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Abstract

In this paper, we introduce the notion of relative probability measure spaces by the concept of observer.
The notions of relative entropy and relative conditional entropy of countable σ-algebras are defined and
studied. Using the suggested concept of relative entropy we define the relative entropy of a dynamical
system and we prove some of its ergodic properties. Finally it is proved that, the relative entropy of
dynamical systems is invariant under conjugate relation.
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1 Introduction

The study of the concept entropy is very important in sciences nowadays. Entropy plays an important role in
a variety of problem areas, including physics, computer science, general systems theory, information theory,
statistics, biology, chemistry, sociology and others. One of the applied branches of mathematics is the entropy
of a dynamical system. The notion of observer has been applied in dynamical systems, topology, information
theory and mathematical physics [1, 6, 14, 15]. So the study of the concept of entropy of dynamical systems by
the notion of observer is very important. The entropy of a fuzzy process is defined and studied in [2, 3, 9, 17, 18].
Klement in [13] studied the notions of fuzzy σ-algebra and F -probability measure space. Khare defined and
studied the notions of entropy and conditional entropy of finite fuzzy σ-algebras [11, 12]. The notions of
entropy and conditional entropy of infinite fuzzy σ-algebras are defined and studied in [3]. In the present
paper, we define the notions of relative σ-algebra and relative probability measure space by using an observer
and then we define the notions of entropy and conditional entropy of infinite relative σ-algebras. We prove
some ergodic properties about them. After that we define relative measure preserving transformation and
consider it as a relative dynamical system. Using the suggested concept of relative entropy, we define the
relative entropy of a dynamical system and prove some theorems about the measure. It is noted that some
investigations concerning entropy of dynamical systems and related notions in the above setup were carried
in [4, 5, 7, 8, 10].

The paper is organized as follows. In the next section, we define the notions of relative σ-algebra, relative
probability measure space and relative measure preserving transformation. In section 3, the entropy and
conditional entropy of infinite relative σ-algebras are defined and basic properties of these measures are
proved. In section 4, using the suggested concept of entropy of infinite relative σ-algebras, we define the
entropy of a relative dynamical system. Finally, it is shown that conjugate dynamical systems have the same
relative entropy. Our results are summarized in the final section.

2 Relative Measure Spaces

In this section, we define the notion of relative σ-algebra by using an observer and then we define the notion of
relative probability measure space. Also, we define the notion of relative measure preserving transformation.
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Let X be a non-empty set and an observer be a fuzzy set η : X −→ [0, 1].

Definition 2.1 A σ-algebra from the point of view η, is a collection Ση of subsets of η, (λ ⊆ η i.e ∀x ∈ X,
λ(x) ≤ η(x)) such that:
(i) η ∈ Ση;
(ii) If λ ∈ Ση then η − λ ∈ Ση;
(iii) If {λi}∞i=1 ⊆ Ση then

∨∞
i=1 λi = supi λi ∈ Ση.

Note that if η = 1, then the σ-algebra from the point of view η = 1 is the fuzzy σ-algebra [13].

Example 2.2 Let X = [−1, 1] and η : X −→ [0, 1
2 ] defined by η(x) = 1

2 for every x ∈ [−1, 1]. Then∑
η = {λj : j ∈ N} ∪ {µk : k = 2, 3, ...} is a σ-algebra from the point of view η, where λj : [−1, 1] −→ [0, 1/2]

by λj(x) = 1/2j and µk : [−1, 1] −→ [0, 1/2] by µk(x) = (2k−1 − 1)/2k. Let us check the properties of
∑

η.
(i) η = λ1 ∈

∑
η;

(ii) For every j ∈ N, η − λj = µj ∈
∑

η and η − µj = λj ∈
∑

η;
(iii) Let {γi}∞i=1 ⊆ Ση. Since the sequences {λj : j ∈ N} and {µk}∞k=2 are monotone, we get supi{γi : i ∈
N} ∈ Ση.

Definition 2.3 A function m : Ση −→ [0, 1] is called η-relative probability measure when,
(i) m(η) = supx η(x);
(ii) m(η − λ) = m(η)−m(λ) for every λ ∈ Ση;
(iii) m(λ ∨ µ) +m(λ ∧ µ) = m(λ) +m(µ) for every λ, µ ∈ Ση;
(iv) If {λi}∞i=1 ⊆ Ση and λi ↑ λ, then m(λ) = supi m(λi).

Now we say that (X,Ση,m) is a relative probability measure space and each element of Ση is a relative
measurable set.

In Definition 2.3 you observe that the η = 1-relative probability measure is the F -probability measure and
(X,Σ1,m) is the F -probability measure space which were defined in [13].

Example 2.4 Let Ση be the relative σ-algebra defined in Example 2.2. Define m : Ση −→ [0, 1/2] by m(λj) =
1/2j, m(µk) = µk = (2k−1 − 1)/2k. Also let ∨ and ∧ mean respectively supremum and infimum. Then
(X,Ση,m) is a relative probability measure space. It is easy to see that the properties of Definition 2.3, hold.

Definition 2.5 Let (X,Ση,m) be a relative probability measure space. For λ, µ ∈ Ση, the relation = (mod m)
is defined by

λ = µ (mod m) ⇐⇒ m(λ) = m(µ) = m(λ ∨ µ).

The relation = (mod m) is an equivalence relation on Ση. The set of all equivalence classes induced by this

relation is denoted by Σ̃η, and µ̃ denotes the equivalence class determined by µ. λ, µ ∈ Ση is called m-disjoint
if λ ∧ µ = 0 (mod m), i.e. m(λ ∧ µ) = 0.

Definition 2.6 Let (X,Ση,m) be a relative probability measure space and let N be a relative sub-σ-algebra

of Σ̃η. An element µ̃ ∈ Ñ is called an atom of N if m(µ) > 0 and, for any λ̃ ∈ Ñ ,

m(λ ∧ µ) = m(λ) ̸= m(µ) =⇒ m(λ) = 0.

The set of all atoms of N is denoted by Ñ , and F (Ση) denote the collection of relative sub-σ-algebras of
Ση with countably many atoms.

Definition 2.7 Let (X1,M1,m1) and (X2,M2,m2) be η-relative probability measure spaces. We say T :
X1 −→ X2 is a (η, η) relative measure preserving transformation when:
(i) T−1(µ) ∧ η ∈ M1, for every µ ∈ M2 where (T−1(µ))(x) = µ(T (x));
(ii) m1(T

−1(µ) ∧ η) = m2(µ) for all µ ∈ M̃2.

Theorem 2.8 Let T : X −→ X be a (η, η) relative measure preserving transformation, and let N ∈ F (Ση).
Then T−1N ∈ F (Ση∧T−1η), where

˜T−1N = {η ∧ T−1µ : µ ∈ Ñ}.
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Proof. It is necessary to check the axioms of Definition 2.1 for T−1N . Since η ∈ Ñ , we have η∧T−1η ∈ ˜T−1N .
Let η∧T−1µ ∈ ˜T−1N . µ ∈ Ñ implies that η−µ ∈ Ñ . So (η∧T−1η)− (η∧T−1µ) = η∧T−1(η−µ) ∈ ˜T−1N .

Now let {η ∧ T−1µi}∞i=1 ⊆ ˜T−1N . Since N ∈ F (Ση), we can write

∞∨
i=1

(η ∧ T−1µi) = η ∧
∞∨
i=1

T−1µi = η ∧ T−1(

∞∨
i=1

µi) ∈ ˜T−1N.

Note that mη(η ∧ T−1(µ)) = m(µ) > 0 for all µ ∈ Ñ because T is a (η, η) relative measure preserving
transformation.

Definition 2.9 Let (X,M,m) be a η-relative probability measure space. We say T : X −→ X is relative
ergodic if for every atom µ ∈ M̃ with (T−1µ)∧ η = µ we deduce that m(µ) = 0 or mη(µ) = m(η). Then m is
called T -relative ergodic.

Theorem 2.10 Let Ω be the set of invariant relative probability measures on X (i.e T−1(µ)∧η = µ for every
T ∈ Ω). Also suppose that m1,m2 ∈ Ω, 0 < λ < m(η) and m = λm1 + (m(η) − λ)m2 imply that m1 = m2.
Then m is relative ergodic.

Proof. Suppose m is not relative ergodic. So there exists µ ∈ M̃ such that 0 < m(µ) < m(η) and T−1(µ)∧η =
µ. For every atom ξ ∈ M̃ we have

ξ = (ξ ∧ µ) ∨ (ξ ∧ (η − µ)).

Now we can write

m(ξ) = m((ξ ∧ µ) ∨ (ξ ∧ (η − µ))

= m(µ)(
m(ξ ∧ µ)

m(µ)
) +m(η − µ)(

m(ξ ∧ (η − µ))

m(η − µ)
)

= λm1(ξ) + (m(η)− λ)m2(ξ),

where λ = m(µ), m1(ξ) = m(ξ ∧ µ)/m(µ) and m2(ξ) = m(ξ ∧ (η − µ))/m(η − µ). This implies that
mη = λm1 + (m(η)− λ)m2.

In the remainder of this paper, M is a countable η-relative σ-algebra and Fη(M) is the set of all η-relative
sub σ-algebras of M with countably many atoms.

Definition 2.11 Let M be a η-relative σ-algebra and N1, N2 ∈ Fη(M) such that {λi : i ∈ N} and {µj : j ∈ N}
be the atoms of N1, N2, respectively. Then their join is defined by

N1

∨
N2 = {λi ∧ µj : m(λi ∧ µj) > 0, i, j ∈ N}.

Definition 2.12 Let (X,M,m) be a η-relative probability measure space and N1, N2 ∈ Fη(M). Then N2 is

called an m-refinement of N1 and denoted by N1 ≤m N2, if for every µ ∈ Ñ2, there exists λ ∈ Ñ1 such that
m(λ ∧ µ) = m(µ).

3 Relative Entropy of σ-Algebras

In this section we define the notions of relative entropy and relative conditional entropy of relative σ-algebras
and we prove some ergodic properties about them.

Definition 3.1 Let (X,M,m) be a η-relative probability measure space and N ∈ Fη(M). The relative entropy
of N is defined by:

Hη(N) = − log supµi∈Ñ m(µi).

Theorem 3.2 Let T : X −→ X be a (η, η) relative measure preserving transformation of relative probability
space (X,M,m). If N ∈ Fη(M), then

Hη(T
−1N) = Hη(N).
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Proof. Suppose Ñ = {µi : i ∈ N}. Since T is a (η, η) relative measure preserving transformation, we have for
each i ∈ N,

mη(η ∧ T−1µi) = m(µi).

But T−1N = {η ∧ T−1µi : µi ∈ N}, thus

Hη(T
−1N) = − log supi m(η ∧ T−1µi) = − log supi m(µi) = Hη(N).

Definition 3.3 Let (X,M,m) be a η-relative probability measure space and N1, N2 ∈ Fη(M). Also let Ñ1 =

{µi : i ∈ N}, Ñ2 = {λj : j ∈ N}. The conditional relative entropy of N1 given N2 is defined by:

Hη(N1|N2) = − log
supi,j m(µi∧λj)

supj m(λj)
.

Example 3.4 Let Ση be the relative σ-algebra and m be the η-relative probability measure defined in Examples
2.2 and 2.4. Suppose N1 = {λj : j ∈ N} and N2 = {µk : k ∈ N}. Then F (Ση) = N1 ∪N2. Therefore

Hη(N1) = − log sup
λj∈Ñ1

m(λj)

= − log sup
λj∈Ñ1

(
1

2j
)

= − log(
1

2
) = log 2,

also,

Hη(N2) = − log sup
µk∈Ñ2

m(µk)

= − log sup
µk∈Ñ2

(
2k−1 − 1

2k
)

= − log sup
µk∈Ñ2

(
1

2
− 1

2k
)

= − log(
1

2
) = log 2,

and,

Hη(N2|N1) = − log
supk,j m(µk ∧ λj)

supj m(λj)

= − log(
1
2
1
2

) = 0.

Theorem 3.5 Let T : X −→ X be a (η, η) relative measure preserving transformation of the relative proba-
bility space (X,M,m). Also let N1, N2 ∈ Fη(M). Then

Hη(T
−1N1|T−1N2)) = Hη(N1|N2).

Proof. Suppose Ñ1 = {µi : i ∈ N} and Ñ2 = {λj : j ∈ N}. Since T is a (η, η) relative measure preserving

transformation and T−1Ñ1 = {η ∧ T−1µi : µi ∈ Ñ1}, T−1Ñ2 = {η ∧ T−1λj : λj ∈ Ñ2}, we have

Hη(T
−1N1|T−1N2)) = − log

supi,j m((η ∧ T−1µi) ∧ (η ∧ T−1λj))

supj m(η ∧ T−1λj)

= − log
supi,j m(η ∧ T−1(µi ∧ λj))

supj m(η ∧ T−1λj)

= − log
supi,j m(µi ∧ λj)

supj m(λj)

= Hη(N1|N2).



Journal of Uncertain Systems, Vol.11, No.3, pp.197-204, 2017 201

Theorem 3.6 Let (X,M,m) be a η-relative probability measure space and let N1, N2, N3 ∈ Fη(M) with

Ñ1 = {µi : i ∈ N}, Ñ2 = {λj : j ∈ N} and Ñ3 = {γk : k ∈ N}. Then
(i) η < 1 iff Hη(N1) > 0;
(ii) Hη(N1 ∨N2) ≥ Hη(N1) and Hη(N1 ∨N2) ≥ Hη(N2);
(iii) If N1 and N2 are independent, then

Hη(N1 ∨N2) = Hη(N1) +HηN2);

(iv) Hη(N1 ∨N2) = Hη(N2) +Hη(N1|N2);
(v) If N1 and N2 ∨N3 are independent, then

Hη(N1 ∨N2|N3) = Hη(N1) +HηN2|N3);

(vi) If N1 ≤m N2 then Hη(N1) ≤ Hη(N2);
(vii) If N1 ≤m N2 then Hη(N1|N3) ≤ Hη(N2|N3).

Proof. (i) Obvious.
(ii) Since m(µi) ≥ m(µi ∧ λj) for any i, j ∈ N, we have

supi,j∈N m(µi ∧ λj) ≤ supi∈N m(µi).

So Hη(N1 ∨N2) ≥ Hη(N1). Similarly Hη(N1 ∨N2) ≥ Hη(N2).
(iii)

Hη(N1 ∨N2) = − log sup
i,j

m(µi ∧ λj)

= − log sup
i,j

m(µi)m(λj)

= Hη(N1) +Hη(N2).

(iv)

sup
i,j

m(µi ∧ λj) =
supi,j m(µi ∧ λj)

supj m(λj)
sup
j

m(λj).

Therefore

Hη(N1 ∨N2) = − log sup
i,j

m(µi ∧ λj)

= − log
supi,j m(µi ∧ λj)

supj m(λj)
− log sup

j
m(λj)

= Hη(N1|N2) +Hη(N2).

(v) Since N1 and N2 ∨N3 are independent, we have for each i.j, k ∈ N,

mη(µi ∧ (λj ∧ γk)) = m(µi)m(λj ∧ γk).

So

Hη(N1 ∨N2|N3) = − log sup
i,j,k∈N

m(µi ∧ λj ∧ γk)

m(γk)

= − log sup
i,j,k∈N

m(µi)m(λj ∧ γk)

m(γk)

= − log sup
i∈N

m(µi) sup
j,k∈N

m(λj ∧ γk)

m(γk)

= − log sup
i∈N

m(µi)− log sup
j,k∈N

m(λj ∧ γk)

m(γk)

= Hη(N1) +Hη(N2|N3).
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(vi) Obvious.
(vii) Since N1 ∨N3 ≤m N2 ∨N3, by parts iv) and vi) we have

Hη(N1|N3) = Hη(N1 ∨N3)−Hη(N3)

≤ Hη(N2 ∨N3)−Hη(N3)

= Hη(N2|N3).

4 Relative Entropy of Dynamical Systems

In this section, using the suggested concept of relative entropy, we define the relative entropy of a dynamical
system and prove some of its ergodic properties.

Definition 4.1 Let T : X −→ X be a relative (η, η) measure preserving transformation of (X,M,m) and let
N ∈ Fη(M) with Ñ = {µi : i ∈ N}. The relative entropy of T with respect to N is defined by:

hη(T,N) = lim supn→∞
1
nHη(

∨n−1
i=0 T−iN).

Theorem 4.2 If T : X −→ X is a relative measure preserving transformation of relative probability measure
space (X,M,m) and N1, N2 ∈ Fη(M) with the property in Definition 4.1, then
(i) hη(T,N) ≤ Hη(N);
(ii) N1 ≤m N2 implies that hη(T,N1) ≤ hη(T,N2);
(iii) hη(T, T

−1N) = hη(T,N).

Proof. The assertions follow from Theorems 3.6 (vi) and 3.2.

Definition 4.3 Let T : X −→ X be a (η, η) relative measure preserving transformation of (X,M,m). The
relative entropy of T is defined by:

hη(T ) = supN hη(T,N),

where the supremum is taken over all N ∈ Fη(M) with the property in Definition 4.1.

Theorem 4.4 Let T : X −→ X be a (η, η) relative measure preserving transformation of relative probability
space (X,M,m). Then
i) hη(id) = 0;
ii) For k ∈ N, hη(T

k) = khη(T ).

Proof. i) By the definition we have ∨n−1
i=0 T

−iN = N , for any n ∈ N. Therefore

hη(id,N) = lim sup
n→∞

1

n
Hη(N) = 0.

ii) Let N be an arbitrary countable relative sub σ-algebra of M . We have

hη(T
k,∨n−1

i=0 T
−iN) = lim sup

n→∞

1

n
Hη(∨n−1

j=0 (T
k)−j(∨n−1

i=0 (T
−iN))

= lim sup
n→∞

1

n
Hη(∨n−1

j=0 ∨k−1
i=0 T−(kj+i)N)

= lim sup
n→∞

1

n
Hη(∨nk−1

i=0 T−iN)

= lim sup
n→∞

nk

n

1

nk
Hη(∨nk−1

i=0 T−iN)

= khη(T,N).

Therefore
khη(T ) = k sup

N
hη(T,N) = sup

N
hη(T

k,∨k−1
i=0 T

−iN) ≤ sup
N

hη(T
k, N) = hη(T

k).
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Since N ≤m ∨k−1
i=0 T

−iN , we have

hη(T
k, N) ≤ hη(T

k,∨k−1
i=0 T

−iN) = khη(T,N).

Definition 4.5 Let T : X −→ X and S : X −→ X be two (η, η) relative measure preserving transformations
of (X,M,m). We say that T and S are η-conjugate if there exists a bijective (η, η) relative measure preserving
transformation φ : X −→ X such that φoT = Soφ.

In the following theorem we prove that the relative entropy of relative dynamical systems is invariant
under the relation of conjugate.

Theorem 4.6 If T : X −→ X and S : X −→ X are η-conjugate, then

hη(T ) = hη(S).

Proof. By Definition 4.5, there exists a bijective (η, η) relative measure preserving transformation φ : X −→ X
such that φoT = Soφ. We can write

hη(S,N) = lim sup
n→∞

1

n
Hη(

n−1∨
i=0

S−iN)

= lim sup
n→∞

1

n
Hη(φ

−1(
n−1∨
i=0

S−iN))

= lim sup
n→∞

1

n
Hη(

n−1∨
i=0

φ−1(S−iN))

= lim sup
n→∞

1

n
Hη(

n−1∨
i=0

T−1(φ−iN))

= hη(T, φ
−1N).

So

hη(S) = sup
N

hη(S,N)

= sup
N

hη(T, φ
−1N)

≤ sup
N

hη(T,N)

= hη(T ).

Therefore hη(S) ≤ hη(T ). Similarly we obtain hη(T ) ≤ hη(S).

5 Conclusion

This contribution has defined the notions of relative σ-algebra, relative probability measure and relative
probability measure spaces by the concept of observer. We defined entropy and conditional entropy of relative
σ-algebras having countably many atoms. We proved some of their ergodic properties. Then, using the
suggested concept of relative entropy of relative σ-algebras, the relative entropy of a dynamical system was
defined. Finally, it was shown that isomorphic relative dynamical systems have the same relative entropy.
Accordingly, this concept will be a new tool for distinction of non-isomorphic relative dynamical systems.
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