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Abstract

How to predict nesting sites? Usually, all we know is the past nesting sites, and the fact that the
birds select a site which is optimal for them (in some reasonable sense), but we do not know the exact
objective function describing this optimality. In this paper, we propose a way to make predictions in such
a situation.
c⃝2017 World Academic Press, UK. All rights reserved.
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1 Formulation of the Biological Problem

We observe nesting sites for a certain bird species. Our goals (see, e.g., [4, 8]) are:

• to analyze which criteria are important for selecting nesting sites, and

• to come up with formulas that would enable us to predict nesting sites.

2 Reformulating the Problem in Precise Terms

General description. Let v1, . . . , vn be parameters that may influence the selection of the nesting site: e.g.,
elevation, hydrology, vegetation level, etc. For each geographic location x⃗, we record the values of all these
variables v1(x⃗), . . . , vn(x⃗).

Main assumption. We assume that the birds select a nesting site based on the values of (some of) these
quantities. Namely, a bird tries to maximize the value of some objective function F (v1, · · · , vn) depending on
these values.

Simplifying assumption. Let us start with the simplest case, when the objective function is linear, i.e.,
when

F (v1, · · · , vn) =
n∑

i=1

wi · vi (1)

for some weights wi.

We assume that each year, each of the observed nesting sites x⃗j has the largest possible value of this
objective function among all locations within the corresponding Voronoi cell Cj (see, e.g., [2, 3, 5] and
references therein) – i.e., among all locations x⃗ which are closer to x⃗j than to any other nesting location.

Under this assumption, we would like to find the weights w1, . . . , wn that best explain the observed nesting
sites.
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3 Analysis of the Problem

The fact that on the cell Cj , the linear function (1) attains its largest value at the site x⃗j , means that

n∑
i=1

wi · vi(x⃗j) ≥
n∑

i=1

wi · vi(x⃗) for all x⃗ ∈ Cj .

In other words, we should have

w⃗ · a⃗(x⃗) def
=

n∑
i=1

wi · ai(x⃗) ≥ 0, (2)

where we denoted w⃗ = (w1, · · · , wn), a⃗(x⃗) = (a1(x⃗), · · · , an(x⃗)), and ai(x⃗)
def
= vi(x⃗j)− vi(x⃗).

Similarly, we should have w · (−a(x⃗)) ≤ 0 for all x⃗.

4 How Can We Solve This Problem?

This can be reduced to a known problem. From the mathematical viewpoint, this problem is similar
to a linear discriminant analysis (see, e.g., [1, 6, 7]), when:

• we have two sets A and B and

• we need to select a hyperplane that separates them, i.e., a vector w⃗ for which w⃗ · a⃗ ≥ 0 for all a ∈ A
and w⃗ · b⃗ ≤ 0 for all b ∈ B.

In our case:

• A is the set of all the vectors a⃗(x⃗), and

• B is the set of all the vectors −a⃗(x⃗).

How to solve our problem. The standard way of solving this problem is to compute the mean µ⃗ of all
the vectors a⃗ ∈ A, the covariance matrix Σ, and then to take w⃗ = Σ−1µ⃗. So, in our case, we should do the
following:

• compute all the vectors a⃗(x) with components ai(x⃗) = vi(x⃗j)− vi(x⃗), where x⃗ ∈ Cj ; let N be the total
number of such vectors;

• compute the average µ⃗ =
∑

x⃗ a⃗(x⃗)/N of these vectors;

• compute the corresponding covariance matrix Σ with components

Σik =
1

N
·
∑
x⃗

(ai(x⃗)− µi) · (ak(x⃗)− µk); (3)

• compute the desired weights as w⃗ = Σ−1µ⃗, i.e., as a solution to a linear system Σw⃗ = µ⃗.

5 Auxiliary Question: How Can We Gauge the Quality of the Re-
sulting Prediction

To gauge the quality of the resulting prediction, for each cell Cj , we compute the location c⃗j at which the
weighted combination w⃗ · v⃗(x⃗) attains its maximum. The mean square distance between these predicted
nesting sites c⃗j and the actual nesting sites x⃗j can serve as a natural measure of prediction accuracy.
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