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Abstract

Hazardous materials are harmful to environment and human health due to their toxic ingredients. It
is very important to intensify efforts in the safety management of hazardous materials, and fundamentally
prevent and reduce accidents. In this study, we consider a time-dependent hazardous materials vehicle
routing problem in a two-echelon supply chain system. The goal is to determine the departure time and
the optimal route with a minimum risk value for hazardous materials transportation. Considering that
time has a significant influence on the transportation risk, we formulate a time-dependent transportation
risk model and propose a credibilistic mixed integer programming model to minimize the expected risk.
An improved genetic algorithm whose chromosomes contain two types of genes is designed to handle the
proposed model. Numerical experiment is given to illustrate the efficiency of the proposed model and
algorithm. Compared with the traditional transportation risk model, the time-dependent transportation
risk model can significantly reduce the risk around 42%.
c©2017 World Academic Press, UK. All rights reserved.
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1 Introduction

With the development of economy, the demand for hazardous materials is continuously increasing in recent
years. In China, a significant majority of hazardous materials shipments are moved via the highway networks,
of which 95% are long distance transportation. Hazardous materials play an important role to the improvement
of peoples living standards. However, there have also been some accidents at the same time, which result
in significant impact to the population and damage to the environment. As an indispensable part of the
chemical industry, hazardous materials transportation managements have attracted much attention due to
the risk factor involved. Therefore, it requires an optimization for the vehicle routing problem of hazardous
materials in a risk reduction perspective.

In this following, we review the literature on vehicle routing problem and risk assessment methods on
hazardous materials transportation.

1.1 Vehicle Routing Problem

Vehicle routing problem (VRP) was first proposed by Dantzig and Ramser [3], which is always described as
a integer programming problem seeking to service a number of customers with a fleet of vehicles. Erera Alan
Laurence [10] proposed a continuum approximation model to deal with two basic VRP. Panda and Das [14]
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considered a cost varying multi-objective interval transportation problem, and presented a solution procedure
of cost varying interval transportation problem under two vehicles. Liu et al. [13] established a kind of
stochastic programming model for VRP with time-constrained and proposed an improved genetic algorithm
for the model of two-paired vehicles. Lin [11] studied a VRP with pickup and delivery time windows by
minimizing the sum of vehicle fixed costs and travelling costs. Wei et al. [21] considered a chance-constrained
programming model on hazardous materials transportation that the transportation costs and the number
of affected people are fuzzy variables. Du et al. [5] presented a fuzzy multi-objective programming model
which minimized the hazardous materials transportation risk to life, travel time and fuel consumption. Du et
al. [4] proposed a fuzzy bi-level programming model to minimize the total transportation risk, and designed
four fuzzy simulation-based heuristic algorithms to search the best strategies allocating customers to depots
and determining the optimal routing solutions with respect to each group of depots and customers. In these
studies, the time required to cross route was assumed as constant over time. However, in reality, it is not
acceptable when the results are needed more exact.

In time-dependent problems, the original work was done by Gupta and Gupta [7], in which time dependency
was presented in scheduling problems. Since then, problems with time-dependent processing times have
received increasing attention. Park [15] constructed a mixed integer linear programming formulation to deal
with the bi-criteria vehicle scheduling problem with time and area-dependent travel speeds. Haghani and Jung
[8] proposed a formulation for the dynamic VRP with time-dependent travel times and presented a genetic
algorithm to solve the model. Woensel et al. [22] considered a VRP with dynamic travel times due to potential
traffic congestion. Soler et al. [18] dealt with the VRP with time windows that considered time-dependent
travel times and costs. Wei et al. [20] focused on the depot location and vehicle scheduling, and discussed
the influence of fuzzy-randomness in hazardous materials transportation. Although the above studies had
considered a series of time-dependent vehicle routing problem (TDVRP), the path risk is usually set to a fixed
value without considering the impact of time in a traveling salesman problem.

This work considers a time-dependent hazardous materials VRP, of which the transportation risk is ex-
pressed as different fuzzy variables at different times, and uses credibilistic mixed integer programming to
obtain the minimum risk.

1.2 Risk Measures for Hazardous Materials Inventory and Transportation

Hazardous materials inventory accidents can result in significant impact to the population and damage to
the environment, which have the characteristics of low probability and high consequence. Until recently, the
most popular measure of transportation risk for hazardous materials was based on the accident probability
and consequence.

Batta and Chiu [2] considered the population exposure model of hazardous materials to measure the
transportation risk. Erkut and Ingolfsson [6] proposed three risk measurement models based on big disaster
circumvention, including the maximum number of exposed population, the minimum expected loss variance
and the minimum expected effect on transport routes. Verma and Verter [19] used the Gaussian plume
model to calculate the exposed zone, and then estimated population exposure. Pradhanangad et al. [16, 17]
considered the hazardous materials VRP and used the loading and the size of population exposure on the route
to measure the risk. Apostolos et al. [1] proposed the definition of robust risk measure as the worst possible
when each probability measure is likely to occur. Yuan et al. [23] first considered the variation of vehicle
loading in hazardous material VRP and proposed a dynamic transportation risk model. Although the above
studies have considered the influence of loading on transportation risk, the transportation risk is generally
treated as constant or fuzzy variable without considering the time-dependent in the process of analysis and
evaluation. However, in the real-life transportation process, the time-dependent situation is more exact.

The main innovations of our study are to propose a time-dependent transportation risk model for hazardous
materials traveling salesman problem, and present a credibilistic mixed integer programming model to handle
the fuzziness on transportation risk. The goal is to determine the optimal route for TDVRP, which has a
minimum risk value. The rest of this study is constructed as follows. Section 2 defines a time-dependent
transportation risk, and then formulate a credibilistic mixed integer programming model. Section 3 designs a
genetic algorithm in which the chromosome includes both departure time gene and service order gene. Section
4 presents illustrative examples to show the efficiency of the proposed model and algorithm.
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2 Problem Description and Mathematical Models

2.1 Problem Description and Notations

Consider a two-echelon supply chain system composed of a single manufacturer and multiple retailers. The
vehicle starts and returns at the manufacturer after serving all the retailers, and the transportation process
takes the serial routing mode. The objective is to determine the departure time at manufacturer and trans-
portation route by minimizing the total transportation risk from manufacturer to customers. Some necessary
assumptions are as follows:

• The vehicle should start and end at the manufacturer within a fixed time window;

• The demands of retailers are known.

2.2 Notations

Notations from manufacturer to retailers

n number of retailers
i, j denote the indices of locations in which index 0 indicates manufacturer’s location,

i, j = 0, 1, 2, . . . , n
ri retailer whose service order is i in the transportation route. Set r0 = 0 and rn+1 = 0,

which means vehicle starts from the manufacturer and also returns to it
sij the distance between node i and node j
v(t) the speed of the vehicle at time t
∆ti unloading time at retailer i
µ̃ij(t) the unit mass and the unit distance transportation risk at time t on arc (i, j),

which is a fuzzy variable
qi the quantity of hazardous materials transported from the manufacturer to retailer i
qij the transportation quantity of hazardous materials on arc (i, j)
ti the departure time at manufacturer or retailers
tij the travel time on arc (i, j)
tuij the travel time on arc (i, j) if the departure time ti in time interval u
t∗w the demarcation point for congestion time interval and free-flow time interval
d∗(u) the maximum travel distance in time interval u
∆dij the distance between departure time ti and time t∗u on arc (i, j) if ti ∈ [t∗u−1, t

∗
u]

Rij the transportation risk on arc (i, j)
Ru

ij the transportation risk on arc (i, j) if the departure time ti in time interval u.

Decision Variables

t0 the departure time at manufacturer
xij if arc from i to j is active with i, j = 0, 1, . . . , n, it takes value 1; otherwise, it takes value 0.

2.3 Mathematical Formulation

In reality, the population density of the areas exposed to transportation risk may vary during different parts
of the day due to the daily mobility of the residents. Moreover, the number of vehicles potentially affected
by a hazardous materials accident depends of the traffic intensity of the corresponding arc. The impact area
of a hazardous material accident depends on: (1) the load of the truck, and (2) dynamic characteristics of
the prevailing meteorological conditions, especially in the case where the accident consequences relate to the
dispersion of pollutants.

The transportation risk is usually measured as the total number of exposed people in the accident (Batta
and Chiu [2]). Moreover, the more quantity of hazardous materials a vehicle loads, the more number of
exposed people in the accident. Therefore, we should establish the relationship between transportation risk
and cargo quantity of hazardous materials. When the vehicle arrives at each retailer, part of the hazardous
materials will be unloaded, and the rest of the hazardous materials determine the risk at the next trip. As
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a result, transportation risk should consider the change of the loading, which means the transportation risk
is essentially dynamic. Thus, we need to calculate the transportation loading on each arc. Determine the
retailer whose service order is i in the transportation route, which can be expressed as

ri = arg max
1≤j≤n

(xri−1j), i = 1, 2, . . . , n. (1)

Thus, the loading on arc (i, i+ 1) is
n∑

k=i+1

qrk .

In the previous literatures, the path risk is usually set to a fixed value without considering the impact of
time. In practice, however, the population density around the path is different at different times. Taking into
account the impact of traffic congestion on the population density, the cargo transport time is divided into
five time intervals, such as 7:00-9:00 (the first time interval), 9:00-11:00 (the second time interval), 11:00-13:00
(the third time interval), 13:00-16:00 (the fourth time interval), and 16:00-19:00 (the fifth time interval). Since
different congestion situation brings different population density, we set a five-level risk function corresponding
the peak and off-peak during the working hours of each day. Considering that the quantity of hazardous
materials a vehicle loads affects number of exposed people in the accident, the unit mass and unit distance
risk at time t can be expressed as

µ̃ij(t) =



µ̃1
ij , if t∗0 ≤ t ≤ t∗1
µ̃2
ij , if t∗1 < t ≤ t∗2
µ̃3
ij , if t∗2 < t ≤ t∗3
µ̃4
ij , if t∗3 < t ≤ t∗4
µ̃5
ij , if t∗4 < t ≤ t∗5.

(2)

As in [9], traffic congestion in the TDVRP is modeled through a two-level speed function including con-
gestion speed and free speed. To make it more realistic, we consider a five-level speed function corresponding
the peak and off-peak during the working hours of each day, which can be expressed as

v(t) =



v1, if t∗0 ≤ t ≤ t∗1
v2, if t∗1 < t ≤ t∗2
v3, if t∗2 < t ≤ t∗3
v4, if t∗3 < t ≤ t∗4
v5, if t∗4 < t ≤ t∗5.

(3)

And the maximum travel distance in these time intervals can be expressed as

d∗(u) =



v1(t∗1 − t∗0), if u = 1

v2(t∗2 − t∗1), if u = 2

v3(t∗3 − t∗2), if u = 3

v4(t∗4 − t∗3), if u = 4

v5(t∗5 − t∗4), if u = 5.

(4)

The travel time on arc (i, j) depends on the departure time ti, the distance sij and time difference ∆dij .

∆dij =
5∑

u=1

vu(t∗u − ti)sgn[(t∗u − ti)(ti − t∗u−1)] (5)

where sgn(x) is a symbolic function. When x > 0 it takes value 1; otherwise, it takes value 0.
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If ti ∈ [t∗0, t
∗
1], the travel time tij can be expressed as

t1ij(ti, dij) =



dij
v1
, if dij ≤ ∆dij

dij −∆dij
v2

+ (t∗1 − ti), if ∆dij ≤ dij ≤ d∗(2) + ∆dij

dij − d∗(2)−∆dij
v3

+ (t∗2 − ti),

if d∗(2) + ∆dij ≤ dij ≤
3∑

u=2

d∗(u) + ∆dij

dij − d∗(2)− d∗(3)−∆dij
v4

+ (t∗3 − ti),

if
3∑

u=2

d∗(u) + ∆dij ≤ dij ≤
4∑

u=2

d∗(u) + ∆dij

dij − d∗(2)− d∗(3)− d∗(4)−∆dij
v5

+ (t∗4 − ti),

if
4∑

u=2

d∗(u) + ∆dij ≤ dij ≤
5∑

u=2

d∗(u) + ∆dij

(6)

which is equivalent to

t1ij(ti, dij) =
dij
v1
sgn(∆dij − dij) +

(
dij −∆dij

v2
+ t∗1 − ti

)
sgn[(d∗(2) + ∆dij − dij)(dij −∆dij)]

+
5∑

w=3

(dij − w−1∑
u=2

d∗(u)−∆dij

vw
+ t∗w−1 − ti

)
sgn

[( w∑
u=2

d∗(u) + ∆dij − dij
)(

dij −
w−1∑
u=2

d∗(u)−∆dij

)]
.

(7)

Similarly, we have

t2ij(ti, dij) =
dij
v2
sgn(∆dij − dij) +

(
dij −∆dij

v3
+ t∗2 − ti

)
sgn[(d∗(3) + ∆dij − dij)(dij −∆dij)]

+
5∑

w=4

(dij − w−1∑
u=3

d∗(u)−∆dij

vw
+ t∗w−1 − ti

)
sgn

[( w∑
u=3

d∗(u) + ∆dij − dij
)(

dij −
w−1∑
u=3

d∗(u)−∆dij

)]
(8)

t3ij(ti, dij) =
dij
v3
sgn(∆dij − dij) +

(
dij −∆dij

v4
+ t∗3 − ti

)
sgn[(d∗(4) + ∆dij − dij)(dij −∆dij)]

+

(
dij − d∗(4)−∆dij

v5
+ t∗4 − ti

)
sgn

[( 5∑
u=4

d∗(u) + ∆dij − dij
)

(dij − d∗(4)−∆dij)

] (9)

t4ij(ti, dij) =
dij
v4
sgn(∆dij − dij) +

(
dij −∆dij

v5
+ t∗4 − ti

)
sgn[(d∗(5) + ∆dij − dij)(dij −∆dij)] (10)

t5ij(ti, dij) =
dij
v5
sgn(∆dij − dij). (11)
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Therefore, the travel time on arc (i, j) is

tij(ti, dij) =
5∑

u=1

tuij(ti, dij)sgn[(t∗u − ti)(ti − t∗u−1)] (12)

and the departure time tj can be expressed as

tj = ti + tij(ti, dij) + ∆ti+1. (13)

The transportation risk on arc (i, j) depends on the departure time ti. If ti ∈ [t∗0, t
∗
1], transportation risk

on arc (i, j) can be expressed as

R1
ij(ti, dij) =



qijdijµ̃
1
ij , if dij ≤ ∆dij

qij [∆dij µ̃
1
ij + (dij −∆dij)µ̃

2
ij ], if ∆dij ≤ dij ≤ d∗(2) + ∆dij

qij [∆dij µ̃
1
ij + d∗(2)µ̃2

ij + (dij − d∗(2)−∆dij)µ̃
3
ij ],

if d∗(2) + ∆dij ≤ dij ≤
3∑

u=2

d∗(u) + ∆dij

qij

[
∆dijµ̃

1
ij +

3∑
u=2

d∗(u)µ̃u
ij +

(
dij −

3∑
u=2

d∗(u)−∆dij

)
µ̃4
ij

]
,

if

3∑
u=2

d∗(u) + ∆dij ≤ dij ≤
4∑

u=2

d∗(u) + ∆dij

qij

[
∆dijµ̃

1
ij +

4∑
u=2

d∗(u)µ̃u
ij +

(
dij −

4∑
u=2

d∗(u)−∆dij

)
µ̃5
ij

]
,

if
4∑

u=2

d∗(u) + ∆dij ≤ dij ≤
5∑

u=2

d∗(u) + ∆dij

(14)

which is equivalent to

R1
ij(ti, dij) = qijdij µ̃

1
ijsgn(∆dij − dij)

+qij [∆dij µ̃
1
ij + (dij −∆dij)µ̃

2
ij ]sgn[(d∗(2) + ∆dij − dij)(dij −∆dij)]

+
5∑

w=3

qij

[
∆dijµ̃

1
ij +

w−1∑
u=2

d∗uµ̃
u
ij +

(
dij −

w−1∑
u=2

d∗(u)−∆dij

)
µ̃w
ij

]
sgn

[( w∑
u=2

d∗(u) + ∆dij − dij
)(

dij −
w−1∑
u=2

d∗(u)−∆dij

)]
.

(15)

Similarly, we have

R2
ij(ti, dij) = qijdij µ̃

2
ijsgn(∆dij − dij)

+qij [∆dij µ̃
2
ij + (dij −∆dij)µ̃

3
ij ]sgn[(d∗(3) + ∆dij − dij)(dij −∆dij)]

+
5∑

w=4

qij

[
∆dijµ̃

1
ij +

w−1∑
u=3

d∗(u)µ̃u
ij +

(
dij −

w−1∑
u=3

d∗(u)−∆dij

)
µ̃w
ij

]
sgn

[( w∑
u=3

d∗(u) + ∆dij − dij
)(

dij −
w−1∑
u=3

d∗(u)−∆dij

)] (16)

R3
ij(ti, dij) = qijdij µ̃

3
ijsgn(∆dij − dij)

+qij [∆dijµ̃
3
ij + (dij −∆dij)µ̃

4
ij ]sgn[(d∗(4) + ∆dij − dij)(dij −∆dij)]

+qij [∆dijµ̃
1
ij + d∗(4)µ̃4

ij + (dij − d∗(4)−∆dij)µ̃
5
ij ]

sgn

[( 5∑
u=4

d∗(u) + ∆dij − dij
)

(dij − d∗(4)−∆dij)

] (17)



Journal of Uncertain Systems, Vol.11, No.3, pp.163-175, 2017 169

R4
ij(ti, dij) = qijdijµ̃

4
ijsgn(∆dij − dij)

+qij [∆dijµ̃
4
ij + (dij −∆dij)µ̃

5
ij ]sgn[(d∗(5) + ∆dij − dij)(dij −∆dij)]

(18)

R5
ij(ti, dij) = qijdijµ̃

5
ijsgn(∆dij − dij). (19)

Therefore, the transportation risk on arc (i, j) is

Rij(ti, dij) =
5∑

u=1

Ru
ij(ti, dij)sgn[(t∗u − ti)(ti − t∗u−1)] (20)

and the time-dependent transportation risk can be expressed as

R =
∑

0≤i≤n−1

Rriri+1
(tri , driri+1

). (21)

Since µ̃ij(t) is a fuzzy variable, R is also a fuzzy variable. Therefore, we adopt the expected value
criterion of fuzzy variable defined by Liu and Liu [12] to measure the transportation risk. Based on the
aforementioned descriptions of assumptions, notations, and risk measure, we formulate a credibilistic mixed
integer programming model for hazardous materials transportation as follows

min R = E

 ∑
0≤i≤n−1

Rriri+1
(tri , driri+1

)

 (22)

s.t. qriri+1 =

n∑
k=i+1

qrk , 0 ≤ i ≤ n (23)

ti ≥ t∗0, 0 ≤ i ≤ n (24)

trn + trn0 ≤ t∗5 (25)∑
i6=j

xij =
∑
i6=j

xij = 1, 0 ≤ i, j ≤ n (26)

∑
0≤i,j≤n

xij ≤ α− 1, 2 ≤ α ≤ n (27)

xij ∈ {0, 1}, 0 ≤ i, j ≤ n (28)

Constraints (1)− (5), (7)− (13), (15)− (21).

Constraint (23) is the vehicle loading constraint on each arc. Constraints (24) and (25) are the vehicle working
time constraints. Constraint (26) ensures that each customer must be visited exactly once. Constraint (27)
is subtour elimination constraint. Constraint (28) specifies 0-1 decision variable.

3 Algorithm

TDVRP is a NP-hard problem, which is difficult for us to obtain the exact solution by the traditional algorithm,
and heuristic algorithms are generally used to solve the problem. Therefore, we design a genetic algorithm to
solve the proposed model.

3.1 Representation Structure

The solution of the model consists of the departure time at manufacturer and routing variables. In this
problem, we design each chromosome structure as V = (t0, r1, r2, . . . , rn), which contains the departure time
at manufacturer and service orders which can replace the routing variables xij (see Fig. 1).
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1r nr0t 2r 3r

departure time the retailer's transportation order

Figure 1: Chromosome structure

3.2 Initialization Process

Define an inter number pop size as the size of population. Randomly generate a vector V1. If V1 satisfies
constraints of the TDVRP, we get a chromosome. Otherwise, repeat this process until the constraints are
satisfied. Then a feasible chromosome is initialized. Repeat the above process pop size times. Denote the
generated chromosomes as V1, V2, ..., Vpop size.

3.3 Evaluation Function

Let Vi be a feasible chromosome. It is easy to calculate the risk variable Ri. Then, we get the objective values
of the pop size chromosomes. Define the evaluation function as follows:

eval(Vi) = a(1− a)i−1, i = 1, 2, ..., pop size.

3.4 Selection Process

We utilize the method of spinning the roulette wheel to select particles. For any i = 1, 2, . . . , pop size, we
calculate

qi =

i∑
j=1

Eval(Vj).

Generate a random number r ∈ (0, qpop size]. Select the ith chromosome Vi if qi < r ≤ qi+1. Repeat the above
process pop size times to get pop size chromosomes.

3.5 Crossover Process

Denote Pc as the crossover probability, and divide chromosomes into pairs. We will introduce the crossover
operation on the pair of chromosomes V and V ′(suppose there are 8 retailers). Firstly, select the departure
time t0 and t′0 on the chromosome V and V ′ respectively, and take a weigthed compromise method to generate
two new departure time. Secondly, randomly select a gene segment from the service order on the chromosome
V (which is 4,1,8), and select a gene segment at the same place on V ′ (which is 2,3,5). Remove the genes
2,3,5 from V , and combine the rest part of V and gene segment 2,3,5 from V ′. Remove the genes 4,1,8 from
V ′, and combine the rest part of V ′ and gene segment 4,1,8 from V (see Fig. 2). Select two chromosomes
from the parent and children with small objective values to replace the parent.

3.6 Mutation Process

Denote Pm as the mutation probability. In mutation operation, we repeat the following process pop size
times. Randomly generate a number ri from [0,1]. If ri < Pm, select the ith chromosome Vi as the parent
of mutation(suppose there are 8 retailers). Randomly select two gene locations from the service order on the
chromosome Vi, and change them to get a child (see Fig. 3). If the new chromosome is better than Vi, we use
the new chromosome to replace Vi.

A new generation of population is generated after the evaluation, selection, crossover and mutation oper-
ations. Repeat this cycle G times and we obtain a satisfactory solution.
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0tt
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Figure 2: Crossover operation

7 85 4 1 32 60t

7 85 2 1 34 6

parent

child 0t

Figure 3: Mutation operation

4 Numerical Experiments

To illustrate the efficiency of the proposed model and algorithm, a numerical example is provided in this
section, which considers a two-echelon supply chain problem with a manufacturer and eight retailers. Suppose
the demarcation points for congestion time interval and free-flow time interval are 7:00, 9:00, 11:00, 13:00,
16:00, and 19:00, respectively. The unloading time is ∆ti = 12 minutes (i = 1, 2, . . . , 8). The speeds at
different time intervals are v1 = 30, v2 = 70, v3 = 40, v4 = 60 and v5 = 30. The demands of retailers are
given in Table 1. The distances among manufacturer and retailers are given in Table 2. The unit mass
transportation risk at five different time intervals are presented in Tables 3-7.

Table 1: The supply quantity at retailers (ton)

R1 R2 R3 R4 R5 R6 R7 R8

2.2 0.8 1.4 2.7 0.1 0.5 2 1.1

Table 2: The distances among manufacturer and retailers (km)

M R1 R2 R3 R4 R5 R6 R7 R8

M 0 50 17 34 19 22 30 38 11
R1 50 0 32 24 20 29 18 21 30
R2 17 32 0 15 22 39 26 23 31
R3 34 24 15 0 20 42 31 24 29
R4 19 20 22 20 0 17 26 32 22
R5 22 29 39 42 17 0 22 31 31
R6 30 18 26 31 26 22 0 28 60
R7 38 21 23 24 32 31 28 0 26
R8 11 30 31 29 22 31 60 26 0

The proposed genetic algorithm is employed on the numerical illustration using the MATLAB software.
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Table 3: The unit mass transportation risks among manufacturer and retailers at the first time interval
(×10−7)

M R1 R2 R3 R4 R5 R6 R7 R8

M (0,0,0) (80,86,90) (63,66,70) (42,47,48) (77,79,84) (46,48,51) (40,43,46) (62,66,70) (100,105,110)
R1 (80,86,90) (0,0,0) (32,35,37) (66,70,72) (34,36,38) (50,53,55) (88,91,95) (51,53,57) (80,83,88)
R2 (63,66,70) (32,35,37) (0,0,0) (61,63,66) (80,82,86) (83,85,88) (45,47,49) (50,52,56) (33,36,38)
R3 (42,47,48) (66,70,72) (61,63,66) (0,0,0) (68,70,73) (30,33,35) (51,53,56) (48,50,54) (53,56,58)
R4 (77,79,84) (34,36,38) (80,82,86) (68,70,73) (0,0,0) (68,70,73) (77,80,84) (50,52,55) (21,24,26)
R5 (46,48,51) (50,53,55) (83,85,88) (30,33,35) (68,70,73) (0,0,0) (50,52,55) (33,36,38) (76,78,80)
R6 (40,43,46) (88,91,95) (45,47,49) (51,53,56) (77,80,84) (50,52,55) (0,0,0) (45,48,50) (33,36,39)
R7 (62,66,70) (51,53,57) (50,52,56) (48,50,54) (50,52,55) (33,36,38) (45,48,50) (0,0,0) (55,58,60)
R8 (100,105,110) (80,83,88) (33,36,38) (53,56,58) (21,24,26) (76,78,80) (33,36,39) (55,58,60) (0,0,0)

Table 4: The unit mass transportation risks among manufacturer and retailers at the second time interval
(×10−7)

M R1 R2 R3 R4 R5 R6 R7 R8

M (0,0,0) (15,18,20) (25,28,30) (46,50,53) (27,30,32) (18,20,25) (46,47,49) (28,30,34) (17,20,25)
R1 (15,18,20) (0,0,0) (32,37,43) (10,16,23) (13,18,23) (30,33,36) (20,26,30) (14,16,21) (16,21,25)
R2 (25,28,30) (32,37,43) (0,0,0) (34,36,41) (16,21,28) (21,27,36) (18,23,30) (20,26,35) (33,38,43)
R3 (46,50,53) (10,16,23) (34,36,41) (0,0,0) (27,35,45) (12,16,21) (20,26,35) (17,20,21) (21,28,36)
R4 (27,30,32) (13,18,23) (16,21,28) (27,35,45) (0,0,0) (27,29,31) (33,36,40) (10,12,14) (20,22,24)
R5 (18,20,25) (30,33,36) (21,27,36) (12,16,21) (27,29,31) (0,0,0) (20,26,34) (13,18,23) (18,24,31)
R6 (46,47,49) (20,26,30) (18,23,30) (20,26,35) (33,36,40) (20,26,34) (0,0,0) (7,9,11) (13,18,24)
R7 (28,30,34) (14,16,21) (20,26,35) (17,20,21) (10,12,14) (13,18,23) (7,9,11) (0,0,0) (22,23,27)
R8 (17,20,25) (16,21,25) (33,38,43) (21,28,36) (20,22,24) (18,24,31) (13,18,24) (22,23,27) (0,0,0)

Table 5: The unit mass transportation risks among manufacturer and retailers at the third time interval
(×10−7)

M R1 R2 R3 R4 R5 R6 R7 R8

M (0,0,0) (45,50,53) (115,117,120) (50,52,56) (32,36,40) (81,83,87) (52,54,55) (98,100,104) (33,36,37)
R1 (45,50,53) (0,0,0) (75,78,80) (55,61,66) (37,42,46) (87,89,90) (44,47,51) (67,74,82) (34,37,41)
R2 (115,117,120) (75,78,80) (0,0,0) (67,74,81) (44,49,56) (78,80,82) (50,55,60) (85,87,90) (36,42,46)
R3 (50,52,56) (55,61,66) (67,74,81) (0,0,0) (75,82,90) (33,38,43) (56,62,69) (83,88,90) (88,92,95)
R4 (32,36,40) (37,42,46) (44,49,56) (75,82,90) (0,0,0) (75,86,90) (64,70,79) (55,61,67) (76,83,89)
R5 (81,83,87) (87,89,90) (78,80,82) (33,38,43) (75,86,90) (0,0,0) (55,61,67) (36,42,46) (81,83,91)
R6 (52,55,54) (44,47,51) (50,55,60) (56,62,69) (64,70,79) (55,61,67) (0,0,0) (50,56,61) (36,42,48)
R7 (98,100,104) (67,74,82) (85,87,90) (83,88,90) (55,61,67) (36,42,46) (50,56,61) (0,0,0) (61,68,74)
R8 (33,36,37) (34,37,41) (36,42,46) (88,92,95) (76,83,89) (81,83,91) (36,42,48) (61,68,74) (0,0,0)

Table 6: The unit mass transportation risks among manufacturer and retailers at the fourth time
interval(×10−7)

M R1 R2 R3 R4 R5 R6 R7 R8

M (0,0,0) (63,75,79) (24,28,32) (27,35,39) (48,55,66) (19,23,26) (18,22,26) (54,61,65) (21,26,29)
R1 (63,75,79) (0,0,0) (15,24,31) (49,58,62) (16,26,32) (61,68,71) (49,57,61) (31,45,57) (20,29,41)
R2 (24,28,32) (15,24,31) (0,0,0) (31,45,57) (39,45,48) (27,39,49) (22,33,41) (25,36,48) (16,26,32)
R3 (27,35,39) (49,58,62) (31,45,57) (0,0,0) (34,49,62) (15,23,29) (38,45,48) (24,35,46) (27,40,49)
R4 (48,55,66) (16,26,32) (39,45,48) (34,49,62) (0,0,0) (34,39,41) (54,59,62) (25,36,46) (26,39,48)
R5 (19,23,26) (61,68,71) (27,39,49) (15,23,29) (34,39,41) (0,0,0) (25,36,46) (16,26,32) (24,33,42)
R6 (18,22,26) (49,57,61) (22,33,41) (38,45,48) (54,59,62) (25,36,46) (0,0,0) (22,33,42) (16,26,33)
R7 (54,61,65) (31,45,57) (25,36,48) (24,35,46) (25,36,46) (16,26,32) (22,33,42) (0,0,0) (27,41,52)
R8 (21,26,29) (20,29,41) (16,26,32) (27,40,49) (26,39,48) (24,33,42) (16,26,33) (27,41,52) (0,0,0)

Set λ = 0.2, pop size=200, Pc=0.8 and Pm=0.2. By running the proposed algorithm, we obtain the result as
follows: the departure time at manufacturer is 9:00, and transportation route is 1 → 9 → 5 → 2 → 8 → 6 →
4→ 3→ 7→ 1. The minimum transportation risk is 221.4282. Fig.4 shows the convergence process. And we
have also calculated the the departure time and departure cargo quantity at manufacturer or retailers, which
are shown in Table 8. It is found that the transportation route goes through three time intervals including
9:00-11:00, 11:00-13:00 and 13:00-16:00, and most of the cargos are transported during off-peak time intervals,
which leads to minimal risk. In reality, the departure time at manufacturer is usually arranged in a specified
time window due to the actual situation, we can also calculate the corresponding results (see Table 9).
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Table 7: The unit mass transportation risks among manufacturer and retailers at the fifth time interval
(×10−7)

M R1 R2 R3 R4 R5 R6 R7 R8

M (0,0,0) (50,52,55) (58,60,62) (150,152,155) (53,55,58) (93,96,98) (52,55,57) (93,96,98) (43,45,48)
R1 (50,52,55) (0,0,0) (79,81,86) (45,67,82) (30,46,57) (45,68,83) (65,67,86) (75,82,102) (36,55,73)
R2 (58,60,62) (79,81,86) (0,0,0) (55,82,101) (36,54,70) (83,81,88) (41,61,75) (89,87,90) (30,46,57)
R3 (150,152,155) (45,67,82) (55,82,101) (0,0,0) (62,91,112) (27,42,53) (126,128,136) (44,64,82) (110,112,118)
R4 (53,55,58) (30,46,57) (36,54,70) (62,91,112) (0,0,0) (62,91,112) (53,77,98) (85,87,89) (46,70,86)
R5 (93,96,98) (45,68,83) (83,81,88) (27,42,53) (62,91,112) (0,0,0) (45,67,83) (60,66,77) (82,82,86)
R6 (52,55,57) (65,67,86) (41,61,75) (126,128,136) (53,77,98) (45,67,83) (0,0,0) (61,62,76) (60,66,70)
R7 (93,96,98) (75,82,102) (89,87,90) (44,64,82) (85,87,89) (60,66,77) (61,62,76) (0,0,0) (50,75,92)
R8 (43,45,48) (36,55,73) (30,46,57) (110,112,118) (46,70,86) (82,82,86) (60,66,70) (50,75,92) (0,0,0)
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Figure 4: Convergence curve of GA

Table 8: The departure time and departure cargo quantity at manufacturer or retailers

transportation route 1 9 5 2 8 6 4 3 7
the departure time at manufacturer/retailers 9:00 9:21 9:52 10:21 10.51 11.44 12.59 13:26 14:04

departure cargo quantity at
manufacturer/retailers

11.7 10.6 7.9 5.7 3.7 2.7 1.3 0.5 0

Table 9: The results of the departure time in specified departure time

specified departure time
window

the departure time at manufacturer transportation route risk

7:00-9:00 9:00 1 → 9 → 5 → 2 → 8 → 6 → 4 → 3
→ 7 → 1

221.4282

9:00-11:00 9:19 1 → 9 → 5 → 2 → 8 → 6 → 4 → 3
→ 7 → 1

226.3290

11:00-13:00 13:00 1 → 9 → 5 → 2 → 8 → 3 → 4 → 6
→ 7 → 1

297.4423

13:00-16:00 14:58 1 → 9 → 2 → 5 → 3 → 6 → 8 → 7
→ 4 → 1

269.6925

16:00-19:00 - - -

However, if the risk on the arc is considered as a fixed value in one day, we usually take the average risk
of the arc in one day as its risk. We can calculate the unit mass average transportation risk (see Tables 10).
The result with time-fixed transportation risk is also shown in Table 11. Comparing with the result arising
from time-dependent risk, it is found that the transportation route is different, and the time-dependent model
could reduce risk around 42%. The example tells us that consideration on variable vehicle departure time
could significantly reduce the risk. Therefore, we choose the time-dependent model to solve this hazardous
materials VRP.
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Table 10: The unit mass average transportation risks among manufacturer and retailers (×10−7)

M R1 R2 R3 R4 R5 R6 R7 R8

M (0,0,0) (51,57,60) (57,60,63) (63,68,71) (48,51,56) (52,54,58) (42,45,47) (67,71,75) (43,47,50)
R1 (51,57,60) (0,0,0) (47,51,56) (45,55,61) (26,34,40) (55,63,67) (54,58,65) (48,54,64) (38,45,54)
R1 (57,60,63) (47,51,56) (0,0,0) (50,60,70) (43,51,58) (59,63,69) (36,44,51) (54,58,64) (30,38,44)
R1 (63,68,71) (45,55,61) (50,60,70) (0,0,0) (54,66,77) (24,31,37) (59,63,69) (44,52,59) (60,66,72)
R1 (48,51,56) (26,34,40) (43,51,58) (54,66,77) (0,0,0) (54,63,70) (57,65,73) (45,50,55) (38,48,55)
R1 (52,54,58) (55,63,67) (59,63,69) (24,31,37) (54,63,70) (0,0,0) (39,49,57) (32,38,44) (57,60,66)
R1 (42,45,47) (54,58,65) (36,44,51) (59,63,69) (57,65,73) (39,49,57) (0,0,0) (37,42,48) (32,38,43)
R1 (67,71,75) (48,54,64) (54,58,64) (44,52,59) (45,50,55) (32,38,44) (37,42,48) (0,0,0) (43,53,61)
R1 (43,47,50) (38,45,54) (30,38,44) (60,66,72) (38,48,55) (57,60,66) (32,38,43) (43,53,61) (0,0,0)

Table 11: Comparisons between time-dependent model and time-fixed model

the departure time at
manufacturer

transportation route risk

time-dependent model 9:00 1 → 9 → 5 → 2 → 8 → 6 → 4 → 3
→ 7 → 1

221.4282

time-fixed model 7:00-14:00 1 → 9 → 5 → 2 → 8 → 4 → 3 → 7
→ 6 → 1

383.5057

5 Conclusion

In this study, a time-dependent hazardous materials vehicle routing problem was studied under fuzzy trans-
portation risk. The objective was to obtain the optimal route and the departure time for hazardous materials
transportation. First, we formulated a time-dependent risk measure for hazardous materials transportation.
Then, we proposed a credibilistic mixed integer programming model and designed an improved genetic algo-
rithm whose chromosomes contain two types of genes to search a satisfactory solution.

Future research may be conducted in several directions. First, more real-life factors will be considered,
such as multiple objects, multiple periods, time windows, and more flexible distribution modes. Further-
more, we will perfect the credibilistic mixed integer programming model for hazardous materials supply chain
management via adding production risk and inventory risk.
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