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Abstract

When the number of possible strategies is large, it is not computationally feasible to compute the opti-
mal strategy for the original game. Instead, we select our strategy based on an approximate approximate
description of the original game. The quality of the resulting strategy depends on which approximation
we select. In this paper, on an example of a simple game, we show how to find the optimal approximation,
the approximation whose use results in the best strategy.
c⃝2017 World Academic Press, UK. All rights reserved.

Keywords: Stackelberg game, patrolling game, optimal abstraction

1 Formulation of the Problem

Need for abstraction. Ideally, in a conflict situation, we should select a strategy which is optimal in some
reasonable sense. For example, in a zero-sum game, it makes sense to select a strategy that minimizes the
worst-case loss.

The more strategies we need to consider, the more computations we need to perform to find the optimal
strategy. When the number of strategies becomes large, it is often not feasible to exactly compute the optimal
strategy. In such situations, to produce a reasonable strategy, it makes sense to approximate the actual
difficult-to-analyze game with a simpler-to-analyze game that has fewer strategies. One of the natural ways
to come up with such an approximation is abstraction, when we divide all possible strategies into a small
number of groups, so that strategies within each group lead to approximately the same consequences. Then,
in the “abstracted” (simplified) game, we just select a group (instead of selecting an actual strategy); see,
e.g., [2, 3].

Which abstraction is the best? Of course, since we are using only an approximate description of the
actual game situation to come up with a strategy, the resulting strategy is only approximately optimal. The
quality of the resulting strategy depends on the choice of the abstraction. It is therefore desirable to find an
abstraction that results in the best possible performance.

What we do in this paper. In this paper, we solve the problem of selecting the best abstraction on the
example of a simple patrolling game.

2 1-D Patrolling Game: A Brief Description

Description of the game. Let us assume that have a 1-D area that we want to protect against an adversary:
e.g., a border segment. Points along this area will be marked by a parameter x that takes values between x
and x. For example, for border protection, x is the distance along the border.

We also assume that for each point x, we know the utility gain u(x) that the adversary will get if his
penetration at this point succeeds. This value may differ from one location to another. For example, in case
of border protection, a successive smuggling in an area with a smooth terrain will enable the adversary to
smuggle a larger amount than in an area with a harsher terrain – and thus, gain more utility.

To prevent the adversary’s attacks, we place agents along the 1-D area. The closer the agent to the
adversary, the less probable is the adversary’s success. For simplicity, let us assume that there is a threshold
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distance r such that the attack is prevented if and only if the distance between the adversary and the agent
does not exceed this threshold h.

We randomly allocate agents to different points x. Let ρa(x) be the probability density that describes the
corresponding agents’ distribution. This means that for a small distance ∆x, the probability of finding an
agent at locations between x and x+∆x is equal to ρa(x) ·∆x. Overall, we have na agents, so we must have∫ x

x

ρa(x) dx = na. (1)

We assume that the adversary knows our strategy, i.e., knows the values ρa(x). This is a reasonable
assumption, since the adversary can observe agents at different locations and thus, determine the frequencies
with which agents are posted to different locations. Such games in which the adversary knows the agent’s
strategy are known as Stackelberg games; see, e.g., [6].

Based on his knowledge, the adversary selects an attack location x at which his expected utility gain is
the largest possible. We assumed that we know the adversary’s gain in the situation when the adversary’s
attack at a point x is successful: this gain is equal to u(x). Under our assumptions, the probability of being
unsuccessful is equal to the probability to find an agent within a distance h from the point x, i.e., in the
interval [x − h, x + h] of width ∆x = 2h. Based on the probability density ρa(x) describing the agents’
appearance, we can therefore estimate the probability of thwarting an attack as the product 2h · ρa(x). Thus,
the probability of a successful attack is 1− 2h · ρa(x), and so, the expected gain of the adversary is equal to
the product (1− 2h · ρa(x)) · u(x).

For each selection of the agent distribution ρa(x), the adversary selects an attack location at which his
expected utility gain (1− 2h · ρa(x)) · u(x) is the largest possible. Thus, the adversary’s gain is equal to

max
x

(1− 2h · ρa(x)) · u(x). (2)

We select the agent distribution ρa(x) for which this gain is as small as possible:

max
x

(1− 2h · ρa(x)) · u(x) → min
ρa(x)

(3)

under the constraint that ∫
ρa(x) dx = 1. (4)

Known optimal strategy for the patrolling game. Let u0 denote the desired maximum

max
x

(1− 2h · ρa(x)) · u(x).

Then, we have
(1− 2h · ρa(x)) · u(x) ≤ u0 (5)

for all u.
For all the points x at which ρ(x) = 0, the gain is equal to u(x), so we have u(x) ≤ u0.
One can easily prove that in the optimal agent distribution,

(1− 2h · ρa(x)) · u(x) = u0 (6)

for all the points x ∈ [x, x] for which ρa(x) > 0. Indeed, if at some of such points x0, we have

(1− 2h · ρa(x0)) · u(x0) < max
x

(1− 2h · ρa(x)) · u(x), (7)

then we can decrease the density in the vicinity of this point x0 without changing the maximum, and distribute
these probabilities among all the points where the product (1− 2h · ρa(x)) · u(x) attains its maximum. This
will guarantee that the maximum adversary’s gain decreases.

So, the optimal solution is to select some threshold u0 and take ρ(x) = 0 for all values x for which u(x) < u0

and (1− 2h · ρa(x)) · u(x) = u0 for all other x. This equality implies that

1− 2h · ρa(x) =
u0

u(x)
, (8)
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hence
2h · ρa(x) = 1− u0

u(x)
(9)

and

ρa(x) =
1

2h
·
(
1− u0

u(x)

)
. (10)

The threshold u0 should be determined by the condition that
∫
ρa(x) dx = na, i.e., that∫

x:u(x)≥u0

1

2h
·
(
1− u0

u(x)

)
= na. (11)

The case that we will consider in this paper. In general, we may have points which are not worth
defending, i.e., for which the possible loss u(x) is so low, that we do not even bother sending agents there.

In many realistic important patrolling problems, however, we cannot ignore any of the points, so we have
ρa(x) > 0 for all x. This is the case that we consider in this paper. In this realistic case, we have u(x) ≥ u0

for all x, hence the equality (11) takes the form∫ x

x

1

2h
·
(
1− u0

u(x)

)
=

x− x

2h
− u0 ·

∫ x

x

1

u(x)
= na. (12)

Thus, in this case, we have

u0 =
(x− x)− 2na · h

h ·
∫ x

x

1

u(x)
dx

. (13)

Thus, the optimal strategy is to select the agent density (10), where the parameter u0 is determined by
the formula (13).

3 Approximations to the 1-D Patrolling Game: A Description

How to describe an approximation? As we have mentioned earlier, an approximation means that instead
of considering all possible values x, we divide the interval [x, x] into a small number of sub-zones, and, when
planning the agent distribution, only decide on the sub-zone – so that agents are uniformly distributed within
each sub-zone.

At some important locations, we may have a denser concentration of these sub-zones, in other locations,
we may have fewer sub-zones. Let us describe the distribution of sub-zones by the sub-zone density ρs(x)
that describes how many sub-zones per unit length we have at a location x. The overall number of sub-zones
should be equal to the the total number of sub-zones ns that our computational abilities allows us:∫

ρs(x) dx = ns. (14)

How to select a solution based on the approximate game? In the original game, for each location x,
we take into account the adversary’s gain u(x). In the approximate game, instead of a single value x, we need
to consider the whole sub-zone. By definition of the sub-zone density, a unit interval into ρs(x) sub-zones,
thus the width w of each sub-zone is equal to

w =
1

ρs(x)
. (15)

So, the distance from the midpoint to each of the endpoints of the zone is equal to half of this width, and
thus, instead of a single point x, we have a sub-zone

S =

[
x̃− 1

2ρs(x)
, x̃+

1

2ρs(x)

]
, (16)

where x̃ is the midpoint of this sub-zone.
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For different points x within this sub-zone, we have different values of adversary’s gain u(x) (and thus,
different values of our loss −u(x)). So, instead of a single value u(x), we now only know that the actual
(unknown) value u(x) belongs to the interval

[u, u] = {u(x) : x ∈ S} (17)

of possible values x from this sub-zone.
How can we make a decision in situations with such interval uncertainty? The way to make such decisions

was developed by a Nobelist Leo Hurwicz in the early 1950s [1, 4, 5]: he argued that in such situations, we
should optimize a weighted combination of the best-case gain and the worst-case gain, with weights adding
up to 1 and with the weight α at the best-case gain determined by the decision maker’s optimism-pessimism.

In our case, the best-case situation is when we have the smallest possible loss u and the worst-case situation
is when we have the largest possible loss u. So, Hurwicz’s recommendation means that in our decision making,
we should use the function

u∗(x) = α · u+ (1− α) · u = α ·min
x∈S

u(x) + (1− α) ·max
x∈S

u(x) (18)

which is constant on each sub-zone.

Formulation of the problem. By definition of an approximate game, we select the agent distribution ρ∗a(x)
based not on the actual utility function u(x), bur rather based on the piece-wise constant approximation
u∗(x).

The adversary knows this selection ρ∗a(x), so he selects an attack point for which his expected gain (1 −
2h · ρ∗a(x)) · u(x) is the largest possible. As a result, for each approximation density, the adversary’s gain is
equal to

max
x

(1− 2h · ρ∗a(x)) · u(x). (19)

Since we used an approximation, the resulting gain is, in general, larger, than in the ideal situation when we
have the optimal agent density. It is therefore desirable to select the sub-zone distribution ρs(x) for which
the adversary’s gain is the smallest possible:

max
x

(1− 2h · ρ∗a(x)) · u(x) → min
ρs(x)

. (20)

4 Analysis of the Problem: General Case

Let us first come up with explicit formulas for u∗(x). In this paper, we assume that the approximation
is reasonable, i.e., that the sub-zones are narrow. When the sub-zone is narrow, we can expand the value of
u(x) on each zone [x̃ − w, x̃ + w] into Taylor series and only keep linear terms in this expansion (and safely
ignore terms proportional to terms which are quadratic or of higher order with respect to w:

u(x) = u(x̃) + u′(x̃) ·∆x,

where ∆x
def
= x− x̃. In the sub-zone, the difference ∆x takes all possible values between −w/2 and w/2.

In this approximation, the function u(x) is linear on each sub-zone, and it is easy to find its smallest and
largest values:

u = u− |u′| · w
2

(21)

and
u = u+ |u′| · w

2
. (22)

Indeed, when the derivative u′ is positive, the maximum is attained when ∆x attains its largest possible value

∆x =
w

2
, (23)

and the minimum is attained when ∆x attains its smallest possible value

∆x = −w

2
. (24)
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When the derivative is negative, locations of the maximum and minimum switch places. In both cases, we
get the desired formula.

So, we get

u∗ = α ·
(
u− |u′| · w

2

)
+ (1− α) ·

(
u+ |u′| · w

2

)
= u− (2α− 1) · |u′| · w

2
. (25)

Our agent allocation is based on this approximate piece-wise constant utility function u∗(x).

What is the agent allocation ρ∗a(x) based on this approximate utility function u∗(x). According to
formulas (8) and (13), we have

1− 2h · ρ∗a(x) =
u∗
0

u∗(x)
, (26)

where

u∗
0 =

(x− x)− 2na · h

h ·
∫ x

x

1

u∗(x)
dx

. (27)

How much the adversary gains. On each zone, the adversary selects a point at which the expected gain
(1−2h·ρ∗a(x))·u(x) is the largest. The value (1−2h·ρ∗a(x)) is constant within the zone, so within each zone, the
adversary selects the point at which u(x) is the largest, i.e., the point x at which u(x) = u = u(x)+|u′(x)|·w/2.
For this point, the adversary’s gain is equal to (1− 2h · ρ∗a(x)) · u. From (26), we conclude that

(1− 2h · ρ∗a(x)) =
u∗
0

u∗(x)
, (28)

thus the adversary’s gain is equal to

u∗
0 ·

u(x)

u∗(x)
. (29)

Here,

u(x) = u(x) + |u′(x)| · w
2

(30)

and

u∗(x) = u(x)− (2α− 1) · |u′(x)| · w
2
, (31)

thus

u(x)

u∗(x)
=

u(x) + |u′(x)| · w
2

u(x)− (2α− 1) · |u′(x)| · w
2

=

1 +
|u′(x)|
u(x)

· w
2

1− (2α− 1) · |u
′(x)|
u(x)

· w
2

. (32)

For narrow w, when we can ignore terms which are quadratic and higher order in terms of w, this ratio is
equal to

u(x)

u∗(x)
= 1 + 2 · (1− α) · |u

′(x)|
u(x)

· w
2
. (33)

Since w = 1/ρs(x), the gain is thus equal to

u∗
0 ·
(
1 + (1− α) · |u

′(x)|
u(x)

· 1

ρs(x)

)
. (34)

This value characterizes the adversary’s gain for each sub-zone. Thus, the adversary will select a sub-zone at
which this value is the largest possible. The resulting gain is equal to

u∗
0 ·
(
1 + (1− α) ·max

x

|u′(x)|
u(x) · ρs(x)

)
. (35)
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Here, due to (13) and (27), we have

u∗
0 = u0 ·

∫ x

x

1

u(x)
dx∫ x

x

1

u∗(x)
dx

. (36)

Due to (25), we have

u∗(x) = u(x) ·
(
1− (2α− 1) · |u

′(x)|
u(x)

· w
2

)
= u(x) ·

(
1− 2α− 1

2
· |u′(x)|
u(x) · ρs(x)

)
. (37)

Thus, since the width w = 1/ρs(x) is small, we have

1

u∗(x)
=

1

u(x)
·
(
1 +

2α− 1

2
· |u′(x)|
u(x) · ρs(x)

)
=

1

u(x)
+

2α− 1

2
· |u′(x)|
u2(x) · ρs(x)

. (38)

Hence, ∫ x

x

1

u∗(x)
dx =

∫ x

x

1

u(x)
dx+

2α− 1

2
·
∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx, (39)

and ∫ x

x

1

u∗(x)
dx =

∫ x

x

1

u(x)
dx ·

1 +
2α− 1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

 . (40)

Thus, ∫ x

x

1

u∗(x)
dx∫ x

x

1

u(x)
dx

= 1 +
2α− 1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

, (41)

hence ∫ x

x

1

u(x)
dx∫ x

x

1

u∗(x)
dx

= 1− 2α− 1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

. (42)

So, due to (36), we have

u∗
0 = u0 ·

1− 2α− 1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

 . (43)

Substituting the expression (43) into the formula (35) and taking into account that terms proportional to
1/ρs(x) (i.e., to width of sub-zones) are small, we conclude that the adversary’s gain is equal to

u0 · (1 +G) (44)

where

G
def
= (1− α) ·max

x

|u′(x)|
u(x) · ρs(x)

− 2α− 1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

. (45)
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Resulting constraint optimization problem. To minimize the adversary’s gain, we need to find the sub-
zone distribution function ρs(x) that minimizes the expression (45) under the constraint (14), that expresses

the fact that the overall number of sub-zones is equal to ns:

∫ x

x

ρs(x) dx = ns.

How we will solve this problem. The minimized function (45) is the sum of two terms: the maximum
term and the integral terms. To solve the corresponding minimization problem, we first consider the cases
when one of these terms is equal to 0. In each of the corresponding two cases, the minimized function is
easier-to-describe and thus, the corresponding minimization problem is easier to solve.

After that, we will show how the solutions to these two simplified cases can be combined to produce a
solution to the general case.

5 First Special Case: α = 0.5

Let us first consider the case when α = 0.5, i.e., when we consider a midpoint of an interval in case of
uncertainty.

In this case, the integral term in the formula (45) is equal to 0, and thus, the minimized function (45)
takes the simplified form

G = 0.5 ·max
x

|u′(x)|
u(x) · ρs(x)

. (46)

Similarly to Section 2, we can conclude that the optimal sub-zone distribution corresponds to the case when
the maximized ratio

|u′(x)|
u(x) · ρs(x)

(47)

is constant, i.e., when

ρs(x) = c · |u
′(x)|
u(x)

. (48)

This makes sense:

• When the derivative u′(x) is small, i.e., when the gain u(x) practically does not change, we can have
fewer sub-zones of larger size, since for all x from this sub-zone we will have, in effect, the same gain
value u(x).

• On the other hand, when the derivative u′(x) is large, we need narrower sub-zones if we want to
accurately represent the utility function u(x) – and thus, we need more frequent sub-zones.

Since
u′(x)

u(x)
=

d

dx
ln(u(x)) (49)

and
1

ρs(x)
= w, (50)

the product
|u′(x)|

u(x) · ρs(x)
(51)

is equal to
d

dx
ln(u(x)) · w, (52)

i.e., in the first approximation, to the absolute value of the difference between the values of

ln
(
u
(
x− w

2

))
(53)

and
ln
(
u
(
x+

w

2

))
(54)
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on the two sides of the sub-zone. For each sub-zone, this difference should be the same. This difference is the
logarithm of the ratio

u
(
x+

w

2

)
u
(
x− w

2

) . (55)

Thus, we should select zones in which the ratio of utilities at the endpoints is a constant C > 1.
So, for the case when α = 0.5, we arrive at the following optimal location of sub-zones (i.e., optimal

approximation):

• We start with the leftmost location x1 = x. This location is the left-end point of the first zone.

• Its right-hand point is the value x2 at which u(x2) = C · u(x1).

• Then, we take x3 at which u(x3) = C · u(x2), etc.

• When we reach the maximum, we start decreasing the utility value by the factor of C.

In short, the endpoints of the sub-zones are points at which the utility u(x) take values from a geometric
progression u(x), C · u(x), C2 · u(x), etc.

6 Second Special Case: α = 1

In the case when α = 1, i.e., when we only consider the worst-case scenarios when making a decision, the
maximum term in the formula (45) disappears, and thus, the minimized function (45) takes the simplified
form

G = −1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

. (56)

In this expression, the denominator ∫ x

x

1

u(x)
dx (57)

does not depend on our choice of the sub-zone distribution function ρs(x), so minimizing the expression (56)
is equivalent to maximizing the integral ∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx (58)

under the constraint ∫ x

x

ρs(x) dx = ns. (59)

To solve this constraint maximization problem, we can use the Lagrange multiplier technique and optimize
the expression ∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx+ λ ·

(∫ x

x

ρs(x) dx− ns

)
(60)

for an appropriate Lagrange multiplier λ. Differentiating the unconstrained objective function (60) with
respect to ρs(x) and equating derivatives to 0, we conclude that

− |u′(x)|
u2(x) · ρ2s(x)

+ λ = 0, (61)

hence

ρs(x) = c ·
√
|u′(x)|
u(x)

(62)

for an appropriate constant c. This constant can be easily determined from the condition (59).
It is worth mentioning that the resulting formula (62) is similar to the formula (48) corresponding to the

case α = 0.5:
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• in both cases, the density ρs(x) of sub-zones is inverse proportional to the utility u(x), and

• in both case, the density ρs(x) increases as the utility’s non-homogeneity |u′(x)| increases.

The difference between these two formulas is that:

• when α = 0.5, the density of sub-zones is proportional to the non-homogeneity itself: ρs(x) ∼ |u′(x)|,
while

• when α = 1, the density of sub-zones grows slower, proportionally to the square root of non-homogeneity:
ρs(x) ∼

√
|u′(x)|.

Let us now show how these two special cases can be combined into a generic case.

7 General Cases: 0 ≤ α ≤ 1

Analysis of the problem. We would like to find the sub-zone density ρs(x) that minimizes the loss function
(45). This loss function is the sum of two terms: the maximum term and the integral term.

Let us denote the optimal value of the maximum term by cmax:

cmax
def
= max

x

|u′(x)|
u(x) · ρs(x)

. (63)

For the locations x at which this maximum is attained, i.e., at which

|u′(x)|
u(x) · ρs(x)

= cmax, (64)

we thus have

ρs(x) = Cmax ·
|u′(x)|
u(x)

, (65)

where Cmax
def
= 1/cmax.

For the locations x at which the maximum is not attained, i.e., at which

|u′(x)|
u(x) · ρs(x)

< cmax (66)

and where small changes in ρs(x) do not affect the maximum part of the objective function, we need to select
the values of ρs(x) at these locations so as to minimize the integral term

−2α− 1

2
·

∫ x

x

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

(67)

under the constraint

∫ x

x

ρs(x) = ns. Let us denote the set of all locations x that satisfy the inequality (66)

by X. Since we are only looking for the values ρs(x) for x ∈ X, this means that we need to minimize the
corresponding part of the integral term, i.e., the term

−2α− 1

2
·

∫
X

|u′(x)|
u2(x) · ρs(x)

dx∫ x

x

1

u(x)
dx

(68)

under the constraint ∫
X

ρs(x) = const. (69)
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Similarly to the case α = 1, we can use the Lagrange multiplier method to solve this constraint optimization
problem and thus conclude that for x ∈ X, we have

ρs(x) = Cint ·
√

|u′(x)|
u(x)

(70)

for an appropriate constant Cint.
These values must satisfy the inequality (66), so we must have

ρs(x) > Cmax ·
|u′(x)|
u(x)

(71)

and thus,

Cint ·
√
|u′(x)|
u(x)

> Cmax ·
|u′(x)|
u(x)

. (72)

Multiplying both sides of this inequality by u(x) and dividing by
√
|u′(x)|, we get an equivalent inequality

Cint > Cmax ·
√

|u′(x)|, (73)

squaring which we get

|u′(x)| <
(

Cint

Cmax

)2

. (74)

This is thus the threshold for allocating locations x either to the set X or to the set of points where the
maximum is attained:

• when the absolute value |u′(x)| of the derivative exceeds the threshold, the maximum is attained and
thus, we get the formula (65);

• on the other hand, when the absolute value of the derivative is smaller than the threshold, we use the
formula (70).

So, we arrive at the following solution to our optimization problem.

Main result for the 1-D case: optimal abstraction. Let us assume that we know the gain function u(x)
on the interval [x, x]. Instead of using the original gain function u(x), we consider an abstraction, i.e.:

• we divide the interval [x, x] into ns sub-zones, and

• we only consider sub-zones when deciding on the best patrolling strategy.

In this situation, the optimal sub-zone density ρs(x) – i.e., the sub-zone density for which the expected losses
are the smallest – can be obtained if we select two parameters Cint and Cmax and take

ρs(x) = Cint ·
√
|u′(x)|
u(x)

when |u′(x)| <
(

Cint

Cmax

)2

; (75)

ρs(x) = Cmax ·
|u′(x)|
u(x)

when |u′(x)| ≥
(

Cint

Cmax

)2

. (76)

The parameters Cint and Cmax should be selected in such a way that∫ x

x

ρs(x) dx = ns. (77)

Under this constraint, we must select the values Cint and Cmax that minimizes the functional (45), in which
the optimism-pessimism parameter α describes the decision maker’s degree of optimism.
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8 Multi-D Patrolling Game

Description of the game. Let us now consider a more general case, when the agents need to patrol a multi-D
area A. For each location x = (x1, · · · , xd) within this area, we know the value u(x) that the adversary gains
if he succeeds in attacking at this point. Similarly to the 1-D case, we assume that the adversary succeeds if
there is no agent within a certain distance h from the attack point.

Our objective is to find the distribution of the agents ρa(x) that will minimize our expected loss, under
the constraint that the overall number of agents is na:∫

A

ρa(x) dx = na. (78)

For each distribution, the adversary’s gain is equal to

max
x

(1− Vd · hd · ρa(x)) · u(x), (79)

where Vd is the d-dimensional volume of a unit ball B = {x : ∥x∥ ≤ 1}:

• for d = 1, we have V1 = 2, so the length of an interval of radius h is equal to 2h;

• for d = 2, we have V1 = π, so the area of a circle of radius h is equal to π · h2;

• for d = 3, we have V3 = 4π/3, so the volume of a ball of radius h is equal to h3 · 4π/3; etc.

Optimal strategy for the multi-D patrolling game. Similarly to the 1-D case, in situations in which there
are no not-worth-defending locations, the optimal patrolling strategy can be determined from the condition
that

1− Vd · hd · ρa(x) =
u0

u(x)
, (80)

i.e.,

ρa(x) =
1

Vd · hd
·
(
1− u0

u(x)

)
, (81)

where the threshold u0 is determined by the condition (78), as

u0 =
VA − 2na · Vd · hd

Vd · hd ·
∫
A

1

u(x)
dx

, (82)

where VA is the volume of the area A.

How to describe approximations. Instead of considering individual locations, we divide the area A into
rectangular boxes

[x1, x1]× · · · × [xd, xd]. (83)

To describe the distribution of such boxes, we now need to have d different density functions:

• the function ρ1(x) describes how many intervals [x1, x1] we have per unit length at location x;

• the function ρ2(x) describes how many intervals [x2, x2] we have per unit length at location x; etc.

The x1-width of each box is thus equal to 1/ρ1(x), the x2-width of each box is equal to 1/ρ2(x), etc. Thus,
the volume V (x) of each box (83) is equal to the product of these widths:

V (x) =
d∏

i=1

1

ρi(x)
. (84)

In a unit volume, we can thus place

1

V (x)
=

d∏
i=1

ρi(x) (85)
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such boxes. The overall number of boxes can be obtained by adding up these numbers for all locations, i.e.,
as an integral of this product over the area A. This overall number should be equal to the largest number of
na of boxes that we can computationally handle when selecting a strategy, so we must have∫

A

d∏
i=1

ρi(x) dx = nb. (86)

Analysis of the problem. Similarly to the 1-D case, we can represent the i-th coordinate xi of each point
x in a box as xi = x̃i + ∆xi, where x̃i is the midpoint of the i-th interval [xi, xi] and |∆xi| ≤ wi/2, where
wi = 1/ρi(x) is the width of this interval.

In the linear approximation, we have

u(x1, · · · , xn) = u(x̃1, · · · , x̃n) +

d∑
i=1

∂u

∂xi
·∆xi. (87)

The largest possible value u of the gain function on this box and its smallest possible value u thus have the
form

u = u+D(x̃), u = u−D(x̃), (88)

where

D(x̃)
def
=

1

2
·

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρi(x)
. (89)

So, when we select a patrolling strategy, we use the following Hurwicz optimism-pessimism combination:

u∗ = α · u+ (1− α) · u = u(x)− (2α− 1) ·D(x). (90)

Based on this approximate gain function u∗(x), we select the agent allocation ρ∗a(x) for which

1− Vd · hd · ρ∗a(x) =
u∗
0

u∗(x)
, (91)

where

u∗
0 =

VA − na · Vd · hd

Vd · hd ·
∫
A

1

u∗(x)
dx

. (92)

On each zone, the adversary selects a point x at which the expected gain

(1− Vd · hd · ρ∗a(x)) · u(x) (93)

is the largest. The value (1− Vd · hd · ρ∗a(x)) is constant within the zone, so within each zone, the adversary
selects the point at which u(x) is the largest, i.e., the point x at which u(x) = u(x) = u(x) +D(x).

Similarly to the 1-D case, we thus conclude that the adversary’s gain is equal to

u0 · (1 +G), (94)

where

G = (1− α) ·max
x

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρi(x)

u(x)
− 2α− 1

2
·

∫
A

1

u2(x)
·

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρi(x)
dx∫

A

1

u(x)
dx

. (95)

We need to minimize this gain based on the condition that∫
A

(
d∏

i=1

ρi(x)

)
dx = nb. (96)
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For each location x, we need to select the values of d functions ρ1(x), . . . , ρd(x). The only constraint that
comes from (96) is the constraint on their product:

d∏
i=1

ρi(x) = c (97)

for some constant c. The only effect of all these d values ρ1(x), . . . , ρd(x) on the objective function G is via
the combination

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρi(x)
(98)

Thus, for each x, we need to optimize the combination (98) under the constraint (97). For this constraint
optimization problem, the Lagrange multiplier method leads to the need to optimize the following objective
function:

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρi(x)
+ λ ·

(
d∏

i=1

ρi(x)− c

)
. (99)

Differentiating this expression with respect to ρi(x) and equating the derivative to 0, we conclude that

−
∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρ2i (x)
+ λ · 1

ρi(x)
·

d∏
j=1

ρj(x) = 0, (100)

hence

ρi(x) = c(x) ·
∣∣∣∣ ∂u∂xi

∣∣∣∣ , (101)

where

c(x)
def
=

1

λ ·
d∏

j=1

ρj(x)

(102)

does not depend on i. For the functions (101), we have

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ · 1

ρi(x)
=

d

c(x)
, (103)

thus the objective function G takes the form

G = (1− α) · d ·max
x

1

c(x) · u(x)
− 2α− 1

2
· d ·

∫
A

1

c(x) · u2(x)
dx∫

A

1

u(x)
dx

. (104)

In terms of the new unknown c(x), the constraint (96) takes the form

∫
A

cd(x) ·

(
d∏

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
)

dx = nb. (105)

For the locations x at which the maximum is attained, i.e., at which

1

c(x) · u(x)
= cmax

def
= max

x

1

c(x) · u(x)
, (106)

we get

c(x) =
1

cmax · u(x)
, (107)
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i.e.,

c(x) =
Cmax

u(x)
, (108)

where Cmax
def
= 1/cmax. For the setX of locations x at which the maximum is not attained, Lagrange multiplier

method leads to optimizing the combination

−2α− 1

2
· d ·

∫
X

1

c(x) · u2(x)
dx∫

A

1

u(x)
dx

+ λ ·

(∫
A

cd(x) ·

(
d∏

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
)

dx− nb

)
. (109)

Differentiating this expression with respect to c(x) and equating the derivative to 0, we conclude that

const · 1

c2(x) · u2(x)
+ λ · d · cd−1(x) ·

d∏
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ = 0, (110)

hence

cd+1(x) =
const

u2(x) ·
d∏

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ , (111)

and

c(x) =
Cint

(u(x))2/(d+1) ·
(

d∏
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣)1/(d+1)
(112)

for some constant Cint.
For this value, the fact that the maximum is not attained means that c(x) < Cmax/u(x), i.e., that

Cint

(u(x))2/(d+1) ·
(

d∏
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣)1/(d+1)
<

Cmax

u(x)
. (113)

Raising both sides by the power d+ 1, we get an equivalent inequality

(Cint)
d+1

u2(x) ·
d∏

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣ <
(Cmax)

d+1

(u(x))d+1
, (114)

i.e., equivalently,
d∏

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
(u(x))d−1

<

(
Cint

Cmax

)d+1

. (115)

Thus, we arrive at the following formulas for the optimal abstraction.

Main result for the multi-D case: optimal abstraction. Let us assume that we know the gain function
u(x) on the d-dimensional area A. Instead of using the original gain function u(x), we consider an abstraction,
i.e.:

• we divide the area A into boxes
[x1, x1]× · · · × [xd, xd], (116)

and

• we only consider boxes when deciding on the best patrolling strategy.

To describe the boxes, we use d density functions ρ1(x), . . . , ρd(x):
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• the function ρ1(x) describes how many intervals [x1, x1] we take per unit intervals in the vicinity of a
given location x,

• the function ρ2(x) describes how many intervals [x2, x2] we take per unit intervals in the vicinity of a
given location x, etc.

In this situation, the optimal densities ρi(x) have the form

ρi(x) = c(x) ·
∣∣∣∣ ∂u∂xi

∣∣∣∣ . (117)

To find the function c(x), we need to select two parameters Cint and Cmax and take

c(x) =
Cmax

u(x)
when

d∏
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
(u(x))d−1

≥
(

Cint

Cmax

)d+1

; (118)

c(x) =
Cint

(u(x))2/(d+1) ·
(

d∏
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣)1/(d+1)
otherwise. (119)

The parameters Cint and Cmax should be selected in such a way that∫
A

(
d∏

i=1

ρi(x)

)
dx =

∫
A

(c(x))d ·

(
d∏

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
)

dx = nb. (120)

Under this constraint, we must select the values Cint and Cmax that minimize the functional (104), in which
the optimism-pessimism parameter α describes the decision maker’s degree of optimism.
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