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Abstract

Proper design for engineering applications requires detailed information of the system-property distributions such
as temperature, velocity, density, etc., in the space and time domain. This information can be obtained by either
experimental measurement or mathematics simulation. Although experimental measurement is reliable, it needs a lot
of effort and time. Therefore, the mathematics simulation has become a more and more popular method. Frequently,
those engineering design problems deal with a set of partial differential equations, which are to be numerically solved
such as heat transfor, solid and fluid mechanics. When a physical problem is transformed into a deterministic partial
differential equation, we cannot usually be sure that this modeling is perfect. Also, the initial and boundary value may
not be known exactly. If the nature of errors is random, then instead of a deterministic problem, we get a random partial
differential equation with random initial and boundary values. But if the underlying structure is not probabilistic, e.g.
because of subjective choice then it may be appropriate to use fuzzy numbers instead of real random variables. As
a result, we get systems, which are described by fuzzy partial differential equations or inclusions. In this article, we
considered the fuzzy hyperbolic differential inclusions (fuzzy Darboux problem), introduced the concept of R-solution
and proved the existence of such a solution. Also the substantiation of a possibility of application of full averaging
method for hyperbolic differential inclusions with the fuzzy right-hand side with the small parameters is considered.
(©2017 World Academic Press, UK. All rights reserved.
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1 Introduction

In 1990 Aubin [6] and Baidosov [7} 8] introduced differential inclusions with the fuzzy right-hand side. Their approach
is based on usual differential inclusions. Hiillermeier [20, 21] introduced the concept of R-solution similarly how it has
been done in [33]. Later, the various properties of fuzzy solutions of differential inclusions, and their use in modeling
various natural science processes were considered (see [[1, 13} 14} [18} 19,126, 27]] and the references therein).

The averaging methods combined with the asymptotic representations (in Poincare sense) began to be applied as
the basic constructive tool for solving the complicated problems of analytical dynamics described by the differential
equations. After the systematic researches done by Krylov and Bogoliubov [25]], in 1930s, the averaging method
gradually became one of the classical methods in analyzing nonlinear oscillations (see [10,112, 3841 and the references
therein). In works Plotnikov et al. [35}136}|37]] the possibility of application of schemes of full and partial averaging for
fuzzy differential inclusions with a small parameter was proved.

Lately, Abdul Rahman and Ahmad [2], Arara et al. [3]], Bertone et al. [9]], Buckley and Feuring [11], Chen et
al. [14], Jafelice et al. [22], Long et al. [30], Mehmood and Akbar Azam [31]], Pirzada and Vakaskar [34], Rahman
and Ahmad [40] studied classical models of partial differential equations with uncertain parameters, considering the
parameters as fuzzy numbers. It was an obvious step in the mathematical modeling of physical processes. Study of
fuzzy partial differential equations means the generalization of partial differential equations in fuzzy sense. While doing
modelling of real situation in terms of partial differential equation, we see that the variables and parameters involved
in the equations are uncertain (in the sense that they are not completely known or inexact or imprecise). Many times
common initial or boundary condition of ambient temperature is a fuzzy condition since ambient temperature is prone
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to variation in a range. We express this impreciseness and uncertainties in terms of fuzzy numbers. So we come across
with fuzzy partial differential equations. Also obviously, these equations can be written in as fuzzy partial differential
inclusions.

In this work we consider fuzzy hyperbolic differential inclusions (fuzzy Darboux problem). The paper is organized
as follows. In Section 2, some basic definitions and results related to fuzzy calculus are presented. In Section 3, we
introduce the concept of fuzzy hyperbolic differential inclusions (fuzzy Darboux problem) and R-solution similarly
how it has been done in [36 138 149, 51]. Also, we establish conditions for the existence and uniqueness of R-solution
for fuzzy Darboux problem. In Section 4, we ground the possibility of application of full averaging method for fuzzy
Darboux problem. This result generalize the results of Vityuk [3851] for the ordinary hyperbolic differential inclusions
and Kiselevich [23]], Korenevskii [24] for the ordinary hyperbolic differential equations. Concluding remarks are given
in the final section of the paper.

2 Preliminaries

Let comp(R™)(conv(R™)) be a family of all nonempty (convex) compact subsets from the space R™ with the Hausdorff
metric

h(A,B) = min{B C S,(4), AC S,(B)},

where A, B € comp(R"™), Sy(A) is r-neighborhood of set A.

Let E™ be a family of all u : R™ — [0, 1] such that u satisfies the following conditions:

1) w is normal, i.e. there exists an xg € R™ such that u(xg) = 1;

2) u is fuzzy convex, i.e. u (Ax + (1 — A)y) > min {u(x), u(y)} forany x,y € R and 0 < A < 1;

3) w is upper semicontinuous, i.e. for any o € R™ and ¢ > 0 where exists d(zg, ) > 0 such that u(z) < u(zo) +¢
whenever || z — ¢ ||< 0(zo,€), ©z € R™;

4) the closure of the set {z € R"™ : u(x) > 0} is compact.

If u € E™, then u is called a fuzzy number, and E” is said to be a fuzzy number space.

Definition 2.1. The set {x € R™ : u(z) > «a} is called the a-level [u]* of a fuzzy number v € E™ for0 < o < 1.
The closure of the set {x € R" : u(x) > 0} is called the 0-level [u]° of a fuzzy number u € E™.

It is clearly that the set [u]® € conv (R") forall 0 < o < 1.

Theorem 2.1. [Stacking Theorem [32]] If u € E™ then

1) [u]® € conv(R™) forall a € [0,1];

2) [u]*2 C [u]* forall0 < a3 < ag <1

3) if {ay } is a nondecreasing sequence converging to « > 0, then [u]* = [ [u]**.

E>1

Conversely, if { A, : « € [0, 1]} is the family of subsets of R" satisfying conditions 1) - 3) then there exists u € E"

such that [u]* = A, forO0 < a<land [u]'= |J A, C Ao.
0<a<l

Let 6 be the fuzzy number defined by 6 (z) = 0if  # 0 and 6 (0) =
Define D : E"™ x E™ — [0, 00) by the relation

D(u,v) = sup h([u]®,[v]").

0<a<1

Then D is a metric in £". Further we know that [39]:

i) (E™, D) is a complete metric space,

i) D (v +w,v +w) = D (u,v) for all u,v,w € E",

iii) D (Au, Av) = |A| D (u, v) for all u,v € E™ and X € R.

3 Fuzzy Hyperbolic Differential Inclusion R-solution

Consider the fuzzy hyperbolic differential inclusion (or in other words, fuzzy Darboux problem)

Uy (7, y) € F(2,y,u(,y)),
u(z,0) = ¢(x), = €[0,a], 1)
u(0,y) = ¥(y), y € [0,0],

¢(0) = 4(0),
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where u € R™, ugy(x,y) = %&7’)7 F:[0,a] X [0,b] x R™ — E™ ¢ :[0,a] = R™, % :[0,b] — R".

We interpret fuzzy Darboux problem (I)) as a family of set-valued Darboux problems
ugy (2, y) € [F(z,y,u®(z,y))]% (2a)
u®(z,0) = p(z), = €[0,a], (2b)
u®(0,y) = ¥(y), y €[0,0], (20)
¢(0) = ¥(0), € [0,1]. (2d)

Qualitative properties and structure of the set of solutions of the set-valued Darboux problem have been studied
by many authors, for instance De Blasi et al. [15} 16, [17], Cernea [13], Lazar [28]], Vityuk [38] 48 49| [50} 51} I52]],
Staicu [43]], Teodoru [44, 145|146, 147], etc.

Definition 3.1. [29] 42] A function u: [0,a] x [0,b] — R™ is said to be absolutely continuous on [0,a] x [0, ]
(u(+,-) € AC(]0,a] x [0,b])) if there exist absolutely continuous functions ¢: [0,a] — R™ and ¢: [0,b] — R™ and
Lebesgue integrable function g: [0, a] x [0,b] — R™ such that

u(z,y) = p(z) +P(y) —c+ g(§,)dsdg, u(0,0) = ¢(0) = ¥(0) = c.
/]

Definition 3.2. An a.—solution u®(-,-) of (1) is understood to be an absolutely continuous function u® : [0, a] x
[0,b] — R™ that satisfies for almost every (x,y) € [0, a] x [0, b] and the boundary conditions and for any
xz €[0,a] and y € [0, b].

Let U denote the a—solution set of (2) and U*(z,y) = { u®(z,y) : u*(-,-) € U*}. Clearly a family of subsets
U(z,y) = {U%x,y) : o € [0,1] } may not satisfy to conditions of Theorem 2.1, i.e. U(x,y) ¢ E™. For example,
U*(z,y) € comp(R™) and U*(z,y) & conv(R™) for any « € [0, 1].

Therefore, we introduce the definition of R-solutions for fuzzy Darboux problem (T).

Definition 3.3. The upper semicontinuous fuzzy mapping R : [0,a] x [0,b] — E™ that satisfies to the following
system

sup h{ [Rt+o,s+n)]*  |J  {v(t+0)+7(s + 1) —utonF(t,s,u)} | =olomn), ©)
ac0,1] u€[R(t,s)]
is called the R-solution of fuzzy Darboux problem (T), where

v(z) € AC(t,t+0),7(y) € AC(s,s +n),v(z) € [R(z,s)]*,x € [t,t + o],

T(y) € [R(t,9)]% vy € [s,s +n],v(t) = 7(s) = u, lim
0’*)0+ on
n—04
Now we are interested in the following question: Under what conditions, there exists a unique R-solution to (I). In
the next theorem we find the existence result for a unique R-solution of fuzzy Darboux problem (TJ).
Theorem 3.1. Suppose the following conditions hold:
1) fuzzy mapping F'(-, -, u) is continuous, for all u € R™;
2) there exists A > 0 such that D(F'(z,y,u'), F(z,y,u”)) < A||Jv/ — 7| for all w',u” € R™ and every (z,y) €
[0,a] x [0,b];
3) there exists v > 0 such that D(F(x,y,u),0) <+ forevery (z,y,u) € [0,a] x [0,b] x R™;
4)forall § € [0,1], v/,u” € R™ and every (z,y) € [0,a] x [0, D],

/BF(JT,%U/) + (1 —ﬁ)F(J],y,U”) - F(CU’% Bu/—i_ (1 _B)u”>a

5) functions ¢(-) and v (-) are absolutely continuous functions on [0, a] and [0, b].

Then there exists a unique R-solution R(-, -) of fuzzy Darboux problem (1)) defined on the set [0, a] x [0, b].

Proof. By [28] 48], every set-valued Darboux problem of family (2)) has solution u*(-, ) on the set [0, a] x [0, b],
ie. U*(z,y) # 0 for every (z,y) € [0,a] x [0,b] and « € [0, 1].

By [38| Theorem 4.1.2.6] and [49], U“(x,y) € comp(R™) for every (z,y) € [0,a] x [0,b] and & € [0, 1].



224 A.V. Plotnikov et al.: Full Averaging of Fuzzy Hyperbolic Differential Inclusions

By [38] Theorem 4.1.2.5] and [30], if u®(-,-) € U* then
T2 Y2
u®(z2,y2) — u(x2,y1) — u* (@1, y2) + u(x1,y1) € [F'(2,y,u® (z,y))]"dydz
1 Y1

for every [x1, 2] X [y1,y2] C [0,a] x [0,b].
Consider any solutions uf'(-, ), u3(+,-) € U and any 8 € [0, 1]. Let u3(-, -) be such that
ug(z,y) = Bui(z,y) + (1 = B)us (z,y)

for every (z,y) € [0, a] x [0,b].

Then
ug(z2,y2) — uf (v, y1) — uf (w1, y2) + ug(x1,y1)
= Buf (z2,y2) — puf (z2,y1) — Bui(z1,92) + Bui (1, y1)
+(1 = B)ug (w2,y2) — (1 = B)ug (w2,y1) — (1 — Bug (w1, y2) + (1 — B)ug (w1, 1)
T2 Y2 T2 Y2
e [ [y us@odyde + (1= 5) [ [1FGpsw0)dyds
T1 Y1 T1 Y1
T2 Y2 T2 Y2
< [ [ire st + 0 - 9usp)dyds = [ [1F 0o dyds,
Tr1 Y1 T1 Y1
ie. uf(za, y2) —uf (w2, y1) —uf (w1, y2) +ug(x1,91) € T?[F(m,y,ug(%y))]adydm for every (z,y) € [0,a] x [0, b]
and 5 € [0,1]. 1y1

By [38| Theorem 4.1.2.5] and [S0], u§ (z,y) € U*(x,y) forevery (x,y) € [0,a] x[0,b],i.e. U%(z,y) € conv(R")
for every (z,y) € [0,a] x [0,b] and « € [0, 1].

Since, [F(z,y,u)]*? C [F(z,y,u)]* forall 0 < a1 < ag < 1 and (z,y,u) € [0,a] x [0,b] x R™, then
U2 (z,y) CU*(z,y) forall 0 < a; < ap < 1and (z,y) € [0,a] x [0,D].

By [49.51]], every Darboux problem of family (2)) has one R-solution R“(-,-) on the set [0, a] x [0, ] and we have
R¥(x,y) = U%(x,y) forevery o € [0,1] and (x,y) € [0, a] x [0, b].

By [20] 52]], we get that a family of subsets R(z,y) = { R*(z,y) : « € [0,1] } satisfies to conditions of Theo-
rem 2.1, i.e. R(x,y) € E™ for every (z,y) € [0, a] x [0,b]. This concludes the proof.

4 The Method of Full Averaging

Now consider fuzzy Darboux problem with the small parameters

umy(xay) € 5152F(x,y,u(:v,y)),
’LL(LC,O) = SD(:E)? T e R+v (4)
U(O,y) = 1/J(y)7 yE€ Ry,
©(0) = ¥(0),

where g1 > 0, £2 > 0 - small parameters, R4 = [0, +00).
In this work, we associate with the problem (@) the following full averaged fuzzy Darboux problem

Za:y($7y) € 5152G(Z(1'7y)),
z(x,0) = p(z), x € Ry,

5
Z(an):w(y)7 yER-l-a ( )
©(0) = (0,
where G : R™ — E™ such that
1 Ty To
T}linooD T //F(x,y, z)dydz,G(z) | =0. (6)

To—o0 0 0



Journal of Uncertain Systems, Vol.11, No.3, pp.221-229, 2017 225

The main theorem of this section is on averaging for fuzzy Darboux problem with the small parameters. It establishes
nearness of R-solutions of (@) and (3)), and reads as follows.

Theorem 4.1. Let in the domain Q = {(z,y,u) : « € Ry,y € Ry, u € B C R™} the following conditions
hold:

1) fuzzy mapping F'(-, -, u) is continuous on Ry X Ry;

2) fuzzy mapping F'(z,y, ) satisfied a Lipschitz condition D(F(z,y,u’), F(z,y,u”)) < M|’ —u”|, with a
Lipschitz constant \ > 0;

3) there exists v > 0 such that D(F(x,y,u),8) < ~ for every (z,y) € Ry X R4 and every u € R™;

4)forall 3 € [0,1], v/,u” € R™ and every (z,y) € Ry X Ry,

BE(z,y,u')+ (1= B) Fz,y,u") C Fz,y, u’ + (1= B)u");

5) limit (6) exists uniformly with respect to u in the domain B;

6) functions ¢(+) and ¢ (-) are absolutely continuous functions on R and ¢(z) € B’, ¢(y) € B’ forall z,y € R4,
where B’ 4+ 5,(0) C B;

7) the R-solution of the Darboux problem

ualcy($7y) 65152[ (33 Yy, u 1(I,y))]
u'(z,0) = p(x), z € [0,00),
u(0,y) = ¥(y), y € [0,00),

©(0) = 1(0),

together with a p—neighborhood belong to the domain B for £1, &5 € (0, £].
Then for any n € (0, p] and L > 0 there exists o(n, L) € (0,&] such that for all £1,e5 € (0,e0] and (z,y) €
[0, Le; ] x [0, Ley '] the following inequality holds

D(R(z,y), R(x,y)) <n @)

where R(-,-), R(,-) are the R-solutions of initial and full averaged Darboux problems.
Proof. By theorem 3.1, we have unit R-solution of Darboux problem @) on Ry x R.
By condition 2)-5) of theorem, we obtain

T1 Tg Tl T2

1 1
F ! D F 2 2
)’T1T2// (z,y,u )dydx | + Tsz// (z,y,u")dydz, G(u®)
0 0 00

D(G(uY),G(v?) < D | G(u!

1 T1T2 1 Tl T2
F Ydydz, —— F 2 dyd
Tsz// (z,y,u")dy I’T1T2// (z,y,u”)dydx
0 0 0 0

<2u(Ty,To) + A Hul - u2||

+D

)

T1 TQ Tl T2
1 1
D <D — F ! D F
(G).0) <D (G, [ [Fapuyds | +0 | 70 [ [ Flayudys,o
0 0 00
N(T17T2)+’V»
T Ty T2
1 P —
BG(u!) + (1 HG(u?) = BT}gnooTlTQ / / (it + (1) i / / (2, 9, u?)dydz
T1 T2
_ 2
= Jim T // BE(z,y,u”) + (1 = B)F(x,y,u”)dydx
Ty —00
T1 T2
C lim / / (2, y, Bul + (1 — Bu)dyde = G(Bu + (1 — B)u?),
T1~>oo T1 2
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where (z,y) € Ry x Ry, u, ut, u? € B, 3 €10,1], Tlim w(Ty, Ty) = 0, i.e. fuzzy mapping G(-) satisfied conditions
1—>00

T2 — 00
2)-4) of theorem. By theorem 3.1, we have unit R-solution of Darboux problem (3) on R, x R..

Let 6, = Ley !, 6y = Lej b,
5 5
K" = {(xi,yj) Cai=ih,y; =l i, j=0,1,2,..n, h=—, | = 2},

I;'Z = [zi,Ziy1] X [Yj, Y1) and K = [0, Le; '] x [0, Le; ']. We denote fuzzy mappings P (-, -) and Q™ (-, -) such
that

[P (x,y)]* = U {vij(z) + 735 (y) —u+erea(z — @) (y — yj) [F(@i, y;,w)]"
u€[Pm(z,y;5)]®

Q" (z,y)]* = U {vi(@) + 75 (y) — 2 +ere2(2 — 2:)(y — y;)[G(2)]" }
2€[Q™ (z4,y;)]*

P"(z,0) = Q"(,0) = p(x), P"(0,y) = Q"(0,y) = ¥(y),

where v;;(z) € AC (i, zit1), 715 (y) € AC(y;, Y1), vij(x) € [P™(z,y;)]% @ € [25, w1, 7i5(y) € [P (2, 9)]%,
Yy € W, yivrl vij(@i) = 7i;(y;) = w, 0i5(z) € AC(2i, Tit1), Tij (y) € AC(yj,yj+1), vij(x) € [Q"(x,y;)]%,
v € |14, 2iq1], Tij (y) € [Q" (i, ¥)|% ¥ € (Y5, Yjr1], Vi () = Tij(y;) =

By [51], it follows that the sequences {[P™(-,-)]*}52 4, and {[Q" (-, )] }°°_1 are equicontinuous and fundamental
and their limits are a—levels of R-solutions [R(, -)]* and [R(-,-)]* of the problems (@) and (5).

Consequently, the sequences {P"(,-)}%; and {Q"(-,-)}5°; meet by R(-,-) and R(-,-).

By [51]], for any 777 > 0 there exists 0 < ¢ < & such that

AP )", Q" (1)) < mA~ exp(AL2), ®
ARG [P )™) < 214 exp(AL2)), ©
M(Q" ()" (Bl )") < 51221 4 exp(a2) (10

forany a € [0, 1], (z,y) € K and &1,¢5 € (0, &g]-
Combining (8), (9) and (10), choosing

- 9yL?(1 + exp(AL?))
n 3exp(AL2)’

we obtain
D(R(z,y), R(z,y)) < D(R(z,y), P"(x,y)) + D(P"(z,y), Q" (z,y)) + D(Q"(z,y), R(z,y))

= sup A([R(z,y)]*, [P"(z,y)]") + sup A([P"(z,y)]%, [Q" (z,y)]")
ael0,1] ael0,1]

+ sup A([Q™(z,y)]*, [R(z,y)]*)

a€l0,1]

The theorem is proved.
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5 Conclusion

We conclude with a few remarks:

Remark 5.1. In this work, we considered the fuzzy differential inclusion, when fuzzy mapping F'(-, -, u) is continu-
ous on [0, a] x [0, b]. If F(-, -, u) is measurable on [0, a] x [0, b] then instead of the equation (1)) it is possible to consider
the following more simple equation

t+os+n
sup h([R(t + 0,5+ )", | v(t+0)+7(8+n)—U+/ /[F@,c,u)]adgdg —o(om),

agl0,1] u€[R(t,s)]* s

and similarly we can prove all results received earlier.
Remark 5.2. If the limit () does not exist but there is a limit

1 T [ Ts
lim sup D ( / / F(z,y,z)dydx, G(z)> =0 (11)
o Jo

T, — o0 hLT
Ty — oo
or limit
1 T Ty
lim inf D / / F(z,y,z)dydz,G(z) | =0, (12)
Ty — oo NIz Jo Jo
T2 — OO

it will be the condition R(z,y) C R(z,y) + S,(0) or the condition R(x,y) C R(z,y) + S,(0) for all (z,y) €
[0, Le; ] x [0, Ley ] respectively.

Remark 5.3. If the condition 4) of Theorem 4.1 is not true, then the R-solutions can not exist. But there are valid
the following conditions:

1) for any a-solution u®(-, -) of inclusion (4)) there exists a a-solution z%(+, -) of inclusion (5 such that

[u (2, y) = 2% (2, y)ll <n

for all (x,y) € [0, Le; ] x [0, Le; Y] and o € [0, 1];
2) for any a-solution 2*(-, -) of inclusion (5) there exists a a-solution u®(-, ) of inclusion (@) such that

[u (2, y) — 2% (2, 9)ll <n

for all (x,y) € [0, Le; '] x [0, Le; '] and o € [0, 1].
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