Entropy of Dynamical Systems from the Observer’s Viewpoint, with Countable σ-algebras

Mohammad Hosein Asadian1, Abolfazl Ebrahimzadeh2,

1Department of Mathematics, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
2Young Researchers and Elite Club, Zahedan Branch, Islamic Azad University, Zahedan, Iran

Received 3 June 2016; Revised 1 November 2016

Abstract

In this paper, we introduce the notion of relative probability measure spaces by the concept of observer. The notions of relative entropy and relative conditional entropy of countable σ-algebras are defined and studied. Using the suggested concept of relative entropy we define the relative entropy of a dynamical system and we prove some of its ergodic properties. Finally it is proved that, the relative entropy of dynamical systems is invariant under conjugate relation.

©2017 World Academic Press, UK. All rights reserved.

Keywords: observer, countable relative σ-algebra, relative measure space, atom, relative entropy

1 Introduction

The study of the concept entropy is very important in sciences nowadays. Entropy plays an important role in a variety of problem areas, including physics, computer science, general systems theory, information theory, statistics, biology, chemistry, sociology and others. One of the applied branches of mathematics is the entropy of a dynamical system. The notion of observer has been applied in dynamical systems, topology, information theory and mathematical physics$^1, 2, 3, 4, 5, 6, 7$.

Klement in8 studied the notions of fuzzy σ-algebra and F-probability measure space. Khare defined and studied the notions of entropy and conditional entropy of finite fuzzy σ-algebras$^9, 10$. The notions of entropy and conditional entropy of infinite fuzzy σ-algebras are defined and studied in11. In the present paper, we define the notions of relative σ-algebra and relative probability measure space by using an observer and then we define the notions of entropy and conditional entropy of infinite relative σ-algebras. We prove some ergodic properties about them. After that we define relative measure preserving transformation and consider it as a relative dynamical system. Using the suggested concept of relative entropy, we define the relative entropy of a dynamical system and prove some theorems about the measure. It is noted that some investigations concerning entropy of dynamical systems and related notions in the above setup were carried in$^12, 13, 14, 15, 16$.

The paper is organized as follows. In the next section, we define the notions of relative σ-algebra, relative probability measure space and relative measure preserving transformation. In section 3, the entropy and conditional entropy of infinite relative σ-algebras are defined and basic properties of these measures are proved. In section 4, using the suggested concept of entropy of infinite relative σ-algebras, we define the entropy of a relative dynamical system. Finally, it is shown that conjugate dynamical systems have the same relative entropy. Our results are summarized in the final section.

2 Relative Measure Spaces

In this section, we define the notion of relative σ-algebra by using an observer and then we define the notion of relative probability measure space. Also, we define the notion of relative measure preserving transformation.

*Corresponding author.
Emails: m.asadian@iauba.ac.ir (M.H. Asadian), abolfazl35@yahoo.com (A. Ebrahimzadeh).
Let \(X \) be a non-empty set and an observer be a fuzzy set \(\eta : X \rightarrow [0, 1] \).

Definition 2.1 A \(\sigma \)-algebra from the point of view \(\eta \), is a collection \(\Sigma_\eta \) of subsets of \(\eta \) (\(\lambda \subseteq \eta \) i.e \(\forall x \in X \), \(\lambda(x) \leq \eta(x) \)) such that:

(i) \(\eta \in \Sigma_\eta \);
(ii) If \(\lambda \in \Sigma_\eta \) then \(\eta - \lambda \in \Sigma_\eta \);
(iii) If \(\{\lambda_i\}_{i=1}^\infty \subseteq \Sigma_\eta \) then \(\bigvee_{i=1}^\infty \lambda_i = \sup_i \lambda_i \in \Sigma_\eta \).

Note that if \(\eta = 1 \), then the \(\sigma \)-algebra from the point of view \(\eta = 1 \) is the fuzzy \(\sigma \)-algebra [13].

Example 2.2 Let \(X = [-1, 1] \) and \(\eta : X \rightarrow [0, \frac{1}{2}] \) defined by \(\eta(x) = \frac{1}{2} \) for every \(x \in [-1, 1] \). Then \(\Sigma_\eta = \{\lambda_j : j \in \mathbb{N}\} \cup \{\mu_k : k = 2, 3, \ldots\} \) is a \(\sigma \)-algebra from the point of view \(\eta \), where \(\lambda_j : [-1, 1] \rightarrow [0, 1/2] \) by \(\lambda_j(x) = 1/2^j \) and \(\mu_k : [-1, 1] \rightarrow [0, 1/2] \) by \(\mu_k(x) = (2^{k-1} - 1)/2^k \). Let us check the properties of \(\Sigma_\eta \).

(i) \(\eta = \lambda_1 \in \Sigma_\eta \);
(ii) For every \(j \in \mathbb{N} \), \(\eta = \lambda_j = \sum \mu_j = \lambda_j \in \Sigma_\eta \);
(iii) Let \(\{\gamma_i\}_{i=1}^\infty \subseteq \Sigma_\eta \). Since the sequences \(\{\lambda_j : j \in \mathbb{N}\} \) and \(\{\mu_k\}_{k=2}^\infty \) are monotone, we get \(\sup_i \gamma_i : i \in \Sigma_\eta \).

Definition 2.3 A function \(m : \Sigma_\eta \rightarrow [0, 1] \) is called \(\eta \)-relative probability measure when,

(i) \(m(\eta) = \sup_x \eta(x) \);
(ii) \(m(\eta - \lambda) = m(\eta) - m(\lambda) \) for every \(\lambda \in \Sigma_\eta \);
(iii) \(m(\lambda \lor \mu) + m(\lambda \land \mu) = m(\lambda) + m(\mu) \) for every \(\lambda, \mu \in \Sigma_\eta \);
(iv) If \(\{\lambda_i\}_{i=1}^\infty \subseteq \Sigma_\eta \) and \(\lambda_i \uparrow \lambda \), then \(m(\lambda) = \sup_i m(\lambda_i) \).

Now we say that \((X, \Sigma_\eta, m)\) is a relative probability measure space and each element of \(\Sigma_\eta \) is a relative measurable set.

In Definition 2.3 you observe that the \(\eta = 1 \)-relative probability measure is the \(F \)-probability measure and \((X, \Sigma_1, m)\) is the \(F \)-probability measure space which were defined in [13].

Example 2.4 Let \(\Sigma_\eta \) be the relative \(\sigma \)-algebra defined in Example 2.3. Define \(m : \Sigma_\eta \rightarrow [0, 1/2] \) by \(m(\lambda_j) = 1/2^j \), \(m(\mu_k) = (2^{k-1} - 1)/2^k \). Also let \(\lor \) and \(\land \) mean respectively supremum and infimum. Then \((X, \Sigma_\eta, m)\) is a relative probability measure space. It is easy to see that the properties of Definition 2.3 hold.

Definition 2.5 Let \((X, \Sigma_\eta, m)\) be a relative probability measure space. For \(\lambda, \mu \in \Sigma_\eta \), the relation \(= (\text{mod } m) \) is defined by

\[\lambda = \mu \pmod{m} \iff m(\lambda) = m(\mu) = m(\lambda \lor \mu). \]

The relation \(= (\text{mod } m) \) is an equivalence relation on \(\Sigma_\eta \). The set of all equivalence classes induced by this relation is denoted by \(\Sigma_\eta^\equiv \), and \(\overline{\mu} \) denotes the equivalence class determined by \(\mu \). \(\lambda, \mu \in \Sigma_\eta \) is called \(m \)-disjoint if \(\lambda \land \mu = 0 \pmod{m} \), i.e. \(m(\lambda \land \mu) = 0 \).

Definition 2.6 Let \((X, \Sigma_\eta, m)\) be a relative probability measure space and let \(N \) be a relative sub-\(\sigma \)-algebra of \(\Sigma_\eta \). An element \(\overline{\nu} \in \overline{N} \) is called an atom of \(N \) if \(m(\nu) > 0 \) and, for any \(\bar{\lambda} \in \overline{N} \),

\[m(\lambda \land \mu) = m(\lambda) \neq m(\mu) \implies m(\lambda) = 0. \]

The set of all atoms of \(N \) is denoted by \(\overline{N} \), and \(F(\Sigma_\eta) \) denote the collection of relative sub-\(\sigma \)-algebras of \(\Sigma_\eta \) with countably many atoms.

Definition 2.7 Let \((X_1, M_1, m_1)\) and \((X_2, M_2, m_2)\) be \(\eta \)-relative probability measure spaces. We say \(T : X_1 \rightarrow X_2 \) is a \((\eta, \eta)\) relative measure preserving transformation when:

(i) \(T^{-1}(\mu) \land \eta \in M_1 \), for every \(\mu \in M_2 \) where \((T^{-1}(\mu))(x) = \mu(T(x)) \);
(ii) \(m_1(T^{-1}(\mu) \land \eta) = m_2(\mu) \) for all \(\mu \in M_2 \).

Theorem 2.8 Let \(T : X \rightarrow X \) be a \((\eta, \eta)\) relative measure preserving transformation, and let \(N \in F(\Sigma_\eta) \). Then \(T^{-1}N \in F(\Sigma_{\eta,T^{-1}}) \), where

\[T^{-1}N = \{\eta \land T^{-1} \mu : \mu \in \overline{N}\}. \]
Proof. It is necessary to check the axioms of Definition 2.1 for $T^{-1} \mathcal{N}$. Since $\eta \in \mathcal{N}$, we have $\eta \wedge T^{-1} \eta \in T^{-1} \mathcal{N}$. Let $\eta \wedge T^{-1} \mu \in T^{-1} \mathcal{N}$, $\mu \in \mathcal{N}$ implies that $\eta - \mu \in \mathcal{N}$. So $(\eta \wedge T^{-1} \eta) - (\eta \wedge T^{-1} \mu) = \eta \wedge T^{-1} (\eta - \mu) \in T^{-1} \mathcal{N}$. Now let $\{\eta \wedge T^{-1} \mu_i\}_{i=1}^{\infty} \subseteq T^{-1} \mathcal{N}$. Since $\mathcal{N} \in \mathcal{F}(\Sigma_{\eta})$, we can write
\[
\bigvee_{i=1}^{\infty} (\eta \wedge T^{-1} \mu_i) = \eta \wedge \bigvee_{i=1}^{\infty} T^{-1} \mu_i = \eta \wedge T^{-1} \left(\bigvee_{i=1}^{\infty} \mu_i \right) \in T^{-1} \mathcal{N}.
\]

Note that $m_{\eta}(\eta \wedge T^{-1}(\mu)) = m(\mu) > 0$ for all $\mu \in \mathcal{N}$ because T is a (η, η) relative measure preserving transformation.

Definition 2.9 Let (X, M, m) be a η-relative probability measure space. We say $T : X \rightarrow X$ is relative ergodic if for every atom $\mu \in \mathcal{M}$ with $(T^{-1}\mu) \wedge \eta = \mu$ we deduce that $m(\mu) = 0$ or $m_{\eta}(\mu) = m(\eta)$. Then m is called T-relative ergodic.

Theorem 2.10 Let Ω be the set of invariant relative probability measures on X (i.e $T^{-1}(\mu) \wedge \eta = \mu$ for every $T \in \Omega$). Also suppose that $m_1, m_2 \in \Omega$, $0 < \lambda < m(\eta)$ and $m = \lambda m_1 + (m(\eta) - \lambda)m_2$ imply that $m_1 = m_2$. Then m is relative ergodic.

Proof. Suppose m is not relative ergodic. So there exists $\mu \in \mathcal{M}$ such that $0 < m(\mu) < m(\eta)$ and $T^{-1}(\mu) \wedge \eta = \mu$. For every atom $\xi \in \mathcal{M}$ we have $\xi = (\xi \wedge \mu) \vee (\xi \wedge (\eta - \mu))$.

Now we can write
\[
m(\xi) = m((\xi \wedge \mu) \vee (\xi \wedge (\eta - \mu))) = m(\mu)\left(\frac{m(\xi \wedge \mu)}{m(\mu)}\right) + m(\eta - \mu)\left(\frac{m(\xi \wedge (\eta - \mu))}{m(\eta - \mu)}\right)
\]
\[
= \lambda m_1(\xi) + (m(\eta) - \lambda)m_2(\xi),
\]
where $\lambda = m(\mu)$, $m_1(\xi) = m(\xi \wedge \mu)/m(\mu)$ and $m_2(\xi) = m(\xi \wedge (\eta - \mu))/m(\eta - \mu)$. This implies that $m(\lambda \wedge \mu) = m(\mu)$.

In the remainder of this paper, M is a countable η-relative σ-algebra and $\mathcal{F}_\eta(M)$ is the set of all η-relative sub σ-algebras of M with countably many atoms.

Definition 2.11 Let M be a η-relative σ-algebra and $N_1, N_2 \in \mathcal{F}_\eta(M)$ such that $\{\lambda_i : i \in \mathbb{N}\}$ and $\{\mu_j : j \in \mathbb{N}\}$ be the atoms of N_1, N_2, respectively. Then their join is defined by $N_1 \vee N_2 = \{\lambda_i \wedge \mu_j : m(\lambda_i \wedge \mu_j) > 0, i, j \in \mathbb{N}\}$.

Definition 2.12 Let (X, M, m) be a η-relative probability measure space and $N_1, N_2 \in \mathcal{F}_\eta(M)$. Then N_2 is called an m-refinement of N_1 and denoted by $N_1 \leq_m N_2$, if for every $\mu \in \mathcal{N}_2$, there exists $\lambda \in \mathcal{N}_1$ such that $m(\lambda \wedge \mu) = m(\mu)$.

3 Relative Entropy of σ-Algebras

In this section we define the notions of relative entropy and relative conditional entropy of relative σ-algebras and we prove some ergodic properties about them.

Definition 3.1 Let (X, M, m) be a η-relative probability measure space and $N \in \mathcal{F}_\eta(M)$. The relative entropy of N is defined by:
\[
H_\eta(N) = -\log \sup_{\mu_i \in \mathcal{N}} m(\mu_i).
\]

Theorem 3.2 Let $T : X \rightarrow X$ be a (η, η) relative measure preserving transformation of relative probability space (X, M, m). If $N \in \mathcal{F}_\eta(M)$, then $H_\eta(T^{-1}N) = H_\eta(N)$.
Proof. Suppose \(\tilde{N} = \{\mu_i : i \in \mathbb{N}\}. \) Since \(T \) is a \((\eta, \eta)\) relative measure preserving transformation, we have for each \(i \in \mathbb{N}, \)

\[
m_\eta(\eta \land T^{-1}\mu_i) = m(\mu_i).
\]

But \(T^{-1}N = \{\eta \land T^{-1}\mu_i : \mu_i \in N\}, \) thus

\[
H_\eta(T^{-1}N) = -\log \sup_i m(\eta \land T^{-1}\mu_i) = -\log \sup_i m(\mu_i) = H_\eta(N).
\]

Definition 3.3 Let \((X, M, m)\) be a \(\eta\)-relative probability measure space and \(N_1, N_2 \in F_\eta(M).\) Also let \(\tilde{N}_1 = \{\mu_i : i \in \mathbb{N}\}, \tilde{N}_2 = \{\lambda_j : j \in \mathbb{N}\}. \) The conditional relative entropy of \(N_1\) given \(N_2\) is defined by:

\[
H_\eta(N_1|N_2) = -\log \frac{\sup_i m(\mu_i \land \lambda_j)}{\sup_j m(\lambda_j)}.
\]

Example 3.4 Let \(\Sigma_\eta\) be the relative \(\sigma\)-algebra and \(m\) be the \(\eta\)-relative probability measure defined in Examples \(\ref{Example:3.4a} \) and \(\ref{Example:3.4b}.\) Suppose \(N_1 = \{\lambda_j : j \in \mathbb{N}\}\) and \(N_2 = \{\mu_k : k \in \mathbb{N}\}. \) Then \(F(\Sigma_\eta) = N_1 \cup N_2.\) Therefore

\[
H_\eta(N_1) = -\log \sup_{\lambda_j \in N_1} m(\lambda_j)
\]

\[
= -\log \sup_{\lambda_j \in N_1} \left(\frac{1}{2}\right)
\]

\[
= -\log \left(\frac{1}{2}\right) = \log 2,
\]

also,

\[
H_\eta(N_2) = -\log \sup_{\mu_k \in N_2} m(\mu_k)
\]

\[
= -\log \sup_{\mu_k \in N_2} \left(\frac{2^{k-1} - 1}{2^k}\right)
\]

\[
= -\log \sup_{\mu_k \in N_2} \left(\frac{1}{2} - \frac{1}{2^k}\right)
\]

\[
= -\log \left(\frac{1}{2}\right) = \log 2,
\]

and,

\[
H_\eta(N_2|N_1) = -\log \frac{\sup_{\lambda_j} m(\mu_k \land \lambda_j)}{\sup_{\lambda_j} m(\lambda_j)}
\]

\[
= -\log \left(\frac{\frac{1}{2}}{\frac{1}{2}}\right) = 0.
\]

Theorem 3.5 Let \(T : X \rightarrow X\) be a \((\eta, \eta)\) relative measure preserving transformation of the relative probability space \((X, M, m).\) Also let \(N_1, N_2 \in F_\eta(M).\) Then

\[
H_\eta(T^{-1}N_1|T^{-1}N_2)) = H_\eta(N_1|N_2).
\]

Proof. Suppose \(\tilde{N}_1 = \{\mu_i : i \in \mathbb{N}\}\) and \(\tilde{N}_2 = \{\lambda_j : j \in \mathbb{N}\}. \) Since \(T\) is a \((\eta, \eta)\) relative measure preserving transformation and \(T^{-1}\tilde{N}_1 = \{\eta \land T^{-1}\mu_i : \mu_i \in \tilde{N}_1\}, T^{-1}\tilde{N}_2 = \{\eta \land T^{-1}\lambda_j : \lambda_j \in \tilde{N}_2\}, \) we have

\[
H_\eta(T^{-1}N_1|T^{-1}N_2)) = -\log \frac{\sup_{i,j} m((\eta \land T^{-1}\mu_i) \land (\eta \land T^{-1}\lambda_j))}{\sup_{j} m(\eta \land T^{-1}\lambda_j)}
\]

\[
= -\log \frac{\sup_{i,j} m(\eta \land T^{-1}\lambda_j)}{\sup_{j} m(\eta \land T^{-1}\lambda_j)}
\]

\[
= -\log \frac{\sup_{i,j} m(\mu_i \land \lambda_j)}{\sup_{j} m(\lambda_j)}
\]

\[
= H_\eta(N_1|N_2).
\]
Theorem 3.6 Let \((X, M, m)\) be a \(\eta\)-relative probability measure space and let \(N_1, N_2, N_3 \in F_\eta(M)\) with \(N_1 = \{\mu_i : i \in \mathbb{N}\}\), \(N_2 = \{\lambda_j : j \in \mathbb{N}\}\) and \(N_3 = \{\gamma_k : k \in \mathbb{N}\}\). Then

(i) \(\eta < 1\) iff \(H_\eta(N_1) > 0\);
(ii) \(H_\eta(N_1 \vee N_2) \geq H_\eta(N_1)\) and \(H_\eta(N_1 \vee N_2) \geq H_\eta(N_2)\);
(iii) If \(N_1\) and \(N_2\) are independent, then
\[
H_\eta(N_1 \vee N_2) = H_\eta(N_1) + H_\eta(N_2);
\]
(iv) \(H_\eta(N_1 \vee N_2) = H_\eta(N_2) + H_\eta(N_1|N_2)\);
(v) If \(N_1\) and \(N_2 \vee N_3\) are independent, then
\[
H_\eta(N_1 \vee N_2|N_3) = H_\eta(N_1) + H_\eta(N_2|N_3);
\]
(vi) If \(N_1 \leq m N_2\) then \(H_\eta(N_1) \leq H_\eta(N_2)\);
(vii) If \(N_1 \leq m N_2\) then \(H_\eta(N_1|N_3) \leq H_\eta(N_2|N_3)\).

Proof. (i) Obvious.
(ii) Since \(m(\mu_i) \geq m(\mu_i \wedge \lambda_j)\) for any \(i, j \in \mathbb{N}\), we have
\[
\sup_{i,j \in \mathbb{N}} m(\mu_i \wedge \lambda_j) \leq \sup_{i \in \mathbb{N}} m(\mu_i).
\]
So \(H_\eta(N_1 \vee N_2) \geq H_\eta(N_1)\). Similarly \(H_\eta(N_1 \vee N_2) \geq H_\eta(N_2)\).
(iii)
\[
H_\eta(N_1 \vee N_2) = -\log \sup_{i,j} m(\mu_i \wedge \lambda_j)
= -\log \sup_{i,j} m(\mu_i)m(\lambda_j)
= H_\eta(N_1) + H_\eta(N_2).
\]
(iv)
\[
\sup_{i,j} m(\mu_i \wedge \lambda_j) = \frac{\sup_{i,j} m(\mu_i \wedge \lambda_j)}{\sup_j m(\lambda_j)} \sup_j m(\lambda_j).
\]
Therefore
\[
H_\eta(N_1 \vee N_2) = -\log \sup_{i,j} m(\mu_i \wedge \lambda_j)
= -\log \frac{\sup_{i,j} m(\mu_i \wedge \lambda_j)}{\sup_j m(\lambda_j)} \log \sup_j m(\lambda_j)
= H_\eta(N_1|N_2) + H_\eta(N_2).
\]
(v) Since \(N_1\) and \(N_2 \vee N_3\) are independent, we have for each \(i,j,k \in \mathbb{N}\),
\[
m_\eta(\mu_i \wedge (\lambda_j \wedge \gamma_k)) = m(\mu_i)m(\lambda_j \wedge \gamma_k).
\]
So
\[
H_\eta(N_1 \vee N_2|N_3) = -\log \sup_{i,j,k \in \mathbb{N}} \frac{m(\mu_i \wedge \lambda_j \wedge \gamma_k)}{m(\gamma_k)}
= -\log \sup_{i,j,k \in \mathbb{N}} \frac{m(\mu_i)m(\lambda_j \wedge \gamma_k)}{m(\gamma_k)}
= -\log \sup_{i \in \mathbb{N}} m(\mu_i) \sup_{j,k \in \mathbb{N}} \frac{m(\lambda_j \wedge \gamma_k)}{m(\gamma_k)}
= -\log \sup_{i \in \mathbb{N}} m(\mu_i) - \log \sup_{j,k \in \mathbb{N}} \frac{m(\lambda_j \wedge \gamma_k)}{m(\gamma_k)}
= H_\eta(N_1) + H_\eta(N_2|N_3).
(vi) Obvious.
(vii) Since $N_1 \lor N_3 \leq m, N_2 \lor N_3$, by parts iv) and vi) we have

$$H_\eta(N_1|N_3) = H_\eta(N_1 \lor N_3) - H_\eta(N_3) \leq H_\eta(N_2 \lor N_3) - H_\eta(N_3) = H_\eta(N_2|N_3).$$

4 Relative Entropy of Dynamical Systems

In this section, using the suggested concept of relative entropy, we define the relative entropy of a dynamical system and prove some of its ergodic properties.

Definition 4.1 Let $T : X \to X$ be a relative (η, η) measure preserving transformation of (X, M, m) and let $N \in F_\eta(M)$ with $N = \{\mu_i : i \in N\}$. The relative entropy of T with respect to N is defined by:

$$h_\eta(T, N) = \limsup_{n \to \infty} \frac{1}{n} H_\eta(\vee_{i=0}^{n-1} T^{-i}N).$$

Theorem 4.2 If $T : X \to X$ is a relative measure preserving transformation of relative probability measure space (X, M, m) and $N_1, N_2 \in F_\eta(M)$ with the property in Definition 4.2, then

(i) $h_\eta(T, N) \leq H_\eta(N)$;
(ii) $N_1 \leq m, N_2$ implies that $h_\eta(T, N_1) \leq h_\eta(T, N_2)$;
(iii) $h_\eta(T, T^{-1}N) = h_\eta(T, N)$.

Proof. The assertions follow from Theorems 4.1 (vi) and 4.2.

Definition 4.3 Let $T : X \to X$ be a (η, η) relative measure preserving transformation of (X, M, m). The relative entropy of T is defined by:

$$h_\eta(T) = \sup_N h_\eta(T, N),$$

where the supremum is taken over all $N \in F_\eta(M)$ with the property in Definition 4.1.

Theorem 4.4 Let $T : X \to X$ be a (η, η) relative measure preserving transformation of relative probability space (X, M, m). Then

i) $h_\eta(id) = 0$;
ii) For $k \in N$, $h_\eta(T^k) = kh_\eta(T)$.

Proof. i) By the definition we have $\vee_{i=0}^{n-1} T^{-i}N = N$, for any $n \in N$. Therefore

$$h_\eta(id, N) = \limsup_{n \to \infty} \frac{1}{n} H_\eta(N) = 0.$$

ii) Let N be an arbitrary countable relative sub σ-algebra of M. We have

$$h_\eta(T^k, \vee_{i=0}^{n-1} T^{-i}N) = \limsup_{n \to \infty} \frac{1}{n} H_\eta(\vee_{j=0}^{n-1} (T^k)^{-j}(\vee_{i=0}^{n-1} (T^{-i}N)))$$

$$= \limsup_{n \to \infty} \frac{1}{n} H_\eta(\vee_{j=0}^{n-1} \vee_{i=0}^{k-1} T^{-(kj+i)}N)$$

$$= \limsup_{n \to \infty} \frac{1}{n} H_\eta(\vee_{i=0}^{nk-1} T^{-i}N)$$

$$= \limsup_{n \to \infty} \frac{nk}{n} \frac{1}{nk} H_\eta(\vee_{i=0}^{nk-1} T^{-i}N)$$

$$= kh_\eta(T, N).$$

Therefore

$$kh_\eta(T) = \sup_N h_\eta(T, N) = \sup_N h_\eta(T^k, \vee_{i=0}^{k-1} T^{-i}N) \leq \sup_N h_\eta(T^k, N) = h_\eta(T^k).$$
Since \(N \leq m \lor k \ll 1 \), we have
\[
h_\eta(T^k, N) \leq h_\eta(T^k, \lor_{i=0}^{k-1} T^{-i} N) = kh_\eta(T, N).
\]

Definition 4.5 Let \(T : X \to X \) and \(S : X \to X \) be two \((\eta, \eta)\) relative measure preserving transformations of \((X, M, m)\). We say that \(T \) and \(S \) are \(\eta \)-conjugate if there exists a bijective \((\eta, \eta)\) relative measure preserving transformation \(\varphi : X \to X \) such that \(\varphi o T = So \varphi \).

In the following theorem we prove that the relative entropy of relative dynamical systems is invariant under the relation of conjugate.

Theorem 4.6 If \(T : X \to X \) and \(S : X \to X \) are \(\eta \)-conjugate, then
\[
h_\eta(T) = h_\eta(S).
\]

Proof. By Definition 4.5, there exists a bijective \((\eta, \eta)\) relative measure preserving transformation \(\varphi : X \to X \) such that \(\varphi o T = So \varphi \). We can write
\[
h_\eta(S, N) = \lim sup_{n \to \infty} \frac{1}{n} H_\eta(\bigvee_{i=0}^{n-1} S^{-i} N)
\]
\[
= \lim sup_{n \to \infty} \frac{1}{n} H_\eta(\varphi^{-1}(\bigvee_{i=0}^{n-1} S^{-i} N))
\]
\[
= \lim sup_{n \to \infty} \frac{1}{n} H_\eta(\bigvee_{i=0}^{n-1} \varphi^{-1}(S^{-i} N))
\]
\[
= \lim sup_{n \to \infty} \frac{1}{n} H_\eta(\bigvee_{i=0}^{n-1} T^{-1}(\varphi^{-i} N))
\]
\[
= h_\eta(T, \varphi^{-1} N).
\]

So
\[
h_\eta(S) = \sup_{N} h_\eta(S, N)
\]
\[
= \sup_{N} h_\eta(T, \varphi^{-1} N)
\]
\[
\leq \sup_{N} h_\eta(T, N)
\]
\[
= h_\eta(T).
\]

Therefore \(h_\eta(S) \leq h_\eta(T) \). Similarly we obtain \(h_\eta(T) \leq h_\eta(S) \).

5 Conclusion

This contribution has defined the notions of relative \(\sigma \)-algebra, relative probability measure and relative probability measure spaces by the concept of observer. We defined entropy and conditional entropy of relative \(\sigma \)-algebras having countably many atoms. We proved some of their ergodic properties. Then, using the suggested concept of relative entropy of relative \(\sigma \)-algebras, the relative entropy of a dynamical system was defined. Finally, it was shown that isomorphic relative dynamical systems have the same relative entropy. Accordingly, this concept will be a new tool for distinction of non-isomorphic relative dynamical systems.

Acknowledgments

The authors thank the editor and the referees for their valuable comments and suggestions.
References

