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Abstract

Recently, a new inferential models approach has been proposed for statistics. Specifically, this approach
provides a new random-set-based way to come up with confidence regions. In this paper, we show that
the confidence regions obtained by using the main version of this new methodology can also be naturally
obtained directly, without invoking random sets.
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1 Finding Confidence Regions: Formulation of the Problem

Finding the confidence interval. We have a family of distributions fθ(x) characterized by a parameter (or
parameters) θ ∈ Θ. We have a sample x1, . . . , xn from a distribution fθ(x) corresponding to some unknown
value of this parameter. Our task is to extract information about θ from the sample.

Let α > 0 be a real number. A function C that maps a sample x = (x1, · · · , xn) to subsets of the set
Θ is called a confidence region C(x) if for every θ ∈ Θ, the actual value θ is contained in the set C(x) with
probability ≥ 1− α (see, e.g., [5]):

Prob(θ ∈ C(x)) ≥ 1− α.

Comment. Often, confidence regions are formed based on a sufficient statistic s(x).

Inferential models approach to finding confidence regions. Recently, a new inferential models approach
has been proposed for designing confidence regions; see, e.g., [1, 2, 3] and references therein. This approach
based on random sets; see, e.g., [4].

What we do in this paper. In this paper, we show that the confidence regions obtained by using the main
version of the inferential models approach can also be derived in a straightforward way, without a need to
invoke random sets.

2 How Confidence Regions are Designed in Inferential Models Ap-
proach: A Brief Reminder

First step of the inferential models approach: general idea. The inferential model approach start
with representing the available statistical information – in particular, information about the value s of the
sufficient statistic s(x) – as s = a(θ, U), where U is a random variable with a known probability distribution.

This formula for the random variable s is called an association.

First step of the inferential models approach: main version. In the main version, as the variable U ,
the authors of the inferential models approach propose to take a variable uniformly distributed on the interval
[0, 1].
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For such U , to represent a general probability distribution in the desired form, we can use the known fact
that each such variable, with the cumulative distribution function (cdf) F (z), can be represented as F−1(U),
where F−1(z) denotes an inverse function. This easy-to-check fact is one of the main ways to simulate random
variables.

In our case, the distribution of s (depending on θ) has the cdf Gθ(s). Thus, the corresponding model has
the form s = G−1

θ (U).

Second step of the inferential models approach: selecting a random set. Once the have formulated
the available statistical information in terms of an inferential model, the next step is to select an appropriate
random set on the set of all values of U – i.e., a probability distribution on the class of all subsets of the range
of U .

In the main version, the following family of sets is selected:

S(U)
def
= {u : |u− 0.5| ≤ |U − 0.5|},

where U is uniformly distributed on the interval [0, 1]. This set depends only on the value |U − 0.5|; so, since
|(1− U)− 0.5| = |0.5− U | = |U − 0.5|, we conclude that S(U) = S(1− U). Thus, it is sufficient to describe
such sets for U ∈ [0.5, 1].

Each such value can be described as U = 0.5+β/2, where β ∈ [0, 1] is uniformly distributed on the interval
[0, 1]. The corresponding set S(U) takes the form

Sβ
def
=

[
1

2
− β

2
,
1

2
+

β

2

]
.

In the following text, this is the form that we will use.

Third step of the inferential model approach. On the third step, for each value u, we define Θs(u)
def
=

{θ : s = a(θ, u)} and then, for each set S, we define Θs(S)
def
=
∪

u∈S

Θs(u).

In our example, Θs(u)={θ : s = G−1
θ (u)}, i.e.,

Θs(u) = {θ : Gθ(s) = u}.

Correspondingly, we have ΘS(u) = {θ : Gθ(s) ∈ S}. So, for sets

Sβ =

[
1

2
− β

2
,
1

2
+

β

2

]
,

we have

ΘS(u) =

{
θ :

1

2
− β

2
≤ Gθ(s) ≤

1

2
+

β

2

}
.

Fourth step of the inferential models approach: computing the plausibility function. On the
fourth step, we compute the plausibility

pls(θ)
def
= Prob(θ ∈ Θs(S)},

where the probability is taken over the random set S(U).
In our case, the condition θ ∈ Θs(Sβ) is equivalent to |Gθ(s) − 0.5| ≤ β/2, i.e., to β ≥ 2 · |Gθ(s) − 0.5|.

Since β is uniformly distributed on the interval [0, 1], the probability for β to satisfy this inequality is equal
to the length of the interval [2 · |Gθ(s)− 0.5|, 1] formed by all values β that satisfy this inequality. So,

pls(θ)=Prob(θ ∈ Θs(S)) = 1− 2 · |Gθ(s)− 0.5|.

Final step of the inferential models approach: designing the confidence regions. According to the
inferential models approach, for each α from the interval (0, 1), we select the region {θ : pls(θ) ≥ α}.

For the above specific expression for plausibility, the inequality pls(θ) ≥ α takes the form

1− 2 · |Gθ(s)− 0.5| ≥ α.
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This inequality is equivalent to 1− α ≥ |Gθ(s)− 0.5|, i.e., to

0.5− α

2
≥ |Gθ(s)− 0.5|.

An absolute value |z| of any number is equal to max(z,−z). Thus, the requirement

0.5− α

2
≥ |z|

is equivalent to requiring that

0.5− α

2
≥ z and 0.5− α

2
≥ −z.

From

0.5− α

2
≥ Gθ(s)− 0.5,

we get G−1
θ (s) ≤ 1− α/2. From

0.5− α

2
≥ 0.5−Gθ(s),

we get α/2 ≤ Gθ(s). Thus, the condition pls(θ) ≥ α is equivalent to the double inequality

α

2
≤ Gθ(s) ≤ 1− α

2
.

So, the inferential models approach leads to following confidence region.

Resulting confidence regions. According to the main version of the inferential models approach, for each
α, we select the following confidence region:

C(s) =
{
θ :

α

2
≤ Gθ(s) ≤ 1− α

2

}
.

3 A Simplified Way to Derive the Corresponding Confidence Re-
gions

Let us show that the confidence regions designed in the main version of the inferential models approach can
be derived in a much simpler way, without the need to invoke random sets.

Indeed, for each θ ∈ Θ, based on the following facts:

• that each xi is distributed according to the distribution fθ(xi) and

• that different xi are independent random variables,

we can determine the resulting distribution for s(x). Let us denote the corresponding cumulative distribution
function by Gθ(t). The probability distribution Gθ describes, for each θ, the probabilities that the statistic
s(x) takes different values.

In particular, for each θ, the probability that s(x) is smaller than or equal to G−1
θ (α/2) – i.e., equivalently,

that α/2 ≤ Gθ(s(x)) – is equal to α/2. Similarly, the probability that s(x) is grater than or equal to
G−1

θ (1− α/2) – i.e., equivalently, that Gθ(s(x)) ≤ 1− α/2 – is also equal to α/2.
Thus, for every θ,

Prob
(α
2
≤ Gθ(s(x)) ≤ 1− α

2

)
= 1− α.

Thus, as the desired confidence region, we can take the set

C(x) =
{
θ :

α

2
≤ Gθ(s(x)) ≤ 1− α

2

}
.

This is exactly what the main version of the inferential models approach is proposing.
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