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Abstract

We investigate some new properties of intuitionistic fuzzy competition graphs. We present the con-
struction of intuitionistic fuzzy competition graph. We study new type of intuitionistic fuzzy graphs by
considering intuitionistic fuzzy open neighbourhood and intuitionistic fuzzy closed neighbourhood of the
vertices. We also present an application of intuitionistic fuzzy competition graphs.
c©2017 World Academic Press, UK. All rights reserved.
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1 Introduction

The intimation of competition graphs was first popularized by Cohen [11], in 1968, in association with a

problem in ecology. Suppose a digraph
−→
G = (X ,

−→
E ), which harmonizes to a food cycle. A vertex x ∈ X

indicates a specie in the food cycle and an arc
−−−→
(x, a) ∈

−→
E shows that x feeds on the species a. If two species

x and y have a common feed a, they will strive for the feed a. Depending on this homology, Cohen stated a
graph which shows the relations of competition among the species in the food cycle. The competition graph

C(
−→
G ) of a digraph

−→
G = (X ,

−→
E ) is an undirected graph which has the same vertex set X as in

−→
G and has an

edge between two distinct vertices x, y ∈ X if there exists a vertex a ∈ X and arcs
−−−→
(x, a),

−−−→
(y, a) ∈

−→
E , that

is, if x and y have a common neighbour, then there is an edge between x and y.
Nowadays, science and technology are featured with complex processes and phenomena for which complete

information is not always reachable. For such cases, to handle types of systems containing elements of
uncertainty, mathematical models are developed. A variety of these models is based on fuzzy sets, which is
an extension of the ordinary set theory. A fuzzy set gives the degree of membership of an object in a given
set. Atanassov [7] generalized this idea and popularized the notion of intuitionistic fuzzy sets. He introduced
a new component, degree of non-membership, in the definition of a fuzzy set with the condition that sum of
two degrees must be less than or equal to one. In modeling real time systems where the level of information
inherent in the system varies with different levels of precision, fuzzy models are finding an increasing number
of applications. Fuzzy models are becoming fruitful because of their aim in reducing the distinctions between
the conventional numerical models used in sciences and engineering and the symbolic models used in expert
systems. Initial definition of a fuzzy graph [14], given by Kaufmann, was based on Zadeh’s fuzzy relations [26].
The fuzzy relations between fuzzy sets were also investigated by Rosenfeld and he developed the structure
of fuzzy graphs, obtaining analogs of certain graph theoretical concepts. Later on, Koczy [15] introduced
the concepts of fuzzy edge graphs, fuzzy vertex graphs and fuzzy graphs to present some networks models.
Mordeson and Nair [16] studied several concepts of fuzzy graphs. The concept of intuitionistic fuzzy relations
and intuitionistic fuzzy graphs were introduced by Shannon and Atanassov [24]. Operations on intuitionistic
fuzzy graphs were defined by Parvathi et al. [18]. Karunambigai et al. used intuitionistic fuzzy graphs to
find shortest paths in networks [13] and discussed self-centered intuitionistic fuzzy graphs [12]. Akram et al.
[1-4] studied many new concepts, including strong intuitionistic fuzzy graphs, intuitionistic fuzzy hypergraphs,
intuitionistic soft graphs and intuitionistic fuzzy digraphs in decision support systems. Fuzzy k-competition
and p-competition graphs were introduced by Samanta and Pal [22]. Samanta et al. [21] introduced m-
step fuzzy competition graphs. On the other hand, the concepts of bipolar fuzzy competition graphs and
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intuitionistic fuzzy competition graphs are discussed in [23, 20]. In this research article, we present some new
properties of intuitionistic fuzzy competition graphs. We investigate the construction of intuitionistic fuzzy
competition graph. We also discuss new type of intuitionistic fuzzy graphs by considering intuitionistic fuzzy
open and closed neighbourhood of the vertices.

2 Intuitionistic Fuzzy Competition Graphs

Definition 2.1. [20] An intuitionistic fuzzy out neighbourhood(IFON) of a vertex x in an intuitionistic fuzzy

digraph(IFD)
−→
G = (A,

−→
B ) is an intuitionistic fuzzy set(IFS) N

+(x) = (X+
x , φAx

, ψAx
), where X+

x = {y ∈
X |φ−→

B
(xy) > 0, ψ−→

B
(xy) > 0} and φAx

: X+
x → [0, 1] and ψAx

: X+
x → [0, 1] are defined by φAx

(y) = φ−→
B
(xy)

and ψAx
(y) = ψ−→

B
(xy).

An intuitionistic fuzzy in neighbourhood(IFIN) of a vertex x in an IFD
−→
G = (A,

−→
B ) is an IFS N−(x) =

(X−
x , φAx

, ψAx
), where X−

x = {y ∈ X |φ−→
B
(xy) > 0, ψ−→

B
(xy) > 0} and φAx

: X−
x → [0, 1] and ψAx

: X−
x → [0,

1] are defined by φAx
(y) = φ−→

B
(xy) and ψAx

(y) = ψ−→
B
(xy).

Definition 2.2. [20] An intuitionistic fuzzy competition graph(IFCG) C(
−→
G ) of an IFD

−→
G = (X φ, ψ)

is an undirected IFG G = (X , φ, ψ) which has the same intuitionistic fuzzy vertex set as in
−→
G and has

an intuitionistic fuzzy edge between two vertices x, y ∈ X in C(
−→
G ) if and only if N+(x) ∩ N+(y) is a

non-empty IFS in
−→
G . The membership and non-membership values of the edge (x, y) in C(

−→
G ) are ψ1(x,

y) = (φ1(x) ∧ φ1(y))h1(N
+(x) ∩N

+(y)) and ψ2(x, y) = (φ2(x) ∨ φ2(y))h2(N
+(x) ∩N

+(y)), respectively.

Example 2.1. Consider
−→
G = (X , φ, ψ) be an IFD. Let {a, b, c, d, e} be the vertex set with φ(a) = (0.5, 0.4),

φ(b) = (0.4, 0.4), φ(c) = (0.4, 0.5), φ(d) = (0.5, 0.3), φ(e) = (0.5, 0.3), and ψ
−−−→
(a, b) = (0.3, 0.4), ψ

−−−→
(a, b) = (0.3,

0.4), ψ
−−−→
(d, e) = (0.5, 0.1), ψ

−−−→
(a, d) = (0.4, 0.2), ψ

−−−→
(d, c) = (0.4, 0.3), ψ

−−−→
(c, e) = (0.3, 0.5), and ψ

−−−→
(b, c) = (0.4,

0.4) as shown in Fig. 1.

b

b
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Figure 1: IFD

By direct calculations, we have

Table 1: Intuitionistic fuzzy out and in neighborhoods

x N+(x) x N+(x)
a b(0.3, 0.4), d(0.4, 0.2) d c(0.4, 0.3), e(0.5, 0.1)
b c(0.4, 0.4), e(0.4, 0.1) e ∅
c e(0.3, 0.5)
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The IFCG of Fig. 1 is shown in Fig. 2.
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Figure 2: IFCG

We now discuss the method of construction of IFCG of the Cartesian product of IFD in following Theorem.

Theorem 2.1. Let C(
−→
G1) = (A1, S1) and C(

−→
G2) = (A2, S2) be two IFCGs of IFDs

−→
G1 = (A1,

−→
B1) and

−→
G2 = (A2,

−→
B2), respectively. Then C(

−→
G1�

−→
G2) = G

C(
−→
G1)∗�C(

−→
G2)∗

∪ G�, where G
C(

−→
G1)∗�C(

−→
G2)∗

is an IFG on the

crisp graph (X1 ×X2, E
C(

−→
G1)∗

�E
C(

−→
G2)∗

), C(
−→
G1)

∗ and C(
−→
G2)

∗ are the crisp competition graphs of
−→
G1 and

−→
G2,

respectively. G� is an IFG on (X1 ×X2, E
�) such that:

• E� = {(a1, a2)(b1, b2) : b1 ∈ N−(a1)
∗, b2 ∈ N+(a2)

∗},
E

C(
−→
G1)∗

�E
C(

−→
G2)∗

= {(a1, a2)(a1, b2) : a1 ∈ X1, a2b2 ∈ E
C(

−→
G2)∗

}

∪ {(a1, a2)(b1, a2) : a2 ∈ X2, a1b1 ∈ E
C(

−→
G1)∗

}.

• φA1�A2
= φA1(a1) ∧ φA2 (a2), ψA1�A2

= ψA1(a1) ∨ ψA2(a2).

• φS((a1, a2)(a1, b2)) = [φA1(a1) ∧ φA2 (a2) ∧ φA2(b2)]× ∨x2{φA1(a1) ∧ φ−→B2
(a2x2) ∧ φ−→B2

(b2x2)},

(a1, a2)(a1, b2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, x2 ∈ (N+(a2) ∩N
+(b2))

∗.

• ψS((a1, a2)(a1, b2)) = [ψA1(a1) ∨ ψA2(a2) ∨ ψA2(b2)]× ∨x2{ψA1(a1) ∨ ψ−→
B2
(a2x2) ∨ ψ−→

B2
(b2x2)},

(a1, a2)(a1, b2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, x2 ∈ (N+(a2) ∩N+(b2))
∗.

• φS((a1, a2)(b1, a2)) = [φA1(a1) ∧ φA1 (b1) ∧ φA2 (a2)]× ∨x1{φA2(a2) ∧ φ−→B1
(a1x1) ∧ φ−→B1

(b1x1)},

(a1, a2)(b1, a2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, x1 ∈ (N+(a1) ∩N
+(b1))

∗.

• ψS((a1, a2)(b1, a2)) = [ψA1(a1) ∨ ψA1(b2) ∨ ψA2(a2)]× ∨x1{ψA2(a2) ∨ ψ−→
B1
(a1x1) ∨ ψ−→

B1
(b1x1)},

(a1, a2)(b1, a2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, x1 ∈ (N+(a1) ∩N+(b1))
∗.

• φS((a1, a2)(b1, b2)) = [φA1(a1)∧φA1 (b1)∧φA2 (a2)∧φA2 (b2)]×[φA1 (a1)∧φ−→B1
(b1a1)∧φA2 (b2)∧φ−→B2

(a2b2)],

(a1, a2)(b1, b2) ∈ E�.

• ψS((a1, a2)(b1, b2)) = [ψA1(a1) ∨ ψA1(b1) ∨ ψA2(a2) ∨ ψA2(b2)]
× [ψA1(a1) ∨ ψ−→

B1
(b1a1) ∨ ψA2(b2) ∨ ψ−→

B2
(a2b2)],

(a1, a2)(b1, b2) ∈ E�.
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Proof. Consider an edge (a1, a2)(b1, b2) of G
C(

−→
G1)∗�C(

−→
G2)∗

∪ G�. Then, we consider three cases:

(1) If a1 = b1, a2 6= b2, then (a1, a2)(a1, b2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

. By conditions (3) and (4),

φS((a1, a2)(a1, b2)) =[φA1 (a1) ∧ φA2(a2) ∧ φA2(b2)]

× ∨x2{φA1(a1) ∧ φ−→B2
(a2x2) ∧ φ−→B2

(b2x2)},

φS((a1, a2)(a1, b2)) =[φA1 (a1) ∧ φA2(a2) ∧ φA1(a1) ∧ φA2 (b2)]

× ∨x2[{φA1(a1) ∧ φ−→B2
(a2x2)} ∧ {φA1(a1) ∧ φ−→B2

(b2x2)}],

φS((a1, a2)(a1, b2)) =[φA(a1, a2) ∧ φA(a1, b2)]

× ∨x2 [φ−→B ((a1, a2)(a1, x2)) ∧ φ−→B ((a1, b2)(a1, x2))],

φS((a1, a2)(a1, b2)) =[φA(a1, a2) ∧ φA(a1, b2)]× ∨x2 [N
+(a1, a2) ∩N

+(a1, b2)],

φS((a1, a2)(a1, b2)) = [φA(a1, a2) ∧ φA(a1, b2)]× h[N+(a1, a2) ∩N
+(a1, b2)]. (1)

ψS((a1, a2)(a1, b2)) =[ψA1(a1) ∨ ψA2(a2) ∨ ψA2(b2)]

× ∨x2{ψA1(a1) ∨ ψ−→
B2
(a2x2) ∨ ψ−→

B2
(b2x2)},

ψS((a1, a2)(a1, b2)) =[ψA1(a1) ∨ ψA2(a2) ∨ ψA1(a1) ∨ ψA2(b2)]

× ∨x2 [{ψA1(a1) ∨ ψ−→
B2
(a2x2)} ∨ {ψA1(a1) ∨ ψ−→

B2
(b2x2)},

ψS((a1, a2)(a1, b2)) =[ψA(a1, a2) ∨ ψA(a1, b2)]

× ∨x2 [ψ−→
B
((a1, a2)(a1, x2)) ∨ ψ−→

B
((a1, b2)(a1, x2))],

ψS((a1, a2)(a1, b2)) =[ψA(a1, a2) ∨ ψA(a1, b2)]× ∨x2 [N
+(a1, a2) ∩N

+(a1, b2)],

ψ((a1, a2)(a1, b2)) = [ψA(a1, a2) ∨ ψA(a1, b2)]× h[N+(a1, a2) ∩N
+(a1, b2)]. (2)

From equations (1) and (2), (a1, a2)(a1, b2) is an edge of C(G1�G2).

(2) If a1 6= b1, a2 = b2, then (a1, a2)(b1, a2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

. Using conditions (5) and (6), we have

φS((a1, a2)(b1, a2)) =[φA1 (a1) ∧ φA1(b1) ∧ φA2(a2)]

× ∨x1{φA2(a2) ∧ φ−→B1
(a1x1) ∧ φ−→B1

(b1x1)},

φS((a1, a2)(b1, a2)) =[{φA1(a1) ∧ φA2 (a2)} ∧ {φA1(b1) ∧ φA2(a2)}]

× ∨x1 [{φA2(a2) ∧ φ−→B1
(a1x1)} ∧ {φA2(a2) ∧ φ−→B1

(b1x1)}],

φS((a1, a2)(b1, a2)) =[φA(a1, a2) ∧ φA(b1, a2)]

× ∨x1 [φ−→B ((a1, a2)(x1, a2)) ∧ φ−→B ((b1, a2)(x1, a2))],

φS((a1, a2)(b1, a2)) =[φA(a1, a2) ∧ φA(b1, a2)]× ∨[φN+(a1,a2)
⋂

N+(b1,a2)],

φS((a1, a2)(b1, a2)) = [φA(a1, a2) ∧ φA(b1, a2)]× h[N+(a1, a2) ∩N
+(b1, a2)]. (3)

ψS((a1, a2)(b1, a2)) =[ψA1(a1) ∨ ψA1(b1) ∨ ψA2(a2)]

× ∨x1{ψA2(a2) ∨ ψ−→
B1
(a1x1) ∨ ψ−→

B1
(b1x1)},

ψS((a1, a2)(b1, a2)) =[{ψA1(a1) ∨ ψA2(a2)} ∨ {ψA1(b1) ∨ ψA2(a2)}]

× ∨x1 [{ψA2(a2) ∨ ψ−→
B1
(a1x1)} ∨ {ψA2(a2) ∨ ψ−→

B1
(b1x1)}],

ψS((a1, a2)(b1, a2)) =[ψA(a1, a2) ∨ ψA(b1, a2)]

× ∨x1 [ψ−→
B
((a1, a2)(x1, a2)) ∨ ψ−→

B
((b1, a2)(x1, a2))],

ψS((a1, a2)(b1, a2)) =[ψA(a1, a2) ∨ ψA(b1, a2)]× ∨[ψN+(a1,a2)∩N+(b1,a2)],

ψS((a1, a2)(b1, a2)) = [ψA(a1, a2) ∨ ψA(b1, a2)]× h[N+(a1, a2) ∩N
+(b1, a2)]. (4)
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Equations (3) and (4) show that (a1, a2)(b1, a2) is an edge of C(G1�G2).

(3) If a1 6= b1, a2 6= b2, then (a1, a2)(b1, b2) ∈ E�. Using conditions (7) and (8), we have

φS((a1, a2)(b1, b2)) =[φA1(a1) ∧ φA1 (b1)φA2(a2) ∧ φA2 (b2)]

× [φA1 (a1) ∧ φ−→B2
(a2b2) ∧ φA2 (b2) ∧ φ−→B1

(b1a1)],

φS((a1, a2)(b1, b2)) =[φA(a1, a2) ∧ φA(b1, b2)]

× [ψ−→
B
((a1, a2)(a1, b2)) ∧ ψ−→

B
((b1, b2)(a1, b2))],

φS((a1, a2)(b1, b2)) =[φA(a1, a2) ∧ φA(b1, b2)]× φN+(a1,a2)∩N+(b1,b2),

φS((a1, a2)(b1, b2)) = [φA(a1, a2) ∧ φA(b1, b2)]× h(N+(a1, a2) ∩N
+(b1, b2)). (5)

ψS((a1, a2)(b1, b2)) =[ψA1(a1) ∨ ψA1(b1)ψA2 (a2) ∨ ψA2(b2)]

× [ψA1(a1) ∨ ψ−→
B2(a2b2)

∨ ψA2(b2) ∨ ψ−→
B1(b1a1)

],

ψS((a1, a2)(b1, b2)) =[ψA(a1, a2) ∨ ψA(b1, b2)]

× [ψ−→
B
((a1, a2)(a1, b2)) ∨ ψ−→

B
((b1, b2)(a1, b2))],

ψS((a1, a2)(b1, b2)) =[ψA(a1, a2) ∨ ψA(b1, b2)]× ψN+(a1,a2)∩N+(b1,b2),

ψS((a1, a2)(b1, b2)) = [ψA(a1, a2) ∨ ψA(b1, b2)]× h(N+(a1, a2) ∩N
+(b1, b2)). (6)

Equations (5) and (6) imply that (a1, a2)(b1, b2) is an edge of C(
−→
G1�

−→
G1).

Hence, C(
−→
G1�

−→
G1) ⊆ G

C(
−→
G1)∗�C(

−→
G2)∗

∪ G�. Conversely, using the same techniques we can show that

G
C(

−→
G1)∗�C(

−→
G2)∗

∪ G� ⊆ C(
−→
G1�

−→
G1). The converse part is obvious, so we omit it. This completes the proof.

Example 2.2. Consider
−→
G1 = (X1, A1, B1) and

−→
G2 = (X2, A2, B2) be two IFDs of the crisp digraphs

−→
G∗
1 = (X1,

−→
E1) and

−→
G∗
2 = (X2,

−→
E2), respectively, as shown in Fig. 3. The IFONs and IFINs of

−→
G1 and

−→
G2 are

given in Tables 2 and 3.

The IFCGs C(
−→
G1) and C(

−→
G2) are given in Fig. 4.
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b

b

b

b

(0.3, 0.4)

(0.3, 0.4)

(0.3, 0.4)

b

b

b
a2(0.2, 0.4)

b2(0.5, 0.4)

c2(0.6, 0.3)

(0.2, 0.4)

(0.4, 0.4)

−→
G1

−→
G2

Figure 3: IFDs
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Table 2: IFONs and IFINs of
−→
G1

x ∈ X1 N+(x) N−(x)
a1 {b1(0.3, 0.4)} ∅
b1 ∅ {a1(0.3, 0.4), c1(0.3, 0.4)}
c1 {b1(0.3, 0.4)} {d1(0.3, 0.4)}
d1 {c1(0.3, 0.4)} ∅

Table 3: IFONs and IFINs of
−→
G2

x ∈ X2 N
+(x) N

−(x)
a2 {c2(0.2, 0.4)} ∅
b2 {c2(0.4, 0.4)} ∅
c2 ∅ {a2(0.2, 0.4), b2(0.4, 0.4)}

a1(0.4, 0.5)

b1(0.5, 0.3)

c1(0.3, 0.4)

d1(0.5, 0.4)

b

b

b

b

a2(0.2, 0.4)

b2(0.5, 0.4)

c2(0.6, 0.3)

b

b

bb

(0.09, 0.20)

(0.04, 0.16)

C(
−→
G1) C(

−→
G2)

Figure 4: IFCGs of
−→
G1 and

−→
G2

We now construct the IFCG G
C(

−→
G1)∗�C(

−→
G2)∗

∪ G� = (C, S) where C = (φC , ψC) and S = (φS , ψS), from

C(
−→
G1)

∗ and C(
−→
G2)

∗ using Theorem 2.1. According to condition (1), the two sets of edges are

E
C(

−→
G1)∗�C(

−→
G2)∗

={(a1, a2)(a1, b2), (b1, a2)(b1, b2), (c1, a2)(c1, b2),

(d1, a2)(d1, b2), (a1, a2)(c1, a2), (a1, b2)(c1, b2), (a1, c2)(c1, c2)},

E� ={(b1, a2)(a1, c2), (b1, a2)(c1, c2), (b1, b2)(a1, c2),

(b1, b2)(c1, c2), (c1, a2)(d1, c2), (c1, b2)(d1, c2)}.

According to conditions (3) to (8), the degrees of membership and non-membership of the edges can be
calculated as

S((a1, a2)(a1, b2)) =(φA1 (a1) ∧ φA2(a2) ∧ φA2(b2), ψA1(a1) ∨ ψA2(a2) ∨ ψA2(b2))

× (φA1(a1) ∧ φB2(a2c2) ∧ φB2(b2c2), ψA1(a1) ∨ ψB2(a2c2) ∨ ψB2(b2c2)

=(0.2, 0.5)× (0.2, 0.5)

=(0.04, 0.25),
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S((b1, a2)(a1, c2)) =(φA1 (b1) ∧ φA1 (a1) ∧ φA2(a2) ∧ φA2(c2), ψA1(b1) ∨ ψA1(a1) ∨ ψA2(a2) ∨ ψA2(c2))

×(φA1(b1) ∧ φB1(a1b1) ∧ φB2(c2) ∧ φB2(a2c2), ψA1 (b1) ∨ ψB1(a1b1) ∨ ψA2(c2) ∨ ψB2(a2c2))

=(0.2, 0.5)× (0.2, 0.4)

=(0.04, 0.20).

All the membership and non-membership degrees of adjacent edges of G
C(

−→
G1)∗�C(

−→
G2)∗

and G� are given in

Table 4.

b

b

b

b

b

b

b

b

b

b

b

b

a1

b1

c1

d1

a2 b2 c2

(0.2, 0.5)

(0.2, 0.4)

(0.2, 0.4)

(0.2, 0.4)

(0.4, 0.5)

(0.5, 0.4)

(0.3, 0.4)

(0.5, 0.4)

(0.4, 0.5)

(0.5, 0.3)

(0.3, 0.4)

(0.5, 0.4)

(0.04, 0.25)

(0.04, 0.20)

(0.09, 0.20)

(0.0
4, 0

.20
)

(0
.12
, 0
.20

)

(0.04, 0.16)

(0.04, 0.16)

(0.09, 0.16)

(0.04, 0.16)

(0.09, 0.16)

(0.04, 0.16)

(0.04, 0.16)

(0.09, 0.20)

Figure 5: G
C(

−→
G1)∗�C(

−→
G2)∗

∪ G�

The IFCG obtained using this method is given in Fig. 5 where the solid lines indicate the part of IFCG
obtained from G

C(
−→
G1)∗�C(

−→
G2)∗

, the dotted lines represent the part G�.

The Cartesian product
−→
G1�

−→
G2 of IFDs

−→
G1 and

−→
G1 is shown in Fig. 6. The IFONs of

−→
G1�

−→
G2 are calculated

in Table 5. The IFCG of
−→
G1�

−→
G2 is shown in Fig. 7. It is clear from Figs. 5 and 7 that G

C(
−→
G1)∗�C(

−→
G2)∗

∪ G� ∼=

C(
−→
G1�

−→
G2).
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Table 4: Adjacent edges of G
C(

−→
G1)∗�C(

−→
G2)∗

∪ G�

(x1, x2)(y1, y2) S(x1, x2)(y1, y2)
(a1, a2)(a1, b2) (φA1 (a1) ∧ φA2(a2) ∧ φA2(b2), ψA1(a1) ∨ ψA2(a2) ∨ ψA2(b2))

×(φA1(a1) ∧ φB2(a2c2) ∧ φB2(b2c2), ψA1(a1) ∨ ψB2(a2c2) ∨ ψB2(b2c2))
= (0.04, 0.25)

(b1, a2)(b1, b2) (φA1 (b1) ∧ φA2 (a2) ∧ φA2(b2), ψA1(b1) ∨ ψA2(a2) ∨ ψA2(b2))
×(φA1(b1) ∧ φB2(a2c2) ∧ φB2(b2c2), ψA1(b1) ∨ ψB2(a2c2) ∨ ψB2(b2c2))
= (0.04, 0.16)

(c1, a2)(c1, b2) (φA1 (c1) ∧ φA2(a2) ∧ φA2(b2), ψA1(c1) ∨ ψA2(a2) ∨ ψA2(b2))
×(φA1(c1) ∧ φB2(a2c2) ∧ φB2(b2c2), ψA1(c1) ∨ ψB2(a2c2) ∨ ψB2(b2c2))
= (0.04, 0.16)

(d1, a2)(d1, b2) (φA1 (d1) ∧ φA2(a2) ∧ φA2 (b2), ψA1(d1) ∨ ψA2(a2) ∨ ψA2(b2))
×(φA1(d1) ∧ φB2(a2c2) ∧ φB2(b2c2), ψA1(d1) ∨ ψB2(a2c2) ∨ ψB2(b2c2))
= (0.04, 0.16)

(a1, a2)(c1, a2) (φA1 (a1) ∧ φA1(c1) ∧ φA2(a2), ψA1(a1) ∨ ψA1(c1) ∨ ψA2(a2))
×(φA2(a2) ∧ φB1(a1b1) ∧ φB1(c1b1), ψA2(a2) ∨ ψB1(a1b1) ∨ ψB1(c1b1))
= (0.04, 0.20)

(a1, b2)(c1, b2) (φA1 (a1) ∧ φA1(c1) ∧ φA2(b2), ψA1(a1) ∨ ψA1(c1) ∨ ψA2(b2))
×(φA2(b2) ∧ φB1(a1b1) ∧ φB1(c1b1), ψA2(b2) ∨ ψB1(a1b1) ∨ ψB1(c1b1))
= (0.09, 0.20)

(a1, c2)(c1, c2) (φA1 (a1) ∧ φA1(c1) ∧ φA2(c2), ψA1(a1) ∨ ψA1(c1) ∨ ψA2(c2))
×(φA2(c2) ∧ φB1(a1b1) ∧ φB1(c1b1), ψA2(c2) ∨ ψB1(a1b1) ∨ ψB1(c1b1))
= (0.09, 0.20)

(b1, a2)(a1, c2) (φA1 (b1) ∧ φA1 (a1) ∧ φA2(a2) ∧ φA2(c2), ψA1(b1) ∨ ψA1(a1) ∨ ψA2(a2) ∨ ψA2(c2))
×(φA1(b1) ∧ φB1(a1b1) ∧ φB2(a2c2) ∧ φA2 (c2), ψA1(b1)∨ψB1(a1b1)∨ψB2(a2c2)∨ψA2(c2))
= (0.04, 0.20)

(b1, a2)(c1, c2) (φA1 (b1) ∧ φA1 (c1) ∧ φA2(a2) ∧ φA2(c2), ψA1(b1) ∨ ψA1(c1) ∨ ψA2(a2) ∨ ψA2(c2))
×(φA1(b1) ∧ φB1(c1b1) ∧ φB2(a2c2) ∧ φA2 (c2), ψA1(b1)∨ψB1(c1b1)∨ψB2(a2c2)∨ψA2(c2))
= (0.04, 0.16)

(b1, b2)(a1, c2) (φA1 (b1) ∧ φA1 (a1) ∧ φA2(b2) ∧ φA2(c2), ψA1(b1) ∨ ψA1(a1) ∨ ψA2(b2) ∨ ψA2(c2))
×(φA1(b1) ∧ φA1(a1b1) ∧ φB2(a2c2) ∧ φA2(c2), ψA1(b1)∨ψB1(a1b1)∨ψB2(a2c2)∨ψA2(c2))
= (0.12, 0.20)

(b1, b2)(c1, c2) (φA1 (b1) ∧ φA1 (c1) ∧ φA2(b2) ∧ φA2(c2), ψA1(b1) ∨ ψA1(c1) ∨ ψA2(b2) ∨ ψA2(c2))
×(φA1(b1) ∧ φB1(c1b1) ∧ φB2(a2c2) ∧ φA2 (c2), ψA1(b1)∨ψB1(c1b1)∨ψB2(a2c2)∨ψA2(c2))
= (0.09, 0.16)

(c1, a2)(d1, c2) (φA1 (c1) ∧ φA1(d1) ∧ φA2 (a2) ∧ φA2(c2), ψA1(c1) ∨ ψA1(d1) ∨ ψA2(a2) ∨ ψA2(c2))
×(φA1(c1) ∧ φB1(d1c1) ∧ φB2(a2c2) ∧ φA2 (c2), ψA1(c1)∨ψB1(d1c1)∨ψB2(a2c2)∨ψA2(c2))
= (0.04, 0.16)

(c1, b2)(d1, c2) (φA1 (c1) ∧ φA1(d1) ∧ φA2 (b2) ∧ φA2 (c2), ψA1(c1) ∨ ψA1(d1) ∨ ψA2(b2) ∨ ψA2(c2))
×(φA1(c1) ∧ φB1(d1c1) ∧ φB2(b2c2) ∧ φA2(c2), ψA1(c1)∨ψB1(d1c1)∨ψB2(b2c2)∨ψA2(c2))
= (0.09, 0.16)
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Table 5: IFONs of
−→
G1�

−→
G2

(x, y) N+(x, y) (x, y) N+(x, y)
(a1, a2) {((a1, c2), 0.2, 0.5), ((b1, a2), 0.2, 0.4)} (a1, b2) {((a1, c2), 0.4, 0.5), ((b1, b2), 0.3, 0.4)}
(a1, c2) {((b1, c2), 0.3, 0.4)} (b1, a2) {((b1, c2), 0.2, 0.4)}
(b1, b2) {((b1, c2), 0.4, 0.4)} (b1, c2) ∅
(c1, a2) {((c1, c2), 0.2, 0.4), ((b1, a2), 0.2, 0.4)} (c1, b2) {((b1, b2), 0.3, 0.4), ((c1, c2), 0.3, 0.4)}
(c1, c2) {((b1, c2), 0.3, 0.4)} (d1, a2) {((d1, c2), 0.2, 0.4), ((c1, a2), 0.2, 0.4)}
(d1, b2) {((d1, c2), 0.4, 0.4), (c1, b2), 0.3, 0.4)} (d1, c2) {((c1, c2), 0.3, 0.4)}
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Figure 7: C(
−→
G1�

−→
G2)

Definition 2.3. The direct product of two intuitionistic fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2) is
denoted by G1 × G2 and defined as a pair (A1 ×A2, B1 × B2), such that for each 1 ≤ j ≤ m,

1. φA1×A2(x1, x2) = φA1(x1) ∧ φA2 (x2),
ψA1×A2(x1, x2) = ψA1(x1) ∨ ψA2(x2), for all (x1, x2) ∈ X1 ×X2.

2. φB1×B2((x1, x2)(y1, y2)) = φB1(x1y1) ∧ φB2(x2y2),
ψB1×B2((x1, x2)(y1, y2)) = ψB1(x1y1) ∨ ψB2(x2y2), for all x1y1 ∈ E1 and x2y2 ∈ E2.

We now discuss the construction of IFCG of the direct product of IFDs from respective IFCGs of the
IFDs.

Theorem 2.2. Let C(
−→
G1) = (A1, S1) and C(

−→
G2) = (A2, S2) be two IFCGs of IFDs

−→
G1 = (A1,

−→
B1) and

−→
G2 = (A2,

−→
B2), respectively, without isolated vertices such that neither is an intuitionistic fuzzy empty graph.

Then C(
−→
G1 ×

−→
G2) = [C(

−→
G1) × C(

−→
G2)] ∪ G×, where G× = (A, S) is a IFG on the crisp graph (X1 × X2, E

×)
defined as

1. C((a1, a2)) = (φA1 (a1) ∧ φA2(a2), ψA1(a1) ∨ ψA2(a2)), a1 ∈ X1, a2 ∈ X2.

2. E× = {(a1, a2)(a1, b2)|a1 ∈ X1, a2, b2 ∈ X2,N
+(a1) 6= ∅, a2b2 ∈ E

C(
−→
G2)

∗}

∪ {(a1, a2)(b1, a2)|a1, b1 ∈ X1, a2,∈ X2,N
+(a2) 6= ∅, a1b1 ∈ E

C(
−→
G1)

∗}.

3. φS((a1, a2)(a1, b2)) = [φA1(a1) ∧ φA2 (a2) ∧ φA2 (b2)]
× ∨c1∈X1,c2∈X2{φ−→B1

(a1c1) ∧ φ−→B2
(a2c2) ∧ φ−→B2

(b2c2)|c1 ∈ N+(a1)
∗, c2 ∈ N+(a2)

∗ ∩N+(b2)
∗},

(a1, a2)(a1, b2) ∈ E×.
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4. ψS((a1, a2)(a1, b2)) = [ψA1(a1) ∨ ψA2(a2) ∨ ψA2(b2)]
× ∨c1∈X1,c2∈X2{ψ−→

B1
(a1c1) ∨ ψ−→

B2
(a2c2) ∨ ψ−→

B2
(b2c2)|c1 ∈ N+(a1)

∗, c2 ∈ N+(a2)
∗ ∩N+(b2)

∗},

(a1, a2)(a1, b2) ∈ E×.

5. φS((a1, a2)(b1, a2)) = [φA1(a1) ∧ φA1 (b1) ∧ φA2 (a2)]
× ∨c1∈X1,c2∈X2{φ−→B1

(a1c1) ∧ φ−→B1
(b1c1) ∧ φ−→B2

(a2c2)|c2 ∈ N+(a2)
∗, c1 ∈ N+(a1)

∗ ∩N+(b1)
∗},

(a1, a2)(a1, b2) ∈ E×.

6. ψS((a1, a2)(b1, a2)) = [ψA1(a1) ∨ ψA1(b1) ∨ ψA2(a2)],
× ∨c1∈X1,c2∈X2{ψ−→

B1
(a1c1) ∨ ψ−→

B1
(b1c1) ∨ ψ−→

B2
(a2c2)|c2 ∈ N

+(a2)
∗, c1 ∈ N

+(a1)
∗ ∩N

+(b1)
∗},

(a1, a2)(a1, b2) ∈ E×.

Proof. Let (a1, a2)(b1, b2) be an edge of [C(
−→
G1)× C(

−→
G2)] ∪ G×. Then there are three cases:

(1) If a1 = b1, a2 6= b2, then (a1, a2)(a1, b2) ∈ E×. Using conditions (3) and (4),

φS((a1, a2)(a1, b2)) =[φA1 (a1) ∧ φA2(a2) ∧ φA2(b2)]

× ∨c1∈X1,c2∈X2{φ−→B1
(a1c1) ∧ φ−→B2

(a2c2) ∧ φ−→B1
(a1c1) ∧ φ−→B2

(b2c2)},

φS((a1, a2)(a1, b2)) =[φA(a1, a2) ∧ φA(a1, b2)]

× ∨c1∈X1,c2∈X2{φ−→B ((a1, a2)(c1, c2)) ∧ φ−→B ((a1, b2)(c1, c2))},

φS((a1, a2)(a1, b2)) =[φA(a1, a2) ∧ φA(a1, b2)]

× ∨c1∈X1,c2∈X2{φN+(a1,a2)∩N+(a1,b2)},

φS((a1, a2)(a1, b2)) = [φA(a1, a2) ∧ φA(a1, b2)]× h(N+(a1, a2) ∩N
+(a1, b2)). (7)

ψS((a1, a2)(a1, b2)) =[ψA1(a1) ∨ ψA2(a2) ∨ ψA2(b2)]

× ∨c1∈X1,c2∈X2{ψ−→
B1
(a1c1) ∨ ψ−→

B2
(a2c2) ∨ ψ−→

B1
(a1c1) ∨ ψ−→

B2
(b2c2)},

ψS((a1, a2)(a1, b2)) =[ψA(a1, a2) ∨ ψA(a1, b2)]

× ∨c1∈X1,c2∈X2{ψ−→
B
((a1, a2)(c1, c2)) ∨ ψ−→

B
((a1, b2)(c1, c2))},

ψS((a1, a2)(a1, b2)) =[ψA(a1, a2) ∨ ψA(a1, b2)]

× ∨c1∈X1,c2∈X2{ψN+(a1,a2)∩N+(a1,b2)},

ψS((a1, a2)(a1, b2)) = [ψA(a1, a2) ∨ ψA(a1, b2)]× h(N+(a1, a2) ∩N
+(a1, b2)). (8)

Equations (7) and (8) show that (a1, a2)(a1, b2) is an edge of C(
−→
G1 ×

−→
G2).

(2) If a1 6= b1, a2 = b2, then (a1, a2)(b1, a2) ∈ E×. It can be verified on the same lines as Case 1.

(3) If a1 6= b1, a2 6= b2, then (a1, a2)(b1, b2) is an edge of C(
−→
G1)×C(

−→
G2). From the definition of direct product

of two IFGs, we have

φS((a1, a2)(b1, b2)) =φS1(a1b1) ∧ φS2(a2b2),

φS((a1, a2)(b1, b2)) =[φA1 (a1) ∧ φA1 (b1) ∧ φA2(a2) ∧ φA2(b2)]

× ∨c1∈X1,c2∈X2{φ−→B1
(a1c1) ∧ φ−→B1

(b1c1) ∧ φ−→B2
(a2c2) ∧ φ−→B2

(a2c2)},

φS((a1, a2)(b1, b2)) =[φA1 (a1) ∧ φA1 (b1) ∧ φA2(a2) ∧ φA2(b2)]

× ∨c1∈X1,c2∈X2{φ−→B1
(a1c1) ∧ φ−→B2

(a2c2) ∧ φ−→B1
(b1c1) ∧ φ−→B2

(b2c2)},

φS((a1, a2)(b1, b2)) =[φA(a1, a2) ∧ φA(b1, b2)]× ∨c1∈X1,c2∈X2{φ−→B (a1, a2)(c1, c2) ∧ φ−→B (b1, b2)(c1, c2)},

φS((a1, a2)(b1, b2)) =[φA(a1, a2) ∧ φA(a1, b2)]× ∨c1∈X1,c2∈V2{φN+((a1,a2)∩N+(b1,b2))(c1, c2)},

φS((a1, a2)(b1, b2)) = [φA(a1, a2) ∧ φA(b1, b2)]× h(N+(a1, a2) ∩N
+(b1, b2)). (9)
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ψS((a1, a2)(b1, b2)) =ψS1(a1b1) ∨ ψS2(a2b2),

ψS((a1, a2)(b1, b2)) =[φA1 (a1) ∨ ψA1(b1) ∨ ψA2(a2) ∨ ψA2(b2)]

× ∨c1∈X1,c2∈X2{ψ−→
B1
(a1c1) ∨ ψ−→

B1
(b1c1) ∨ ψ−→

B2
(a2c2) ∨ ψ−→

B2
(a2c2)},

ψS((a1, a2)(b1, b2)) =[ψA1(a1) ∨ ψA1(b1) ∨ ψA2(a2) ∨ ψA2(b2)]

× ∨c1∈X1,c2∈X2{ψ−→
B1
(a1c1) ∨ ψ−→

B2
(a2c2) ∨ ψ−→

B1
(b1c1) ∨ ψ−→

B2
(b2c2)},

ψS((a1, a2)(b1, b2)) =[ψA(a1, a2) ∨ ψA(b1, b2)]× ∨c1∈X1,c2∈X2{ψ−→
B
(a1, a2)(c1, c2) ∨ ψ−→

B
(b1, b2)(c1, c2)},

ψS((a1, a2)(b1, b2)) =[ψA(a1, a2) ∨ ψA(a1, b2)]× ∨c1∈X1,c2∈V2{ψN+((a1,a2)∩N+(b1,b2))(c1, c2)},

ψS((a1, a2)(b1, b2)) = [ψA(a1, a2) ∨ ψA(b1, b2)]× h(N+(a1, a2) ∩N
+(b1, b2)). (10)

Equations (9) and (10) imply that (a1, a2)(b1, b2) is an edge of C(
−→
G1 ×

−→
G2). Hence, [C(

−→
G1)×C(

−→
G2)]∪G× ⊆

C(
−→
G1 ×

−→
G2).

The converse part can be proved using the same lines. So, we omit it.

This completes the proof.

Example 2.3. Consider IFDs
−→
G1 = (X1, φ1, ψ1) and

−→
G2 = (X2, φ2, ψ2) on the crisp digraphs G∗

1 = (X1,
−→
E 1)

and G∗
2 = (X2,

−→
E 2) shown in Fig. 8 and their IFCGs are given in Fig. 9. We will show that C(

−→
G1 ×

−→
G2) =

[C(
−→
G1)×C(

−→
G2)]∪G×, where G× is an IFD on (X1×X2, E

×). The edge set E× using condition (2) is constructed
as

E× = {(a1, b2)(a1, d2), (c1, b2)(c1, d2), (a1, a2)(c1, a2), (a1, b2)(c1, b2), (a1, d2)(c1, d2)}.

Using conditions (3) and (4), the degrees of membership of all the edges from E× are calculated as under:

Table 6: IFONs of
−→
G1

x ∈ X1 N+(x)
a1 {b1(0.1, 0.3)}
b1 ∅
c1 {b1(0.1, 0.3)}

Table 7: IFONs of
−→
G2

x ∈ X2 N+(x)
a2 {c2(0.1, 0.2)}
b2 {a2(0.1, 0.2)}
c2 ∅
d2 {a2(0.1, 0.2)}

b

b

b

a1(0.3, 0.4)

b1(0.2, 0.4)

c1(0.3, 0.4)

(0.1, 0.3)

(0.1, 0.3)

b

b b b

a2(0.1, 0.2)

b2(0.2, 0.3) c2(0.1, 0.3) d2(0.2, 0.3)

(0
.1
, 0
.2
)

(0.1, 0.2)

(0
.1
, 0
.2
)

−→
G1

−→
G2

Figure 8: IFDs
−→
G1 and

−→
G2
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S((a1, b2)(a1, d2)) = [(φ1(a1) ∧ φ2(b2) ∧ φ2(d2), ψ1(a1) ∨ ψ2(b2) ∨ ψ2(d2))

×(φ1(a1b1) ∧ φ2(b2a2) ∧ φ2(d2a2), ψ1(a1b1) ∨ ψ2(b2a2) ∨ ψ2(d2a2))]

= (0.2, 0.4)(0.1, 0.3).

The IFG obtained using Theorem 2.2 is shown in Fig. 10. The solid lines represent the part of IFG

obtained from C(
−→
G1)×C(

−→
G2) and dashed lines indicate the part of IFG obtained from G×. The direct product

of
−→
G1 and

−→
G2 is presented in Fig. 11 and its intuitionistic fuzzy competition graph in Fig. 12 which is similar

as Fig. 10. Clearly, [C(
−→
G1)× C(

−→
G2) ∪ G× ∼= C(

−→
G1 ×

−→
G2).

b

b
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b b

b2(0.2, 0.3) d2(0.2, 0.3)

C(
−→
G1)

(0.03, 0.12)
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C(
−→
G2)

Figure 9: IFCGs
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G1)× C(

−→
G2)] ∪ G×



Journal of Uncertain Systems, Vol.11, No.1, pp.49-67, 2017 61

Table 8: Adjacent edges of G
C(

−→
G1)×C(

−→
G2)

∪ G×

(x1, x2)(y1, y2) S(x1, x2)(y1, y2)
(a1, b2)(a1, d2) (φ1(a1) ∧ φ2(b2) ∧ φ2(d2), ψ1(a1) ∨ ψ2(b2) ∨ ψ2(d2))

×(φ1(a1b1) ∧ φ2(b2a2) ∧ φ2(d2a2), ψ1(a1b1) ∨ ψ2(b2a2) ∨ ψ2(d2a2))
= (0.02, 0.12)

(c1, b2)(c1, d2) (φ1(c1) ∧ φ2(b2) ∧ φ2(d2), ψ1(c1) ∨ ψ2(b2) ∨ ψ2(d2))
×(φ1(c1b1) ∧ φ2(b2a2) ∧ φ2(d2a2), ψ1(c1b1) ∨ ψ2(b2a2) ∨ ψ2(d2a2))
= (0.02, 0.12)

(a1, a2)(c1, a2) (φ1(a1) ∧ φ1(c1) ∧ φ2(a2), ψ1(a1) ∨ ψ1(c1) ∨ ψ2(a2))
×(φ1(a1b1) ∧ φ1(c1b1) ∧ φ2(a2c2), ψ1(a1b1) ∨ ψ1(c1b1) ∨ ψ2(a2c2))
= (0.01, 0.12)

(a1, b2)(c1, b2) (φ1(a1) ∧ φ1(c1) ∧ φ2(b2), ψ1(a1) ∨ ψ1(c1) ∨ ψ2(b2))
×(φ1(a1b1) ∧ φ1(c1b1) ∧ φ2(b2a2), ψ1(a1b1) ∨ ψ1(c1b1) ∨ ψ2(b2a2))
= (0.02, 0.12)

(a1, d2)(c1, d2) (φ1(a1) ∧ φ1(c1) ∧ φ2(d2), ψ1(a1) ∨ ψ1(c1) ∨ ψ2(d2))
×(φ1(a1b1) ∧ φ1(c1b1) ∧ φ2(d2a2), ψ1(a1b1) ∨ ψ1(c1b1) ∨ ψ2(d2a2))
= (0.02, 0.12)
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Figure 11:
−→
G1 ×

−→
G2

Proposition 2.3. Let C(
−→
G1) = (A1, S1) and C(

−→
G2) = (A2, S2) be two IFCGs of IFDs

−→
G1 = (A1,

−→
B 1) and

−→
G2 = (A2,

−→
B 2) of crisp diagraphs

−→
G1

∗ = (X1,
−→
E 1) and

−→
G2

∗ = (X2,
−→
E 2), respectively. Then, C(

−→
G 1 ∪

−→
G 2) =

(A1 ∪ A2, S) can be constructed from and C(
−→
G 1) = (A1, S1) and C(

−→
G 2) = (A2, S2) as

1. If X1 ∩X2 = ∅, then C(
−→
G 1 ∪

−→
G 2) = C(

−→
G 1) ∪ C(

−→
G 2).

2. If X1 ∩X2 6= ∅, then S : E
C(

−→
G1)∗

∪ E
C(

−→
G2)∗

∪ Ĕ → [0, 1]× [0, 1] is an IFS, where

Ĕ = {a1a2|e ∈ X1 ∩X2 and −→a1e ∈
−→
E ,−→a2e /∈

−→
E ,−→a2e ∈

−→
E ,−→a2e /∈

−→
E }.

3. φS(ab) = [(φA1(a) ∨ φA2(a)) ∧ (φA1 (b) ∨ φA2 (b))]
×max

c
{(φ−→

B1
(ac) ∨ φ−→

B2
(ac)) ∧ (φ−→

B1
(bc) ∨ φ−→

B2
(bc))|c ∈ N+(a) ∩N+(b)},

ab ∈ EC(G1)∗ ∪ EC(G2)∗ .
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4. ψS(ab) = [(ψA1 (a) ∧ ψA2(a)) ∨ (ψA1(b) ∧ ψA2(b))]
×max

c
{(ψ−→

B1
(ac) ∨ ψ−→

B2
(ac)) ∧ (ψ−→

B1
(bc) ∨ ψ−→

B2
(bc))|c ∈ N+(a) ∩N+(b)},

ab ∈ EC(G1)∗ ∪ EC(G2)∗ .

5. φS(ab) = [(φA1(a) ∨ φA2(a)) ∧ (φA1 (b) ∨ φA2 (b))] ×max
c

{(φ−→
B1
(ae) ∨ φ−→

B2
(be))|e ∈ N+(a) ∩N+(b)},

ab ∈ Ĕ.

6. ψS(ab) = [(ψA1 (a) ∧ ψA2(a)) ∨ (ψA1(b) ∧ ψA2(b))] ×max
c

{(ψ−→
B1
(ae) ∨ ψ−→

B2
(be))|e ∈ N+(a) ∩N+(b)},

ab ∈ Ĕ.

Table 9: Adjacent edges of G
C(

−→
G1)∗�C(

−→
G2)∗

∪ G�

(x1, x2)(y1, y2) S(x1, x2)(y1, y2)
(a1, a2)(a1, b2) (φ1(a1) ∧ φ2(a2) ∧ φ2(b2), ψ1(a1) ∨ ψ2(a2) ∨ ψ2(b2))

×(φ1(a1) ∧ φ2(a2c2) ∧ φ2(b2c2), ψ1(a1) ∨ ψ2(a2c2) ∨ ψ2(b2c2))
= (0.04, 0.25)

(b1, a2)(b1, b2) (φ1(b1) ∧ φ2(a2) ∧ φ2(b2), ψ1(b1) ∨ ψ2(a2) ∨ ψ2(b2))
×(φ1(b1) ∧ φ2(a2c2) ∧ φ2(b2c2), ψ1(b1) ∨ ψ2(a2c2) ∨ ψ2(b2c2))
= (0.04, 0.16)

(c1, a2)(c1, b2) (φ1(c1) ∧ φ2(a2) ∧ φ2(b2), ψ1(c1) ∨ ψ2(a2) ∨ ψ2(b2))
×(φ1(c1) ∧ φ2(a2c2) ∧ φ2(b2c2), ψ1(c1) ∨ ψ2(a2c2) ∨ ψ2(b2c2))
= (0.04, 0.16)

(d1, a2)(d1, b2) (φ1(d1) ∧ φ2(a2) ∧ φ2(b2), ψ1(d1) ∨ ψ2(a2) ∨ ψ2(b2))
×(φ1(d1) ∧ φ2(a2c2) ∧ φ2(b2c2), ψ1(d1) ∨ ψ2(a2c2) ∨ ψ2(b2c2))
= (0.04, 0.16)

(a1, a2)(c1, a2) (φ1(a1) ∧ φ1(c1) ∧ φ2(a2), ψ1(a1) ∨ ψ1(c1) ∨ ψ2(a2))
×(φ2(a2) ∧ φ1(a1b1) ∧ φ1(c1b1), ψ2(a2) ∨ ψ1(a1b1) ∨ ψ1(c1b1))
= (0.04, 0.20)

(a1, b2)(c1, b2) (φ1(a1) ∧ φ1(c1) ∧ φ2(b2), ψ1(a1) ∨ ψ1(c1) ∨ ψ2(b2))
×(φ2(b2) ∧ φ1(a1b1) ∧ φ1(c1b1), ψ2(b2) ∨ ψ1(a1b1) ∨ ψ1(c1b1))
= (0.09, 0.20)

(a1, c2)(c1, c2) (φ1(a1) ∧ φ1(c1) ∧ φ2(c2), ψ1(a1) ∨ ψ1(c1) ∨ ψ2(c2))
×(φ2(c2) ∧ φ1(a1b1) ∧ φ1(c1b1), ψ2(c2) ∨ ψ1(a1b1) ∨ ψ1(c1b1))
= (0.09, 0.20)

(b1, a2)(a1, c2) (φ1(b1) ∧ φ1(a1) ∧ φ2(a2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(a1) ∨ ψ2(a2) ∨ ψ2(c2))
×(φ1(b1) ∧ φ1(a1b1) ∧ φ2(a2c2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(a1b1) ∨ ψ2(a2c2) ∨ ψ2(c2))
= (0.04, 0.20)

(b1, a2)(c1, c2) (φ1(b1) ∧ φ1(c1) ∧ φ2(a2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(c1) ∨ ψ2(a2) ∨ ψ2(c2))
×(φ1(b1) ∧ φ1(c1b1) ∧ φ2(a2c2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(c1b1) ∨ ψ2(a2c2) ∨ ψ2(c2))
= (0.04, 0.16)

(b1, b2)(a1, c2) (φ1(b1) ∧ φ1(a1) ∧ φ2(b2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(a1) ∨ ψ2(b2) ∨ ψ2(c2))
×(φ1(b1) ∧ φ1(a1b1) ∧ φ2(a2c2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(a1b1) ∨ ψ2(a2c2) ∨ ψ2(c2))
= (0.12, 0.20)

(b1, b2)(c1, c2) (φ1(b1) ∧ φ1(c1) ∧ φ2(b2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(c1) ∨ ψ2(b2) ∨ ψ2(c2))
×(φ1(b1) ∧ φ1(c1b1) ∧ φ2(a2c2) ∧ φ2(c2), ψ1(b1) ∨ ψ1(c1b1) ∨ ψ2(a2c2) ∨ ψ2(c2))
= (0.09, 0.16)

(c1, a2)(d1, c2) (φ1(c1) ∧ φ1(d1) ∧ φ2(a2) ∧ φ2(c2), ψ1(c1) ∨ ψ1(d1) ∨ ψ2(a2) ∨ ψ2(c2))
×(φ1(c1) ∧ φ1(d1c1) ∧ φ2(a2c2) ∧ φ2(c2), ψ1(c1) ∨ ψ1(d1c1) ∨ ψ2(a2c2) ∨ ψ2(c2))
= (0.04, 0.16)

(c1, b2)(d1, c2) (φ1(c1) ∧ φ1(d1) ∧ φ2(b2) ∧ φ2(c2), ψ1(c1) ∨ ψ1(d1) ∨ ψ2(b2) ∨ ψ2(c2))
×(φ1(c1) ∧ φ1(d1c1) ∧ φ2(b2c2) ∧ φ2(c2), ψ1(c1) ∨ ψ1(d1c1) ∨ ψ2(b2c2) ∨ ψ2(c2))
= (0.09, 0.16)
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Figure 12: C(
−→
G1 ×

−→
G2)

Now we introduce the concepts of intuitionistic fuzzy open neighbourhood and intuitionistic fuzzy closed
neighbourhood graphs.

Definition 2.4. Let G = (X , A, B) be an IFG. An intuitionistic fuzzy open neighbourhood N(a) of a vertex
a in G is an IFS N(a) = (Xa, φAa

, ψAa
), where Xa = {b|φB(ab) > 0, ψB(ab) > 0} and φAa

: Xa → [0, 1]
and ψBa

: Xa → [0, 1] are the membership functions stated as φAa
(a) = φB(ab) and ψAa

(a) = ψB(ab). The
intuitionistic fuzzy closed neighbourhood N[a] is defined as N[a] = N(a) ∪ {(a, φ(a), ψ(a))}.

Definition 2.5. Let G = (X , A, B) be an IFG. An intuitionistic fuzzy open neighbourhood graph of G is an
IFG N(G) = (X , A, B′) whose set of vertices is same as the set of vertices of G and there is an edge between
two vertices a and b if N(a) ∩N(a) 6= ∅ and B′ = (X , φB′ , ψB′) is an IFS, where φB′ : X ×X → [0, 1] and
ψB′ : X ×X → [0, 1] are the membership functions stated as

φB′(ab) = (φA(a) ∧ φA(b))× h(N(a) ∩N(b)),

ψB′(ab) = (ψA(a) ∨ ψA(b))× h(N(a) ∩N(b)), for all a, b ∈ X.

Similarly, we can define an intuitionistic fuzzy closed neighbourhood graph as:

Definition 2.6. Let G = (X , A, B) be an IFG. An intuitionistic fuzzy closed neighbourhood graph of G
is an IFG N[G] = (X , A, B′) whose set of vertices is same as the set of vertices of G and there is an edge
between two vertices a and b if N[a] ∩N[b] 6= ∅ and B′ = (φB′ , ψB′) is an IFS, where φB′ : X ×X → [0, 1]
and ψB′ : X ×X → [0, 1] are the membership functions stated as

φB′(ab) = (φA(a) ∧ φA(b))× h(N[a] ∩N(b)),

ψB′(ab) = (ψA(a) ∨ ψA(b))× h(N[a] ∩N[b]), for all a, b ∈ X.

Taking into account the intuitionistic fuzzy open and closed neighbourhood of the vertices, another type
of IFGs are defined as under:

Definition 2.7. Let k be a non-negative number then an intuitionistic fuzzy (k)-competition graph of an
IFG G = (X , A, S) is an IFG Nk(G) = (X , A, S ′) which has the same vertex set as the set of vertices of G
and there is an edge between two vertices a and b if |N(a) ∩N(b)| > k. The membership value of the edge ab
is stated as

φS′(ab) =
l − k

l
(φA(a) ∧ φA(b))× h(N(a) ∩N(b)),

ψS′(ab) =
l − k

l
(ψA(a) ∨ ψA(b))× h(N(a) ∩N(b)), for all a, b ∈ X,

where |N(a) ∩N(b)| = l.
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Definition 2.8. Let k be a non-negative number then an intuitionistic fuzzy [k]-competition graph of an IFG
G = (X , A, S) is an IFG Nk[G] = (X , A, S ′) which has the same vertex set as in G and there is an edge
between two vertices a and b if |N[a] ∩N[b]| > k. The membership value of the edge ab is stated as

φS′(ab) =
l − k

l
(φA(a) ∧ φA(b))× h(N[a] ∩N[b]),

ψS′(ab) =
l − k

l
(ψA(a) ∨ ψA(b))× h(N[a] ∩N[b]), for all a, b ∈ X,

where |N[a] ∩N[b]| = l.

Theorem 2.4. For every edge of an IFG G, there exists one edge in N[G].

Proof. Let N[G] = (X , A, S ′) be an intuitionistic fuzzy closed neighbourhood graph corresponding to the IFG
G = (A, B). Let ab be an edge in G then, a, b ∈ N[a] and a, b ∈ N[b]. So, a, b ∈ N[a] ∩N[b] and therefore,
h(N[a] ∩N[b]) /∈ ∅. Hence,

φS′(ab) =
l − k

l
(φA(a) ∧ φA(b))× h(N[a] ∩N[b]),

ψS′(ab) =
l − k

l
(ψA(a) ∨ ψA(b))× h(N[a] ∩N[b]),

that is, ab is an edge of N[G].

Definition 2.9. Let
−→
G = (X , A,

−→
B ) be an IFD of the crisp fuzzy digraph

−→
G ∗ = (X , A,

−→
E ). The underlying

IFG of
−→
G is an IFG, U(

−→
G ) = (X , A, B) where D = (φB, ψB) is defined as

B(ab) = (φB(ab), ψB(ab)) =


(φ−→

B
(ab), ψ−→

B
(ab), if

−→
ab ∈

−→
E ,

−→
ba /∈

−→
E

(φ−→
B
(ba), ψ−→

B
(ba), if

−→
ba ∈

−→
E ,

−→
ab /∈

−→
E

(φ−→
B
(ab), φ−→

B
(ba), (ψ−→

B
(ab), ψ−→

B
(ba), if

−→
ab,

−→
ba ∈

−→
E .

We now illustrate the relations between intuitionistic fuzzy neighbourhood graphs(IFNGs) and IFCGs.

Theorem 2.5. Let
−→
G = (A,

−→
B ) be a symmetric IFD without any loops then, Ck(

−→
G ) = Nk(U(

−→
G )), where

U(
−→
G ) is an underlying IFG of

−→
G .

Theorem 2.6. Let
−→
G = (A,

−→
B ) be a symmetric IFD having loops at every vertex then, Ck(

−→
G ) = Nk[U(

−→
G )],

where U(
−→
G ) is an underlying IFG of

−→
G .

3 Application

Competition graphs are starting point of interesting graph-theoretical concepts to represent the competition
between objects. To cover all the competitions in real world, these graphical representations are insufficient.
Therefore, we apply intuitionistic fuzzy competition graphs to study the strength of competition between
objects.

Local governments are the public administration in districts, towns and cities to govern a particular area.
In the cities of various countries local governments are very common. Since, the people of specific region
can easily contact to the local government than the federal government, therefore, local governments have
their own importance in that region. The criterion for the selection of local government officials in different
countries is not same. There are direct pubic elections in some countries and some countries declare the local
government officials by the judgement of a governing council. Local government has five common seats such
as city manager, city council member, county commissioner, city attorney and mayor.
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Figure 13: Intuitionistic fuzzy political digraph

Let us take the example of five competitors in a country named as Adam, Bernard, Aragon, Cora and
Evelyn for different political seats. The corresponding IFD is shown in Fig. 13. The membership degree of
each competitor represents the degree of leadership quality and non-membership degree indicates the non-
leadership quality to manage social issues. The competitor characteristics can be written as:

{leadership, non-leadership}.

The membership degree of each directed edge between a competitor and a position indicates the degree of
eligibility for the particular seat. The non-membership degree expresses the non-eligibilty for that seat. The
membership properties can be represented as:

{eligibility, non-eligibilty}.

The membership and non-membership degrees of each political seat indicate the average past leadership
and non-leadership quality of competitors on these seats. We construct an IFCG to interpret the competition
between competitors for political seat. The IFONs are given in Table 10.

Table 10: IFONs of competitors

x N+(x)
Adam {Mayor(0.4, 0.2), Citymanager(0.3, 0.2), Councilmember(0.3, 0.1)}
Cora {Mayor(0.5, 0.1), Councilmember(0.3, 0.1)}
Bernard {Cityattorney(0.2, 0.5), Councilmember(0.2, 0.6)}
Evelyn {Cityattorney(0.3, 0.3), Countycommissioner(0.3, 0.4)}
Aragon {Citymanager(0.6, 0.1), Countycommissioner(0.5, 0.1)}

The intuitionistic fuzzy competition graph is presented in Fig. 14. Here, dashed lines and solid lines
represent the competition of competitors for particular seats and the strength of competition between two
competitors, respectively. For instance, Adam and Cora are in competition for the seat of mayor. The strength
of competition between them is (0.20, 0.03). R(x, q), in Table 11, expresses the competition of competitor x
for seat q with respect to leadership and non-leadership quality to handle the social issues. Table 11 represents
the strength of competition between competitors for particular seats. From Table 10, Adam and Aragon have
same strength of competition for the seat of city manager, Bernard for council member, Evelyn and Bernard
have same strength of competition for the seat of city attorney, Aragon and Evelyn have same strength of
competition for the seat of county commissioner.



66 M. Nasir et al.: Novel Properties of Intuitionistic Fuzzy Competition Graphs

Mayor

(0.9, 0.1)

Adam

City manager

(0.8, 0.1)

Council member
(0.4, 0.1)

County

(0.6, 0.2)

City attorney

(0.5, 0.2)

commissioner

Cora

BernardEvelyn

Aragon

(0.5, 0.3)

(0.6, 0.2)

(0.3, 0.7)(0.4, 0.5)

(0.9, 0.1)

(0
.
4,
0.
2) (0

.3
, 0
.2)

(0
.3
, 0
.1)

(0.5, 0.1) (0
.
3,
0.
1)

(0
.2
,0

.6
)

(0.2, 0.5)

(0.3, 0.3)

(0
.3
, 0
.4
)

(0.6, 0
.1)

(0.5, 0.1)

(0.20, 0.03)

(0.06, 0.42)

(0.0
6, 0.

35)

(0
.12

, 0
.20)

(0.1
5, 0

.
06)

(0
.0
6
,0

.4
2
)

Figure 14: IFCG

Table 11: Strength of competition between competitors for political seats

(competitor, seat) in competition R(competitor, seat) S(competitor, seat)
(Adam, Mayor) Cora (0.20, 0.03) 0.2231
(Cora, Mayor) Adam (0.20, 0.03) 0.2231
(Adam, Citymanager) Aragon (0.15, 0.06) 0.1974
(Aragon, Citymanager ) Adam (0.15, 0.06) 0.1974
(Adam, Councilmember) Cora, Bernard (0.13, 0.225) 0.2751
(Cora, Councilmember) Adam, Bernard (0.13, 0.225) 0.2751
(Bernard, Councilmember) Adam, Cora (0.06, 0.42) 0.2784
(Evelyn, Cityattorney) Bernard (0.06, 0.35) 0.2665
(Bernard, Cityattorney) Evelyn (0.06, 0.35) 0.2665
(Aragon, Countycommissioner) Evelyn (0.12, 0.20) 0.3360
(Evelyn, Countycommissioner) Aragon (0.12, 0.20) 0.3360
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