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Abstract

Generalized Parametric Interval-Valued (GPIV) fuzzy variables is a natural extension of normal-
ized Interval-Valued (IV) fuzzy variables, its arithmetic about linear combinations is an important
research issue. This paper first defines GPIV normal fuzzy variables, Gamma fuzzy variables, Erland
fuzzy variable and exponential fuzzy variables, then discusses the secondary possibility distributions
of their linear combinations. The obtained results have potential applications in practical decision-
making problems.
c©2017 World Academic Press, UK. All rights reserved.
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1 Introduction

In 1975, Zadeh [27] introduced the concept of a type-2 (T2) fuzzy set as an extension of an ordinary
fuzzy set. T2 fuzzy sets have been applied successfully to T2 fuzzy logic systems to handle linguistic and
numerical uncertainties [20]. To further develop the theory of T2 fuzziness, Liu and Liu [16] proposed
an axiomatic framework called fuzzy possibility theory. Since then, fuzzy possibility theory has been
well-developed [2, 5, 17].

Based on T2 fuzzy theory, some interesting applications have been documented in the literature.
For example, Bai and Liu [3] presented a new robust optimization method for supply chain network
design problem by employing variable possibility distributions, while the variable possibility distributions
are obtained by using the method of possibility critical value reduction to the secondary possibility
distributions of uncertain demands and costs [1]. Kundu et al. [12, 13] employed T2 fuzzy variables
to model fixed charge transportation problem and multi-item solid transportation problem. In order
to deal with the Gaussian T2 fuzziness, Das et al. [6] developed two chance-constrained programming
models based on generalized credibility measures for the objective function as well as the constraints
sets with the help of the critical value reductions method [24]. Das et al. [7] derived reduction process
for a trapezoidal T2 fuzzy number. In Pramanik et al. [23], the T2 fuzziness has been removed by
using generalized credibility measure developed with the help of critical reduction method [24] and hence
the models were reduced to chance constrained programming problems with different credibility labels.
Zhou et al. [28] developed a multi-objective DEA model in a setting of T2 fuzzy modeling to evaluate
and select the most appropriate sustainable suppliers. Mahapatra et al. [19] introduced a concept on
solution technique for fuzzy variable based non-linear programming problem with both decision variables
and restriction being fuzzy in nature, and applied the proposed procedure to complex system reliability
model to evaluate the system reliability. Ma et al. [18] developed an integrated type 1 and T2 fuzzy
sets chance-constrained programming model for tackling regional municipal solid waste management
problem. Yang et al. [26] proposed a bi-objective hub-and-spoke network design problem with T2 fuzzy
transportation cost and travel time described by parametric secondary possibility distributions, which
are obtained using three types of mean value reduction methods [25].

The IV fuzzy variable is special case of general T2 fuzzy variable [16]. Liu and Liu [17] first studied
a class of Normalized Parametric Interval-Valued (NPIV) fuzzy variables, and discussed the numerical
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characteristics for selection variables of NPIV fuzzy variables and their linear combinations. Guo et al.
[10] extended the work of [17], and studied a class of GPIV fuzzy variables. In this paper, we further
address this issue, and discussed the linear combinations of GPIV fuzzy variables.

The rest of paper is organized as follows. In Section 3, several important GPIV fuzzy variables are
defined. In Section 4, the arithmetic about the linear combinations of GPIV fuzzy variables are discussed.
Section 5 gives the conclusions of this paper and suggests future research areas.

2 Preliminaries

2.1 The IV Fuzzy Set

We next review some basic concepts in fuzzy set theory, including T2 fuzzy set, interval T2 (IT2) fuzzy
set and interval-valued (IV) fuzzy set.

The concept of T2 fuzzy set was given by [27], and the following representation for a T2 fuzzy set is
given by Mendel and John [21]:

Definition 1 ([21]). A T2 fuzzy set, denoted A, is characterized by a T2 membership function µA(x, u),
for x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.

A = {((x, u), µA(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]},

where 0 ≤ µA(x, u) ≤ 1.

The IT2 fuzzy set is a special T2 fuzzy set, it was introduced by Karnik et al. [11], and Mendel
et al. [22] described the IT2 fuzzy set as follows:

Definition 2 ([22]). A T2 fuzzy set, denoted A, is characterized by a T2 membership function µA(x, u).
If for ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1], µA(x, u) = 1, then A is an IT2 fuzzy set.

The IV fuzzy set is a particular case of IT2 fuzzy sets, it was introduced by Zadeh [27]. Let

L([0, 1]) = {[x, x] | (x, x) ∈ [0, 1]2 and x ≤ x}.

Then Bustince et al. [4] used the following definition of an IV fuzzy set:

Definition 3 ([4]). An IV fuzzy set A on the universe X 6= ∅ is a mapping A : X → L([0, 1]) such that
the membership degree of x ∈ X is given by A(x) = [µ

A
(x), µA(x)] ∈ L([0, 1]), where µ

A
: X → [0, 1]

and µA : X → [0, 1] are mappings defining the lower and upper bounds of the membership interval A(x),
respectively.

2.2 The PIV Fuzzy Variable

We now review some basic concepts in fuzzy possibility theory [16], including fuzzy possibility measure,
T2 fuzzy variable, secondary possibility distribution, IT2 fuzzy variable, and parametric interval-valued
(PIV) fuzzy variable.

Let P(Γ) be the power set on the universe Γ, and P̃os : P(Γ) 7→ R([0, 1]) a set function on P(Γ) such
that {P̃os(A) | P(Γ) 3 A atom} is a family of mutually independent regular fuzzy variables. We call P̃os
a fuzzy possibility measure if it satisfies the following conditions:
(i) P̃os(∅) = 0̃;
(ii) For any subclass {Ai | i ∈ I} of P(Γ) (finite, countable or uncountable),

P̃os

(⋃
i∈I

Ai

)
= sup

i∈I
P̃os(Ai).

Moreover, if µP̃os(Γ)(1) = 1, then we call P̃os a regular fuzzy possibility measure. The triplet (Γ,P(Γ), P̃os)
is referred to as a fuzzy possibility space.
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Definition 4 ([16]). Let (Γ,P(Γ), P̃os) be a fuzzy possibility space. A map ξ = (ξ1, ξ2, · · · , ξn) : Γ 7→ <n
is called a T2 fuzzy vector. As n = 1, the map ξ : Γ 7→ < is usually called a T2 fuzzy variable.

The secondary possibility distribution function µ̃ξ(x) of the T2 fuzzy vector ξ is defined as

µ̃ξ(x) = P̃os{γ ∈ Γ | ξ(γ) = x}, x ∈ <n, (1)

and the T2 possibility distribution function µξ(x, u) of ξ is defined as

µξ(x, u) = Pos{µ̃ξ(x) = u}, (x, u) ∈ <n × Jx, (2)

where Jx ⊂ [0, 1] is the support of µ̃ξ(x).
An IT2 fuzzy variable is a special case of T2 fuzzy variables, it is defined by Liu and Liu [17] as

follows:

Definition 5 ([17]). Assume that ξ is a T2 fuzzy variable with T2 possibility distribution function
µξ(x, u). If for any x ∈ <, u ∈ Jx ⊆ [0, 1], µξ(x, u) = 1, then ξ is called an IT2 fuzzy variable.

If the secondary possibility distribution function µ̃ξ(x) is a subinterval of [0, 1], then Liu and Liu [17]
defined a PIV fuzzy variable as follows.

Definition 6 ([17]). Assume that ξ is an IT2 fuzzy variable with the secondary possibility distribution
function µ̃ξ(x). If for any x ∈ <, µ̃ξ(x) is a subinterval [µξL(x; θl), µξU (x; θr)] of [0, 1] with parameters
θl, θr ∈ [0, 1], then ξ is called a PIV fuzzy variable.

3 Common GPIV Fuzzy Variables

The GPIV fuzzy variable is first proposed by Guo et al. [10], and is employed to characterize uncertain
demand in a three level supply chain problem. However, the work [10] just considers generalized PIV
trapezoidal fuzzy variable. After recalling this concept in the following, we introduce several other
important GPIV fuzzy variables. Some concepts used but not provided in this paper, the interested
reader may refer to [14, 16] and the references therein.

Let r1 < r2 ≤ r3 < r4 be real numbers. An IT2 fuzzy variable ξ̃ is called a GPIV trapezoidal fuzzy
variable, denoted as ξ̃ ∼ T̃ra(r1, r2, r3, r̃4; θl, θr), if its secondary possibility distribution is the following
subinterval of [0, 1], [

r − r1

r2 − r1
− θl

r − r1

r2 − r1
,
r − r1

r2 − r1
+ θr

r2 − r
r2 − r1

]
, r ∈ [r1, r2],

the subinterval [1− θl, 1] of [0, 1] for r ∈ [r2, r3], and the following subinterval of [0, 1],[
r4 − r
r4 − r3

− θl
r4 − r
r4 − r3

,
r4 − r
r4 − r3

+ θr
r − r3

r4 − r3

]
, r ∈ [r3, r4],

where θl, θr ∈ [0, 1] are two distribution parameters characterizing the degree of uncertainty that ξ takes
on the value r.

It is evident that the possibility of event {ξ̃ = r} is an interval with variable boundaries characterized
by parameters θl and θr. When θl = θr = 0, the corresponding secondary possibility distribution is called
the nominal possibility distribution of ξ̃.

Particularly, when r2 = r3, we call an IT2 fuzzy variable ξ as a GPIV triangular fuzzy variable, and
denoted as ξ̃ ∼ T̃ri(r1, r2, r3; θl, θr) .

Definition 7. An IT2 fuzzy variable η̃ is called a GPIV normal fuzzy variable, denoted as η̃ ∼ Ñor(a, σ2),
if its secondary possibility distribution is the following subinterval of [0, 1],

[µ(t)− θlµ(t), µ(t) + θr(1− µ(t))] ,

where θl, θr ∈ [0, 1] and µ(t) = exp{− 1
2 ( t−aσ )2}, t ∈ <, where the parameters a ∈ < and σ > 0. When θl =

θr = 0, the corresponding secondary possibility distribution is called the nominal possibility distribution
of η̃.
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Definition 8. An IT2 fuzzy variable ζ̃ is called a GPIV Gamma fuzzy variable, denoted as ζ̃ ∼
G̃am(r, λ; θl, θr), if its secondary possibility distribution is the following subinterval of [0, 1],

[µ(t)− θlµ(t), µ(t) + θr(1− µ(t))] ,

where θl, θr ∈ [0, 1], and µ(t) = ( t
λr )r exp{r − t

λ}, t ≥ 0, where the parameters r > 0 and λ > 0.
When θl = θr = 0, the corresponding secondary possibility distribution is called the nominal possibility
distribution of ζ̃.

Definition 9. An IT2 fuzzy variable ζ̃ is said to be a GPIV Erlang fuzzy variable, denoted as ζ̃ ∼
Ẽrl(ρ, κ; θl, θr), if its secondary possibility distribution is the following subinterval of [0, 1],

[µ(t)− θlµ(t), µ(t) + θr(1− µ(t))] ,

where θl, θr ∈ [0, 1], and µ(t) = ( t
κρ )κ exp{κ − t

ρ}, where ρ > 0 and κ is a positive integer. When θl =
θr = 0, the corresponding secondary possibility distribution is called the nominal possibility distribution
of ζ̃.

Particularly, when κ = 1, ζ̃ is called a GPIV exponential fuzzy variable, and denoted as ζ̃ ∼
Ẽxp(ρ; θl, θr).

4 Linear Combinations of GPIV Fuzzy Variables

First, the following theorem deals with the linear combination of GPIV trapezoidal fuzzy variables:

Theorem 1. Let ξ̃i ∼ T̃ra(ri1, ri2, ri3, ri4; θil, θir) be GPIV trapezoidal fuzzy variables for i ≤ n. Suppose
the nominal possibility distributions Tra(ri1, ri2, ri3, ri4)’s are mutually independent, and xi’s are real
numbers. Then one has

ξ̃ =

n∑
i=1

xiξ̃i ∼ T̃ra(r1(x), r2(x), r3(x), r4(x); θl, θr),

where the parameters θl = max1≤i≤n θil, θr = min1≤i≤n θir, and

r1(x) =

n∑
i=1

(
x+
i ri1 − x

−
i ri4

)
, r2(x) =

n∑
i=1

(
x+
i ri2 − x

−
i ri3

)
,

r3(x) =

n∑
i=1

(
x+
i ri3 − x

−
i ri2

)
, r4(x) =

n∑
i=1

(
x+
i ri4 − x

−
i ri1

)
with x+

i = max{xi, 0}, and x−i = max{−xi, 0}.

Proof. Since the nominal possibility distributions Tra(ri1, ri2, ri3, ri4)’s are mutually independent (see
[15]), for any nonzero real numbers xi’s, the linear combination

∑n
i=1 xiξ̃i has the following nominal

possibility distribution Tra(r1(x), r2(x), r3(x), r4(x)).
Furthermore, for any z ∈ [r1(x), r2(x)], there exist real numbers zi’s such that z =

∑n
i=1 xizi and

P̃os{ξ̃ = z} =
n

min
i=1

P̃osi{ξ̃i = zi}.

Since the secondary distribution function of ξ̃i is

P̃osi{ξ̃i = zi} =

[
z − r1(x)

r2(x)− r1(x)
− θil

z − r1(x)

r2(x)− r1(x)
,

z − r1(x)

r2(x)− r1(x)
+ θir

r2(x)− z
r2(x)− r1(x)

]
for i = 1, 2, . . . , n, by the logic arithmetic of interval numbers on unit interval [0,1], one has

P̃os{ξ̃ = z} =

[
z − r1(x)

r2(x)− r1(x)
− θl

z − r1(x)

r2(x)− r1(x)
,

z − r1(x)

r2(x)− r1(x)
+ θr

r2(x)− z
r2(x)− r1(x)

]
,

where θl = max1≤i≤n θil and θr = min1≤i≤n θir. The cases z ∈ [r2(x), r3(x)] and z ∈ [r3(x), r4(x)] can be
proved similarly, which completes the proof of theorem.
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As a consequence of Theorem 1, one has the following result:

Corollary 1. Let ξ̃i ∼ T̃ri(ri1, ri2, ri3; θil, θir) be GPIV trapezoidal fuzzy variables for i ≤ n. Suppose the
nominal possibility distributions T̃ri(ri1, ri2, ri3)’s are mutually independent, and xi’s are real numbers.
Then one has ξ̃ =

∑n
i=1 xiξ̃i ∼ T̃ri(r1(x), r2(x), r3(x); θl, θr), where the parameters θl = max1≤i≤n θil,

θr = min1≤i≤n θir, and

r1(x) =

n∑
i=1

(
x+
i ri1 − x

−
i ri3

)
, r2(x) =

n∑
i=1

xiri2, r3(x) =

n∑
i=1

(
x+
i ri3 − x

−
i ri1

)
with x+

i = max{xi, 0}, and x−i = max{−xi, 0}.
The following theorem discusses the linear combination of GPIV normal fuzzy variables:

Theorem 2. Let η̃i ∼ Ñor(µi, σ
2
i ; θil, θir) be GPIV normal fuzzy variables for i ≤ n. Suppose the nominal

possibility distributions Nor(µi, σ
2
i )’s are mutually independent, and xi’s are real numbers. Then one has

η̃ =
∑n
i=1 xiη̃i ∼ Ñor(a(x), σ2(x); θl, θr) with the parameters a(x) =

∑n
i=1 xiµi, σ(x) =

∑n
i=1 xiσi,

θl = max1≤i≤n θil and θr = min1≤i≤n θir.

Proof. Since the nominal possibility distributions Nor(µi, σ
2
i )’s are mutually independent (see [15]),

for any real numbers xi’s, the linear combination η̃ =
∑n
i=1 xiη̃i has norminal possibility distribution

Nor(a(x), σ2(x)) with parameters a(x) =
∑n
i=1 xiµi, and σ(x) =

∑n
i=1 xiσi.

Furthermore, for any z ∈ <, there exist real numbers zi’s such that z =
∑n
i=1 xizi and

P̃os{η̃ = z} =
n

min
i=1

P̃osi{η̃i = zi}.

Since the secondary possibility distribution P̃osi{η̃i = zi} is the following subinterval of [0, 1],[
exp{−1

2
(
z − a(x)

σ(x)
)2} − θil exp{−1

2
(
z − a(x)

σ(x)
)2}, exp{−1

2
(
z − a(x)

σ(x)
)2}+ θir(1− exp{−1

2
(
z − a(x)

σ(x)
)2})

]
for i = 1, 2, . . . , n, by the logic arithmetic of interval numbers on unit interval [0,1], the secondary
possibility distribution P̃os{η̃ = z} is the following subinterval of [0, 1],[

exp{−1

2
(
z − a(x)

σ(x)
)2} − θl exp{−1

2
(
z − a(x)

σ(x)
)2}, exp{−1

2
(
z − a(x)

σ(x)
)2}+ θr(1− exp{−1

2
(
z − a(x)

σ(x)
)2})

]
where θl = max1≤i≤n θil and θr = min1≤i≤n θir. The proof of theorem is complete.

Finally, the following theorem deals with the positive linear combination of generalized PIV Gamma
fuzzy variables:

Theorem 3. Let ζ̃i ∼ G̃am(r, λi; θil, θir) be GPIV Gamma fuzzy variables for i ≤ n. Suppose the nominal
possibility distributions Gam(r, λi)’s are mutually independent, and xi’s are positive real numbers. Then
ζ̃ =

∑n
i=1 xiζ̃i ∼ G̃am(r, λ(x); θl, θr) with the parameters λ(x) =

∑n
i=1 xiλi, θl = max1≤i≤n θil and

θr = min1≤i≤n θir.

Proof. Since the nominal possibility distributions Gam(r, λi)’s are mutually independent in the sense
of [15], for any nonzero real numbers xi’s, the linear combination

∑n
i=1 xiζ̃i has nominal possibility

distribution Gam(r, λ(x)) with parameter λ(x) =
∑n
i=1 xiλi. Furthermore, for any z ∈ <, there exist real

numbers zi’s such that z =
∑n
i=1 zi and P̃os{ζ̃ = z} = minni=1 P̃osi{ζ̃i = zi}.

Since the secondary possibility distribution P̃osi{ζ̃i = zi} is the following subinterval of [0, 1],[
(
t

λr
)r exp{r − t

λ
} − θil(

t

λr
)r exp{r − t

λ
}, ( t

λr
)r exp{r − t

λ
}+ θir(1− (

t

λr
)r exp{r − t

λ
})
]

for i = 1, 2, . . . , n, by the logic arithmetic of interval numbers on unit interval [0,1], the secondary
possibility distribution P̃os{ζ̃ = z} is the following subinterval of [0, 1],[

(
t

λr
)r exp{r − t

λ
} − θl(

t

λr
)r exp{r − t

λ
}, ( t

λr
)r exp{r − t

λ
}+ θr(1− (

t

λr
)r exp{r − t

λ
})
]
,

where θl = max1≤i≤n θil and θr = min1≤i≤n θir. The proof of theorem is complete.



Journal of Uncertain Systems, Vol.11, No.2, pp.154-160, 2017 159

As immediate consequence of Theorem 3, we have the following results about GPIV Erlang and
exponential fuzzy variables:

Corollary 2. Let ζ̃i ∼ Ẽrl(ρi, κ; θil, θir) be GPIV Erlang fuzzy variables for i ≤ n. Suppose the Erlang
possibility distributions Erl(ρi, κ)’s are mutually independent, and xi’s are posotive real numbers. Then
ζ̃ =

∑n
i=1 xiζ̃i ∼ Ẽrl(ρ(x), κ; θl, θr) with the parameters ρ(x) =

∑n
i=1 xiρi, θl = max1≤i≤n θil and θr =

min1≤i≤n θir.

Corollary 3. Let ζ̃i ∼ Ẽxp(ρi; θil, θir) be GPIV expotential fuzzy variables for i ≤ n. Suppose the
expotential possibility distributions Exp(ρi)’s are mutually independent, and xi’s are positive real numbers.
Then ζ̃ =

∑n
i=1 xiζ̃i ∼ Ẽxp(ρ(x); θl, θr) with the parameters ρ(x) =

∑n
i=1 xiρi, θl = max1≤i≤n θil and

θr = min1≤i≤n θir.

5 Conclusions and Future Research

This paper addressed the arithmetic of GPIV fuzzy variables in fuzzy possibility theory, and obtained
the following major results:

Firstly, several new GPIV fuzzy variables were defined, including GPIV normal, Gamma, Erland and
exponential fuzzy variables.

Secondly, the arithmetic about the linear combinations of common GPIV fuzzy variables were studied
and several useful theoretical results were obtained (see Theorems 1–3 and Corollaries 1–3).

Along this direction, the credibility distribution functions for selections of GPIV fuzzy variables [8],
and the credibilistic comonotonicity for GPIV fuzzy vector [9] are important issues in our future research.
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