can be described as a
normal fuzzy variable n (t,0) with an average value ¢ and a fluctuation 6. However, the average travel time
t cannot be also considered deterministic since its value may vary because of traffic, weather conditions and
speed variation. Under these circumstances, the probability theory can be applied to describe these kinds of
objective uncertainties, in which the travel time approximately follows an uniform distribution expressed as
Ula,b]. Therefore, the travel time between any O-D pairs need to consider both fuzziness and randomness
[T, e, 34).

To address the above issues, this paper integrates the hub location-allocation modeling approach with the
equilibrium programming approach to model the H&S network design problem. The former approach selects
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the location of hub facilities and allocates origin-destination (O-D) pairs to design an H&S network. The
latter approach is to characterize the uncertain travel time between the O-D pairs and develops equilibrium
chance constraints to satisfy delivery time requirements. By combining these above mentioned aspects, this
paper present a new approach to establish a meaningful H&S network design problem with uncertain travel
times. This paper intends to make the following contributions to the growing body of the H&S network design
problem in the literature.

e Constructing a service-based objective function to minimize the maximum travel time between O-D
pairs.

e Describing an approach to characterize uncertain travel times by possibility and probability distributions.

e Developing an equilibrium chance by credibility and probability measure to determine the decision
maker’s ability to meet delivery requirements.

e Proposing a parametric decomposition method to derive equivalents of mathematical model.

e Adapting a sample average approximation (SAA) method to estimate probabilistic constraints and
reformulate the equivalent stochastic programming problem as its resulting SAA model.

e Developing a simulated annealing method for the resulting SAA model to achieve more reliable solutions.

The remainder of this paper is organized as follows. In Section B, we briefly review related literature.
In Section B, we describe the modeling framework for the considered H&S network design problem. In
Section B, we present the formulation of the optimization model. In Section B, we reduce the equilibrium
chance constraints to their stochastic chance constraints in some special cases. In Section B, we first suggest a
SAA method to discretize continuous random parameters. Then, we design a simulated annealing algorithm
to solve the resulting SAA model. In Section @, some numerical experiments are conducted to demonstrate
the effectiveness of the proposed model and solution approach. Finally, Section B draws some conclusions.

2 Literature Review

The H&S network design problem is conventionally called hub location-allocation problem, which is concerned
with locating hub facilities and allocating spoke nodes to hubs. The study of hub location-allocation was for-
mally proposed by O’Kelly [Z5, P6], who provided a quadratic integer programming formulation. Campbell [3]
later developed a linear version known as the p-hub median problem. Skorin-Kapov et al. [30] obtained
exact solutions to the p-hub median problem by developing tight linear relaxations of the formulation given
by Campbell [B]. New MILP formulations of the hub location-allocation problem with fewer variables and
constraints were developed by Ernst and Krishnamoorthy [7]. For a detailed review of hub location-allocation
problem and its variations, see [@] and [9]. In order to solve the H&S network design problem, various heuris-
tics based approaches have been used. These include the genetic algorithm [8Z], tabu search [P], ant colony
optimization [Z7] and simulated annealing [8]. Among these solution approaches, the simulated annealing has
been very successful in finding close to optimal solutions for large size problems. The simulated annealing
proposed by Kirkpatrick [[4] is a local search-based heuristic that is capable of escaping from being trapped
into a local optimum by accepting, with small probability, worse solutions during its iterations. This feature
can be an advantage, and has demonstrated considerable success in providing good solutions to many highly
complicated combinatorial optimization problems as well as various real-world problems [@, I3, [5]. This
paper contributes this literature by considering the uncertainty in the design of H&S networks. And it also
complements this line of literature by developing a new hybrid heuristic algorithm by incorporating the SAA
and the simulated annealing method.

The purpose of this paper is to study the H&S network design problems under uncertainty, which is an
active research area in the literature. Marianov and Serra [20] focused on stochasticity at the hub nodes by
representing hub airports as M/D/c queues and limiting through chance constraints the number of airplanes
that can queue at an airport. Yang [33] presented a two-stage stochastic programming model for air freight
hub location and flight route planning under seasonal demand variations. Sim [29] attempted to tackle hub
location-allocation with stochastic time and utilized a chance-constrained formulation to model the minimum
service-level requirement. Contreras et al. [6] studied stochastic uncapacitated hub location problem in
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which uncertainty is associated to demands and transportation costs. Mohammadi et al. [Z1] proposed a
new stochastic multi-objective multi-mode transportation model for hub location-allocation problem under
uncertainty. On the basis of fuzzy theory [B7], some new methods have also been developed to model hub
location-allocation problems. For instance, Chou [5] proposed a fuzzy multiple criteria decision-making model
for evaluating and selecting the container transshipment hub port. Taghipourian et al. [31] presented a fuzzy
integer linear programming approach to dynamic virtual hub location problem with the aim of minimizing
the transportation cost in a network. Yang et al. [35] presented a new risk aversion hub location-allocation
problem with fuzzy travel times by adopting value-at-risk criterion in the formulation of the objection function.
Mohammadi and Moghaddama [22] proposed a bi-objective fuzzy hub location-allocation problem with the
choice of a transportation mode over inter-hub links by incorporating a fuzzy M/M/1 queuing system. This
paper differs from the above mentioned work in two aspects. First, since randomness and fuzziness often
coexist in practical H&S network design problems, this paper extends the existing methods in the literature
by adopting fuzzy random variables to describe uncertain travel times, characterized by both probability
and possibility distributions. Second, this paper develops an equilibrium level by credibility and probability
measure to determine the decision maker’s ability to meet service time requirements.

In practical H&S network design problems, uncertainty may present both fuzziness and randomness. To
the best of our knowledge, there are two papers in the literature dealing with the H&S network taking the
mixed uncertainty into account. Mohammadi et al. [23] studied a novel sustainable hub location prob-
lem in which two new environmental-based cost functions accounting for air and noise pollution of vehicles
are incorporated. To cope with hybrid uncertain data incorporated in the model, they proposed a mixed
possibilistic-stochastic programming approach to construct the crisp counterpart. Yang et al. [36] addressed
the planning and optimization of intermodal hub-and-spoke (IH&S) network considering mixed uncertainties
in both transportation cost and travel time. In our study, we develop a new hybrid methodology to model
the problem by taking in to account the hybrid uncertainty in transport process and hub operations.

3 Modeling Framework

This section presents a modeling framework for the design of H&S network with uncertain travel times. The
proposed problem is represented by a graph in which nodes represent demand points and arcs represent
transportation routes between the nodes.

In this modeling framework, a shipment between an origin node ¢ and a destination node j can be traveled
either through a pair of hubs (k,m) or through a single hub. The travel of shipments between each pair of
O-D nodes consists of three parts (see Fig. M). The first part is collection when shipments from the origin node
1 are consolidated at the origin hub k. The second part is transfer when shipments are transferred between
the origin hub k and destination hub m. The third part is distribution when shipments are distributed to
the destination node j. In the case of a single hub shipment (k = m), the travel consists of only two parts:
collection and distribution.

Figure 1: An example of H&S network
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It is noteworthy that arrival shipments cannot be quickly transferred and need to be operated in a hub [IZ].
For example, arrival shipments must be unloaded, batched, break-bulked and loaded before transferring to
their destinations (see Fig. B). Hence, shipments must spend time at the hub(s), which is the sum of the
operational times of each operation.

Figure 2: Hub operations

With the above analyses, the total travel time is a combination of transportation time between O-D pairs
and the operational time required at the hub(s). It is widely recognized that uncertain features always exist in
the H&S network, as it is often shown in the transportation process between the O-D pairs and the operation
at hubs. In general, a H&S network design plan should be drawn up before the hub facilities are located in the
network. That is, the transportation time and operational times cannot be determined in advance, leading to
the inherent uncertainty, which is the motivation for considering the fuzzy random environment in this study.

Before formulating the mathematical model for this problem, the assumptions of this study are clarified
first as follows:

(1) The hub network is complete.

(2)

(3) Direct transportation between non-hub nodes is not allowed.
)

(4) The transportation time and the operational time are assumed to be uncertain and characterized by
fuzzy random variables, governed by known possibility and probability distributions.

There is economics of scale incorporated by a discount factor for using the inter hub connections.

In the following sections, we construct the optimization model of the H&S network design problem with
uncertain travel times in detail.
4 Formulation of the Optimization Model

4.1 Symbols and Parameters

Some basic symbols and parameters are listed below for the convenience of formulating the model.

N the set of nodes in the network
Q the set of all samples
i, ] the spoke nodes

k, m  the hub nodes

T;; the fuzzy random transportation time between node i and node j

Og the fuzzy random operational time required at hub &

Tijw  the fuzzy transportation time between node ¢ and node j for each w € 2
Op,.w the fuzzy operational time required at hub k for each w €

@ the discount factor on links between hubs

I} the predetermined equilibrium level

P the number of hubs to be selected
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4.2 Decision Variables

The H&S network design needs to make decisions regarding the locations of hubs, the allocation of origin
and destination nodes to the located hub, and routing the flows through the network. To facilitate the model
formulation in this paper, the following decision variables are adopted:

(1) For each pair i,k €N, we define the following binary decision variables,

X, — 1, if node 7 is assigned to hub &
ik 0, otherwise.

(2) When i = k, the variable X}, represents the establishment or not establishment of a hub at node k.
(3) We define additional binary decision variables Yix,,; that represent path in network from node i to
node j through hub & first then hub m, i.e.,

Voo 1, if exists a path from node i to j through hub & first then m
kmji =) 0, otherwise.

4.3 Formulation of the Objective Function

Noteworthy, the above-mentioned travel times are quantified as uncertain data due to lack of knowledge
in estimating precise values for these coefficients and represented in the form of fuzzy random variables.
Combining the credibility and probability measure, we suggest a new equilibrium method to minimize of
the maximum travel time between each O-D pair that is the sum of transportation time on the links and
operational time required at the hubs specifying the prescribed equilibrium level £ in the sense that

mln{f | PI‘{UJ S Q|Cr{(Tik,w + OlTkm,w + ij,w + Ok,w + Om,w * Sign|k - m|)Y;’kmj < f} > /8} > ﬂa

Vi, j,k,m e N},

where the level g is taken twice to represent different meanings, the first 8 on the left represents credibility
level, and the second S on the right represents probability level. The value of f represents a best time
guarantee that can be offered to all customers for each O-D pair. For example, UPS offers both next-day and
second day services. For shipments picked up on a given day, next-day service has guaranteed delivery by the
early morning of the next day, typically before 10 AM, and second-day service has guaranteed delivery by the
end of the second day [29].

In general, optimizing this objective function can be formulated as solving a equilibrium chance-constrained
programming model [I'4, I¥]. As a consequence, it can be expressed as the minimisation of the delivery time
requirement, Z, subject to the equilibrium chance constraints, as given below:

min f such that Pr{w € Q|Cr{(Tikw + @Tkmw + Timjw + Ok w + Om,w *sign|k — m|)Yigm; < f} > B} >
B,vi,j,k,m € N.

4.4 Formulation of Basic Constraints

In this section, we present the basic constraints that the H&S network design must satisfy, i.e.,

Ytikmj ZXik+ij_1»ViajvkameN7 (1)
> Xi=1YieN, (2)
kEN
Xir < Xk, Vi, k € N, (3)

Z Xk = p. (4)
kEN

Constraints (@)-(#) are the constraints for hub locations and allocations. Constraints (0) ensure that path
i—k—m—j is a valid path in network if and only if nodes 7 and j are assigned to hubs k and m, respectively,
ie., X;x=X;m=1. Constraints (B) impose single assignment of nodes to hubs. Constraints (8) state that a
spoke node i can only be assigned to an open hub at node k. Constraint (#) requires that exactly p hubs are
established in the H&S network.
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4.5 Mathematical Model

Based on the description above, we now present a new approach to establish a meaningful H&S network design
problem with uncertain travel times. The mathematical model is formally built as follows (M1, for short):

min f

s.t.: Pr{w € Q|Cr{(Titw + aThm,w + Tmjw
+Ok,w + Om,w * blgn‘k - m|)Y;'knzj S f} Z ﬁ} Z ﬂaViaj7kam eEN
Y:Lkmj > X + ij — 1,V’L',j, k,me N

ZkeN Xir=1YieN (5)
Xip < Xpr, Vi, k €N
ZkeN Xk =D

Xy € {0,1},Vi,ke N
szkmj € {07 1}7Vi7.jakam €N.

Existing studies have approved that traditional H&S model is NP-hard. The proposed model M1 can be
reduced to the traditional one if all trave times are always deterministic, so it is also an NP-hard problem.
Not only the entire problem is NP-hard, even when all hubs are fixed, the allocation and routing problem
in model M1 is still NP-hard. On the other hand, the proposed model M1 is a significant and non-trivial
extension, because it is more flexible problem reflecting on practical situations and decision maker’s philosophy
of modelling hybrid uncertainty. To solve model M1, we may encounter the difficult of calculating the
equilibrium chance constraints defining problem. To overcome these difficulties, we reduce the equilibrium
chance constraints to their equivalent stochastic ones in some special cases.

5 Theoretical Analysis of the Proposed Model

To solve the proposed model M1, the crux is to check equilibrium chance constraints effectively. Due to
twofold uncertainty involved in the equilibrium constraints, we cannot do so in general case. One method is
to estimate equilibrium constraints by approximation method [I6], where a continuous fuzzy random vector
is approximated by a sequence of discrete fuzzy random vectors. Another alternative method is to reduce
equilibrium chance constraints to probability constraints or credibility constraints. In the next section, we
concentrate on reducing the equilibrium chance constraints to their equivalent stochastic ones in some special
cases.

5.1 Handing Equilibrium Chance Constraints

In this section, we assume the travel times are characterized by normal fuzzy random variables, and reduce
the equilibrium chance constraints to their equivalent stochastic chance constraints.

Theorem 1. Let the transportation time T;; and the operational time Oy, be the normal fuzzy random variables
such that for each w € Q, Tij, =n (tij(w),afj(w)) and Oy = n(og(w), b2 (w)) are mutually independent
fuzzy variables. Suppose t;;, o, a;; and by, are random variables for any i,j,k,m € N. Then we have

(1) If 0 < B < 1/2, then Pr{w € Q|Cr{(Tik,0+Tkmw+Tmjw+ Ok w+Om w*signlk—m|)Yiem; < f} > B8} > 5
reduces to

Pr{(tix(w) + atpm (W) + tm;(w) + 0k (W) + 0m (w) * sign|k —m)|
—V/=210(2 = 28) (@ik (0) + A (W) + A (W) + bk (W) + by (w) * sign|k — m|))Yiem; < f} > B.
(i) If 1/2 < B < 1, then Pr{w € QICr{(Tik.w + ¢Thkmw + Tmjw + Ok w + Om w * sign|k — m|)Yigm; < f} >
B} > B reduces to
Pr{(tir(w) + atpm(w) + tm;(w) + ok (w) + o (w) * sign|k — m|
+v/—2In(2 — 28)(a;k(w) + aarm (W) + amj(w) + br(w) + by (w) * signlk —m|))Yiem; < f} > .

Proof. Since Tk, Thm,ws Tmjws Om,w and Oy, are mutually independent for each w € €, according to the
properties of normal fuzzy variables [I9], Tz o + &L kim0 + Timjw + Ok w + Om w *sign|k —m| is a normal fuzzy
variable.
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Now, we consider the following credibility constraint for path i—k—m—j
Cr{Tik,w + aTkm,w + ij,w + Ok,w + Om,w * Signlk - m|} < f} > p.
When 0 < 5 < 1/2, we have

Cr{Tik,w + aTkm,w + ij,w + Ok,w + Om,w * blgn‘k - m| < f} > /8
<~ f Z (Tik,w + aTkm,w + ij,w + Ok,w + Om,w * Slgn|k - m‘)éﬁv
where (Tigw + @Thmw + Tmjw + Okw + Om o * signlk — m|)§ﬁ is the left extreme point of the 23-cut of
/Tik,w + aTkm,w + ij,w + Ok,w + Om,w * Slgn|k — m|
Thus, Cr{Tix w + &Tkm,w + Tmjw + Okw + Om w * sign|k —m| < f} > B is equivalent to
tik (W) + ot pm (W) + tmy (W) + 0 (W) + 0 (w) * sign|k — m|
—v/—2In(2 — 28)(aik(w) + aarm (W) + amj(w) + br(w) + by, (w) * sign|k —m|) < f.

It then follows that Cr{(Tix,w + &Tkm.w + Tmjw + Okw + Om w *sign|k —m|)Yigm; < Z} > B can be express
as

(tit (W) + atpm (W) + tm; (W) + 0k (W) + 0 (w) * sign|k — m)|
—v—2In(2 — 258)(air (W) + atrm (W) + m; (W) + bg(w) + by (w) * sign|k — m|))Yigm; < f.
Similarly, when 1/2 < 8 < 1, then we can obtain

Cr{Tik:,w + aTkm,w + ij,w + Ok:,w + Om,w * Slgn|k - m‘ S f} 2 B
<~ f Z (Tik',w + aTkm,w + ij,w + Ok,w + Om,w * Signlk - m|)§—2[37
where (Tik o + T hm w + Tmjw + Ok w + Om, o *sign|k — m|)§;25 is the right extreme point of the (2 — 23)-cut
of Ek,,w + aTkm,w + ij,w + Ok,w + Om,w * Slgﬂ|/€ - m|
As a consequence, Cr{Ti o + 0Thm 0 + Tmjw + Okw + Omw *sign|k —m| < f} > B is equivalent to
it (W) + atpm (W) + tm; (W) + 0k (W) + 0 (W) * sign|k — m)|
+v/—21n(2 — 28)(aik(w) + cagm (W) + amj(w) + b (w) + by (w) * sign|k —m|) < f.
It then follows that Cr{(Tixw + Tkmw + Tmjw + Okw + Omw * signlk — m|)Yigm; < f} > B can be
expressed as
(tin(w) + atpm (W) + tmj (W) + 0k (W) + 0 (w) * sign|k — m|
+v/—2In(2 — 28)(ak(w) + atrm (W) + amj(w) + bi(w) + by, (w) * sign|k — m|))Yiem; < f-

The proof of the theorem is complete. O

5.2 Equivalent Stochastic Programming Model

This section explains a parametric decomposition method to divide the proposed model M1 into two equivalent
stochastic programming models. In this way, the steps of the proposed solving approach can be summarized
as follows.

In the case of 0 < 8 < 1/2, according to the discussion in Theorem 1, we can transform problem (B) to
the following stochastic programming model:

min f

st.r Pr{(tix(w) + otim (W) + tm;(w) + 0k (w) + 0m (w) * sign|k — m| — /—2In(2 — 28)(ax(w)
+0gm (W) + (W) + b (W) + b (W) * sign|k — m|))Yiem,; < f} > B, Vi, j,k,me N
Constraints (I) — (H).

(6)
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In the case of 1/2 < 8 < 1, problem (H) can be converted into the following stochastic programming model:

min f

sttt Pr{(tin(w) + atim (W) + timj(w) + or(w) + om(w) *sign|k — m| + y/—21In(2 — 26) (air(w) (7)
+0gm (W) + Qmj (W) + b (W) + by (W) * sign|k — m|))Yiem; < f} > B,Vi,j,k,me N
Constraints (I) — (@).

Models (B) and (@) are stochastic programming problems. The conventional methods for solving proba-
bilistic constrained problems involving continuous distributions are based on the derivation of deterministic
equivalent formulations of the original problem. As we know, this conversion is usually hard to perform. In
the current development, we assume that &, = (tik, tioms tmjs Oks Oms Qiky Gl , Gy, Dk, b)) are random vec-
tors described by joint probability density function, and the components of random vector are not necessary
mutually independent, i.e., we allow for the interactions among uncertain travel times. In this case, we cannot
turn the probabilistic constraints into their respective deterministic equivalents. One line of approach is to
approximate the random parameters by a discrete one and let the discretization be finer and finer, hoping
that the solutions of the approximate problem with a finite number of scenarios will converge to the optimal
solution of the original problem. In the next section, we will present a solution method that integrates a sam-
pling strategy, the SAA method, coupled with a simulated annealing algorithm to solve equivalent stochastic
programming problems.

6 Solution Method

In practical situation, it is usually assumed that the equilibrium level 5 > 1/2. So, in the next section, we
only discuss the solution method for equivalent stochastic programming problem (@). Furthermore, a same
approach could be used in the case of 0 < 8 < 1/2. The methodology incorporates a sampling technique,
known as the SAA method, coupled with a simulated annealing algorithm.

6.1 SAA Method to Stochastic Function

The sample average approximation (SAA) method is an approach for solving stochastic programming problems
by using Monte Carlo simulation. The SAA method has been well used in stochastic environment [, 2&]. In
the SAA computational procedure, we first generate wy,, . from a probability space (©,3,Pr) and produce
random samples Efkmj = §(wfkmj) for s € Sikmj. Equivalently, we generate random samples £fkmj for
s € Sikm; according to the probability distribution of &

We now compute probabilistic constraints according to the SAA method proposed above. For any
i,7,k,m € N, we denote by S;;,; the finite set of scenarios characterizing the probability distribution of

Let &

representing the joint realizations of the components §;,,,; under scenario s, s € Sigm;. The probabilities
associated with scenarios are denoted by pj,,,., s € Sikmj, Where DPikm; > 0 and > =1

ikmj*

S — S S S NS AS AS ~S NS S S
the random vector & ikmi = \Ciks U b Ok O s Qs Qs Qi Uy O3y

ik ) be the deterministic vector

SESikmj pz"skrmj
In case of 1/2 < 8 < 1, we consider the following probabilistic constraints:

Pr{(tix(w) + atim(w) + tm;(w) + ok (w) + om (w) * sign|k — m|
+v/—2In(2 — 28)(aik(w) + aagm (W) + amj(w) + bg(w) + by (w) * signlk — m|))Yigm; < f} > 6.

By introducing a “big enough” constant M, one has

(t3 (W) + adf,, (W) + 15, (w) + 63 (w) + 65, (w) = sign|k — m| + /—2In(2 — 28) (a5, (w)
Q] (w) + @y (W) + b (w) + b5, (w) = signlk — m|))Yiemj — M < f,5 € Sikmy-

In addition, we introduce a vector Zjip,; of binary variables whose components fkmj, 5 € Sikm; take
value 0 if the corresponding constraint has to be satisfied and 1 otherwise.
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According to the definition of probability measure, problem (@) can be approximated by the following SAA
model (M2, for short):

min
f
st (E(w) + aff,, (W) + 15, (w) + 65 (w) 4 65, (w) * sign|k — m| + /—21n(2 — 28) (a5, (w)
+aif,, (W) + 5, (@) + 0} (W) + b5, (@) * signlk — m])Yimj = M - Zin; < .
Vi,j7 k, meN,s € Sikmj (8)
ZsGSikmj pfkmjszmj < (1 - 5)7Vi’ ka m7j eEN
Ziem; €10,1}, Vi, k,m, j € N, s € Sigm;
Constraints (0) — (@).

It is observed that Zsesmm Pikmi Likms < (1 —p), for any i,k,m,j € N, define a binary knapsack con-
straint ensuring that the violation of the stochastic constraints is limited to (1 — j).

In the reformulation introduced above, the number of constraints is replicated in the number of scenarios.
Even for small size problems, the SAA model M2 is still a very large mixed-integer problem. Thus, traditional
optimization methods such as linear programming plus branch and bound can become useless in terms of
computing times. Furthermore, when using these methods, the number of branches is likely to increase
dramatically because of the capacity constraints. Under this consideration, we focus our attention on heuristic
solution approaches, which will be described in the next section.

6.2 Simulated Annealing Algorithm

This section proposes a simulated annealing algorithm to solve the SAA model M2 to optimality.
Initialize (7o, TF, ¥, Nnon—improvings Liter)
Step 1: Randomly generate the initial solution X.
Step 2: Let T'=Tp; I = 0; Fpest=0bj(X); Xpest = X;
Step 3: I =1+1;
Step 4: Generate a new solution X' based on X
If (Exist a group contains only a single node)

{

Generate a new solution X from X by hybrid operation;

}

Else
{
Generate r =random(0, 1);
Case 0 < r < 0.4: Generate a new solution X from X by shift operation;
Case 0.4 < r < 1: Generate a new solution X  from X by exchange operation;
¥
Step 5: If A=obj(X )-obj(X) <0 { Let X = X'}
Else
{
Generate r =random(0, 1);
If r < exp(—A/KT) let X = X'}
}
Step 6: If (Obj(X)<Fbest) {Xbest = X; FbestZObj(X); N = O; }
Step 7: If I = Iz,
{
T=vT;1=0; N=N +1;
¥
Else { Go to Step 3;}
Step 8: If ' < Tr or N = Nyon—improving { Lerminate the simulated annealing algorithm;}
Else { Go to Step 3;}
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7 Numerical Experiments

In order to evaluate the performance of the proposed model and the proposed approach, this section conducts
some numerical experiments based on a generated data set. The simulated annealing algorithm has been
coded in C++ programming language. All numerical tests are carried out on a personal computer (SONY
with Intel(R) Core(TM) Duo CPU @ 3.53Ghz and RAM 4.00GB), using the Microsoft Windows 7 operating

system.

7.1 Test Problems Generation

This study randomly generates 10 nodes data set on the plane. For this data set, the x and y coordinates are
randomly generated from the square region [0,100] x [0,100]. Suppose that there is a link connecting every
pair of nodes. We set the Euclidean distance D;; = \/(xl —xj)?+ (y; —y;)? fori,j =1,2,...,10. To obtain
fuzzy random instances, the travel times are assumed as uncertain parameters. The normal fuzzy random
distributions are used for these uncertain parameters. Specifically, we assume that the transportation times
and operational times are characterized by Tjyo, = (tik(w), a2, (w)), Thmw = (tkm(w), a2, (w)) and Ty 0w =
(tmj (W), a5, (W), Ok = (0k(w), b (w)), and Oy, o = (0m(w),b7,(w)), respectively. In addition, the random
parameter & (tiks tkm, tmj, Ok, Om, Giks Clms @y, Dk, b ) has a 10-dimensional joint uniform distribution
defined as:

ikmj —

U= {(x1,22,23, 24,25, T6, T7, T8, Tg, T10)|[YDir < 1 < TDit, YDy < @2 < TDpn, YDnj < @3 < Ty,
5< w4 <10,5<25<10,0<26<1,0<27 <1,0<25<1,0<29<1,0< 199 <1},

where v = 0.75, m = 1.25.

For the generated data set, we consider several experiments by varying the hub number value p € {2, 3}.
For each hub number value, we provide results with two levels of inter-hub transportation discount o = 0.2
and 0.8. Each instance has been solved for three different equilibrium levels 8 € {0.85,0.90,0.95}. Recall that
during the SAA procedure, we need to generate sample points to discrete continuous random parameters.
For simplicity, we set S;pm; = S for any 7,k,m,7 = 1,2,...,10. We test the proposed simulated annealing
algorithm by using different sample size S € {50, 100, 150, 200, 250, 300}. The result of experiments indicates
that we use a sample size S = 200 to obtain good estimations of the optimal value of original problem.

In the simulated annealing algorithm procedure, parameter settings may have great influence on the
computational results. Thus, a set of pilot experiments with the following combinations of parameters is
conducted to identify the best combination of parameters for the proposed simulated annealing procedure:

v = 0.950, 0.965, 0.970,

Li+er = 100,200, 300, 400, 500, 600, 1000,

K =0.1,0.2,0.3,0.4,0.5.

From the results of the pilot study, we observe that setting v = 0.970, I;z.,, = 500, and K = 0.3 gave the
best results. Therefore, these parameter values are used for further computational studies. Other parameters
used in the experiment are: Ty = 1000, Tr = 1, and Nyon—improving = 100. Since Tor??™ = 1000 x 0.970%27 <
1 = Tp, the current temperature will fall below the final temperature after 227 temperature reductions.
Thus, all the experiments are terminated after 227 iterations, or when Xp.s; is not improved in 100 successive
reductions in temperature. Each numerical experiment is performed 10 times.

7.2 Computational Results

Table @ summarizes the computational results by the simulated annealing algorithm for the generated data
set. The meanings of the column headings are as follows: the first column gives the hub number value p;
column 2 presents the discount factor «; column 3 shows the different equilibrium level 5; the columns under
“Optimal” report the objective function value and the average CPU time requirement in seconds. Table 0
provides strong evidence that the proposed solution approach can solve the instances in a reasonable amount
of time. These results serve as a useful reference for the decision makers in designing the H&S network
topography.
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Table 1: Results from simulated annealing algorithm

P «a 153 Optimal
Objective value CPU(sec)
2 0.2 0.85 109.064093 176
0.90 110.867878 327
0.95 113.958821 102
0.8 0.85 134.076156 115
0.90 137.372783 266
0.95 139.894049 171
3 0.2 0.85 87.438718 285
0.90 89.913589 181
0.95 92.1402508 137
0.8 0.85 129.518291 144
0.90 133.401290 162
0.95 136.607421 177

7.3 Sensitivity Analysis

In order to recognize the most significant parameter of the proposed model, we carry out sensitivity analysis
in this subsection. This study complements our analytical results and gives us additional managerial insights
and interpretations.

In order to extract some important managerial insights, the sensitivity of objective value with respect to
the equilibrium level § and the number of hubs p in the network are investigated in Figs. B and @, respectively.
Fig. B illustrates the impact of the equilibrium level on the objective value for the problem with @ = 0.2
and p = 3. It can be seen that the objective value increases as the equilibrium level increases. This is an
expected result because as the equilibrium level gets higher, the decision maker would choose a relatively
larger delivery time requirement to meet customers for the service-level guarantee. Fig. B demonstrates the
impact of varying p on the objective value for the problem with a = 0.2 and # = 0.85. As p increases, the
objective value is decreased. This can be explained as follows: by using a higher number of hubs, more flow
units benefit from economies of scales of hub-to-hub links to be transferred to their destination with lower
travel time. Therefore, with the method proposed in this paper, the decision maker can make better decisions.
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Figure 3: Objective value vs. equilibrium level
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8 Conclusions

In this paper, we have addressed a new type of H&S network design problem, where the travel times are
characterized by fuzzy random travel times with known possibility and probability distributions. The major
conclusions include the following several aspects:

(i) We developed a novel hybrid methodology to model the considered H&S network design problem and
described an equilibrium level by credibility and probability measure to determine the decision maker’s
ability to meet service time requirements.

(ii) We proposed a parametric decomposition method to reduce the equilibrium chance constraints to their
equivalent stochastic ones for normal fuzzy random travel times.

(iii) We adapted SAA method to probability constraint functions. Furthermore, we designed a simulated
annealing algorithm to solve the resulting SAA model.

(iv) We conducted some numerical experiments based on a generated data set. Computational results were
presented to better validate the performance of the proposed model and solution approach.
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