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Abstract

In this research, a single-period two-echelon inventory control problem with market targeting strategies is
considered. In this problem, there are several final products and raw materials with varying usage rates. The objective
is to determine the order sizes of final products and raw materials before the selling period such that customers
satisfaction is reached and expected profit is maximized within an available budget. The problem is first
mathematically formulated and then a modified particle swarm optimization algorithm is employed to solve the
nonlinear programming problem. To validate the results obtained, a simulated annealing algorithm is provided as a
benchmark. The parameters of both algorithms are calibrated using a numerical example that iis given to demonstrate
the application of the developed model and the solution algorithm as well.
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1 Introduction

Single-period inventory control models can be used to make decisions on the inventory problems of seasonal and
periodical products. Before the start of the selling period in a single-period inventory problem, there is one ordering
opportunity to provide raw materials required to produce fina products having random demands. On one hand, if
more than the demands are produced, the unsold items at the end of the period become obsolete with negligible prices.
On the other hand, if less than the demands are manufactured, shortage happens that lead into yielding less profit and
loosing reputation. Since the most important feature in a single period inventory problem is associated with the
demand, a carful demand analysis has an important role in determining the order points of final products and raw
materials.

After mid-1960 when Hadley and Whitin [15] presented a single-period inventory model, many extensions were
proposed in the literature to make the model more applicable to real-world problems. Khouja [18] extensively
surveyed the literature of research works on the single-period problem, where he categorized them into six groups and
discussed each in detail. Some works such as the ones in Silver et a. (referred by [3]) and Lau & Lau [21] were
concerned with developing objective functions, where the objective function of their model s was maximization of the
probability of achieving atarget profit. Some research works such as the onein Dominey & Hill [12] focused on the
demand, in which they assumed a Poisson probability distribution on the number of ordersiin stochastic lot sizes. Dey
and Chakraborty [11] considered a single-period inventory problem with the fuzzy annual customer demand. The aim
was to determine the optimal order quantity such that the expected profit is greater than or equal to a predetermined
target. Xu & Hu [38] modeled the demand as a random fuzzy variable and used a hybrid algorithm for determining
the optimal order quantity.

Instead of assuming a probability distribution for the demand, Grubbstrém [14] considered customers arriving in
different points of time with different needs such that the compound renewal process could be applied to generate the
demand. Mostard et a. [24] investigated forecasting the demand for single-period products before the beginning of
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the selling period. They applied their work in a mail-order apparel company and compared several existing and new
forecasting methods. Pal et a. [26] analyzed a single-period newsvendor model to determine the optimal order
quantity considering customers balking. They developed the model without assuming any specific distribution on
demand.

Some researchers like Chen & Chuang [7], Vairaktarakis [36], Abdel-Malek et a. [2], and Pasandideh et al. [27]
worked on the constraints of mathematical models such as budget and shortage. Besides, in some cases, discount
policies were used to purchase items. Khouja [20] formulated a single-period inventory model in the presence of sale-
price discounts and Taleizadeh et al. [32,34] modeled different sale discounts at different sale quantities. Moreover,
Taleizadeh and Niaki [33] derived a bi-objective model for a single-period newsboy problem with fuzzy cost and
incremental discount and Lee & Lodree [23] explored various backorder cases in a hewsboy problem and tried to
characterize a diversity of customer responses to shortages. They used the concept of the utility theory to classify
customers in terms of their willingness to wait for the supplier replenishment in case of shortages.

While in the classical single-period problem only one echelon is considered, Reyes [29] presented a
mathematical model of a two-echelon supply chain problem. Chung et al. [9] proposed a model for an N-stage supply
chain of the newsboy problem. Nowadays, many researchers tend to solve the single-period inventory problem
strategically. Serel [30] derived an extension of the single-period inventory problem in competition environments
between suppliers. In their work, there was a chance that when the first supplier could not be able to deliver the
products, the second supplier would be considered. Zhang & Hua [39] employed a portfolio approach to a multi-
product newsboy problem with budget constraint, in which the procurement strategy for each product was designed as
a portfolio contract. Lee & Hsu [22] studied the effects of advertising on distribution-free demand with known mean
and variance. They assumed three cases for demand distribution and solved the problem analytically using closed-
form formulae. Bashiri et a. [6] presented a new mathematical model for strategic and tactical planning in a multiple-
echelon, multiple-commodity production—distribution network. They considered different time resolutions for
strategic and tactical decisions and planned an expansion of the network based on cumulative net incomes.

To name afew other recent relevant researches, Keren [19] assumed known demand, but stochastic supply called
yield risks. He considered two types of risks; additive and multiplicative. His work is specialy qualified for products
with a high and random failure rate. Tiwari et al. [35] considered two sequential orders before the start of a selling
period with an updated demand forecast after the first order in which two unrelated suppliers exist. Moreover, the
mathematical formulation of Murray et al. [25] not only determines the order quantities, but also specifies the selling
price of each product, which is good for pricing strategic perspectives. Wang et al. [37] brought a single period
problem to food industry. They developed both single-item and multi-item single-period inventory models when
market demands are assumed to be uncertain random variables. The aobjective of their study was to provide theoretical
analysis of the models that attains optimality when demand information availability in subjective judgments leading
to uncertainty along with random variation. Hnaein et a. [16] worked on replenishment planning of an assembly
system with one type of finished product assembled from different types of components. The components are
produced from diverse external suppliers to satisfy finished product demand. Chen et al. [8] worked on novel
advancesin applications of single period problem.

In addition to its real-world applicability, this research concerns with the demand issue where a targeting market
is considered. To be more specific, the multi-product multi-material version of a single-period inventory problem is
investigated considering random demands, discount, shortage in terms of backorder, and non-conforming items that
are either manufactured or are perishable. Moreover, to avoid lost sales in case of unanticipated excessive demands,
re-production during the period is allowed. In addition, customers are assumed to have different needs categorized by
some criteria, so that different selling policies are considered for each customer group of the target market.
Furthermore, the satisfaction guarantee policy is considered for customers who do not like the products and return
them to get their money back. The returning products, just like the unsold ones, are sold with reduced prices at the
end of the period. Therefore, the main contribution of this paper relates to the market segmentation policy in the
single period inventory problem that is concerned with the customer relationship management (CRM) in terms of
customer importance and satisfaction.

The remainder of the paper is organized as follows. In Section 2, the problem is formaly defined. The
mathematical formulation of the problem is derived in Section 3. In Section 4, amodified particle swarm optimization
algorithm is proposed to solve the complicated problem of Section 3. Since there is no benchmark available in the
literature, a simulated annealing agorithm is also developed in Section 4 to validate the results obtained. In this
section, the parameters of both algorithms are calibrated to obtain solutions with better qualities. A numerical
example to illustrate the applicability of the model and the solution algorithm is provided in Section 5. Finally,
conclusion and some recommendations for future research come in Section 6.
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2 Problem Definition

In this paper a multi- product, multi- material, single-period inventory control problem with discount is investigated.
For raw materias, it is assumed that the vendor use the cumulative discount policy. Both raw materials and fina
products are prepared only once at the beginning of the period. However, during the period if the final product runs
out due to excessive demand, it can be produced for customers who would wait for preparation of afinal product
using the remaining raw material. Since the demand for afinal product is random, to reduce risk of not being able to
satisfy unanticipated excessive demand, it would be wise if some raw materials are kept unused for production during
the period. Nonetheless, the remaining raw materials and final products at the end of the period would be useless and
are sold with intangible prices. In short, the general properties of the problem are as follow:

. To produce product 7, m different raw materials each with different usage quantities are required.

. Demand of a product is arandom variable with aknown probability distribution.

. Some customers are willing to wait for the product to be prepared during the period (shortage in terms of
backorder is allowed.)

. A specific machine manufactures each product with a known percentage of nonconformity.

o Each final product has a specified fraction nonconformity. The nonconformity either can be due to the

manufacturing failure rate or can be assumed for perishable items.
. Budget to buy raw materials and to produce final productsis limited.

. Customers are different with different needs categorized by some criteria, so that different selling policies
are considered for each group in the target market.
. If customers do not like the products that they buy, they can return them. The returned products similar to

remaining ones are sold at the end of the period with discount prices.
An overal scheme of the inventory of raw materials, production process, final products, and customer groups
(market strategy) is depicted in Fig. 1.

Raw Maternials Machines Final products Demands type

Figure1: Anoverall scheme of the problem

3 Modeling

The mathematical formulation of the problem at hand is performed by first introducing the notations in Subsection 3.1
followed by cost and revenue derivations in Subsection 3.2. Then, the constraints are given in Subsection 3.3.

3.1 Notations
QR The quantity of jth raw material, j = 1,2,....,m
m, The usage rate of jth raw material inith product, i = 1,...,n
v, Thediscount rate for jth raw material, (0 < v, <1)

q, The Ith break point for cumulative discount of jth raw material, [ =1,...,L
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C, The base unit cost of providing jth raw materia

L The price per unit of the remaining jth raw material at the end of the period

h, The holding cost per unit of the remaining jth raw material at the end of the period

y, A binary variable equal 1 if 7, <QR <q,., . otherwise 0

@S, The quantity of ith final product provided for kth customer group a the beginning of the period,
k=1,..,K

QS;k The quantity of ith final product manufactured for kth customer group during the period

The fraction nonconformity of ith final product

i

L Theprice per unit of the remaining ith final product at the end of the period

2

T Theselling price per unit of ith final product for kth customer group

ik

A fraction of kth customer group that are satisfied by ith final product (0 <z, <1)

a, A fraction of kth customer group that wait for their products to be manufactured during the period

e

C. The production cost per unit of ith final product
h The holding cost per unit of ith final product that is unused until the end of the period
7, The shortage cost per unit of afinal product for kth customer group

. The demand of kth customer group for ith final product (arandom variable)

ka (d,) The probability density function for the demand of kth customer group for ith fina product during the
| period

FDA‘ (d.) The cumulative distribution functions of the demand of kth customer group for ith final product during

| the period

A fraction of customers who return their purchased final product i

The total available budget to provide raw materials and produce final products
The profit (random variable)

SIS o

The expected profit

3.2 Deriving Profit

Four different costs are anticipated in the single-period inventory control problem; (a) cost of providing raw materials,
(b) cost of transforming raw materials into fina products, (c) holding cost of raw materials and final products that are
unused during the period, and (d) the shortage cost. In what follows each of these costs are discussed and derived.

(a) Cost of providing raw materials

It is assumed the vendor is using the cumulative discount policy to provide raw materials. In this case, the more

materials are bought, the more discount price is received. In other words the cost of providing raw materialsis
m L

S (1-9,) CQRy, M

j=11=0

where v, (0 <9, < 1) , is determined based on the market and the binary variable y , is defined according to the
quantity purchased as
L if ¢, <QR <q

Y = 0, else.

JHLL
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(b) Cost of transforming raw materialsinto final products

The quantity of conforming product i manufactured in the period is obtained based on the machine fraction
nonconformity (and/or perishable percentage) and the quantity manufactured during the period. As a result, the cost
of transforming raw materialsinto fina products in the period becomes

n 1

c, [ﬁ]i(QSm +Qs, )]

i) k=t

)

(c) Holding cost
The holding cost is applied to remaining raw materials and final products at the end of the period. For raw materials,
the total holding cost can be obtained as

m n K
S |QR, — Z% [ — JZ(QSZk +05, )] (3)
j=1 i) k=1
For final products, the holding cost is calculated by
n K
S [Z(Qsik n QS;) Z%D Te Zac]k |, (4)
i=1 k=1

K
where the term ¢, Z%Dm is used for products that are returned using the "satisfaction guarantee” policy and remain
k=1
until the end of the period.
(d) Shortage cost
Since the returned products are considered lost sales, the shortage cost is derived based on the usual lost sale
quantities along with the quantities returned. In other words, the shortage cost is obtained as

n K
Zﬂ-f ZD ZIJLD +€Z‘T7k ik (5)
i=1 k=1

3.3 Revenue

In the single period inventory problem, revenue is not only obtained by selling the final products during the period but
aso by selling the remaining final products and raw materials at the end of the period. Hence, the revenue is
calculated as

m

S (- )%DMﬁZL

i=1 k=1

+ZL; [(QSM +Q5, ) 2D, +ex, D }

QR Znu [ J(QS% + stk)
(6)

Finally, the profit function can be simply derived using Egs. (1) to (6) as

U(QR.QS,QS D) = 22(1_5)% . k+ZL QR — Z%[ ](QS +Q5,,)

i=1 k=1

#3108, + 08,) 2,0, + 22,0,

m n

—22(1— ) CQRy, +5C

j=11=0 i=1

ofsesves)

k=1
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=

K K
Jrzﬂ-z ZD ik Z‘Tzk w T & inkD ik
i=1 k=1
K
+Zh [Z(Qsﬁ_ +QS,) - Zx D, +€Zx{k 3
i=1 k=1

+Zh QR - Z"u [1 Z (@8, +Qs, )|
1 k=1
Asaresult, in order to obtain the expected profit function, one can simply employ the expectation operation to get

U(QR.QS.QS'.D) = ZZ f U(Qr.0s8.Q8.D,) 1, (d,)dd,

x

(7)

‘n i(lfs)x d, rkJriL QR — Z?]H ](QS +QS )
+§:L'J (@8, +@8,) - 2,d, +e2,d,]- Zi( 7)) CQRry,

S~(05, +05,)

k=1

n K K
+37m, [de Se,d, +e, medﬁ] 5, (d,)dd,. )
k=1 k=1 k=1

i=1 =

[lTZ

K ' K
+Zh [Z (Qsik + QSzk) =) Tl te Z’TikdikJ
i=1 k=1 k=1

1| ,
5, ffos, es)

QRj o anj [1
i=1 k=1

i

Since z,, is dependent on the integral interval, without loss of generality, in the integra terms in which z,

exists, if the interval is changed to a proper one, then z, can be eliminated. The simplified equation the of expected
profit function can be written as

U(QR,Q5,QS D) = szQS S =), (4,)dd,

+ ZL QR — Z”u — JZK: (@8, +Qs, )
+ iL ZK: (QS““ + QS;k) e - 1)«/:25‘* - dika,k (dik ) ddik}
_;;(1_ ) CQRy, +;0 [ TL];(QSM +QSZk)
+ ih] QRJ ZUU J i (QSik +QS ;,/.;)

K

+ ZhZZ[(QSZk +QS, )+ (e, —1) fo

Q8,,+QS,

4, ,)oa,

‘o, (d,k.)dd,k.} ©

+ ZW,

i=1
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3.4 Constraints
Thefirst set of constraints corresponds to the cumulative discount policy used to purchase raw materials as
QRJ >, Vi=1...m & I=1,...,L
QR <aq,.y, Vi=1...m & [=1,...,L (20

m

Zyﬂ =1.
j=1

In addition, since different products need different raw materials in various quantities and that the quantity of each
product produced is lower than the total quantity of raw materials used to produce them, we have

K
Z@Sz-k +0Q8,)],

k=1

m

SR, >

J= 17711

Vi=1,...n (11)

If final products that are manufactured at the beginning of the period are sold out during the period, there will be
production set up for customers who are willing to wait. In this case, the number of manufactured products during the
period is less than the demand of the waiting customers. Moreover, in order to obtain the number of manufactured
products during the period the following constraints are used. These constraints assure us that total number of items
produced in the period is not more than the demand. These constraints are provided for al the products and customer
groups as

G ad <o [T d.dd Vi & k
i) o ddd <o [ ddd,, i=1..n& k=1..K (12)

To help decision makers to apply different policies on various customers with different priorities, customers are
categorized. In the following constraints if the decision maker desires to satisfy the demand of some customer groups
less than 100%, he simply can insert the percentage he wants, otherwise the model obtains the percentage satisfied,

optimally. These constraints calculate the least number of items the manufacturer produces each product in order to
not fail to employ adesired policy for that costumer group.

QS, +QS,
I} ddd =z, Vi=l..n&k=1..,K (13)

In the single period inventory problem, there are often some investors with limited budget to invest in the period.
This budget is required to purchase raw materials and to transform them into final products. Thus, the budget
constraint becomes

K
So(@s, +0s,)<B (14)

k=1

" "1
S5l1-0, 0o, 30|

j=11=0 TI,

3.5 The Mathematical M oddl

By summing up the mathematical relations (9) to (14), the final model is

Maz U = ZZI QR — Z%

i=1 k=1 i=1

+ ZL Z (@8, +@5,)+ (- g b, (dik)ddik]

QS +QS), m

Jrd g, (d,)dd, +ZL

L_I5~(0s, +as.)

-7 k=1

i

n

SHINEE >0@Ryﬂ+zc

j=1 1=0
+Zh QR Zn”

[ —| (08, +as,)

i

K

S(@s, +s,)

k=1

1
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fe . Q5,+G5,
+ Zh,,Z{(QS,-k + QSM,) +(e —1) fo d.f, (d,) ddl,‘,]
i=1 k=1
n K K 05,405,
+5°r, {ZE (D,)+ -0 d.f, (d,)dd,
i=1 k=1 =
s.t. QR]. =0, Vi=1...m & I=1...,L
QR] <Gy Yy Vi=1...m & I=1,...,L
Zyjl =1
j=1
" 1 1 [( i .
ST —QR, > S@S, +QS,)|,  Vi=1..n
= Ty 1- T )=
QS +QS;, o0 .
st,k d dd, < akf% ddd, , Vi=l..n & k=1..,K

Q5,,+@5,
| ddd =z, Vi=l..n&k=1..,K
0

m L

n ) 1 .
SY(1-,) CQRy, + 30 [ﬁ]Z(st +05,)<B
j=11=0 i=1 i) k=1

QR >0, @S, >0, QS >0y, ={01},
Vi=1l..,n , j=1L...m , k=1..K ,1=1,..,L

As seen, the above model is anon-linear integer problem. The model is hard enough to solve due to its two main
characterigtics, i.e. having integer decision variables along with non-linear objective function and constraints. The
complexity of the model grows as the numbers of integer decision variables and constraints become large in even
medium-size problems. The above characteristics justify the use of a meta-heuristic method to solve the problem.

4 A Solution Algorithm

Since the non-linear integer mathematical problem modeled in Section 3 is hard to be solved analytically, the particle
swarm optimization (PSO) algorithm is modified in this research to find a near-optimum solution. In this section,
after providing the basis of the PSO agorithm in Subsection 4.1, the modified PSO algorithm is proposed in
Subsection 4.2. In Subsection 4.3, the parameters of the proposed algorithm are tuned using a regression approach
and solving a quadratic mathematical model. Besides, in order to validate the results obtained, a simulated annealing
approach is proposed in Subsection 4.4 to serve as a benchmark.

4.1 The Particle Swarm Optimization Algorithm

PSO is a population-based algorithm first introduced by Kennedy & Eberhart [17]. Kennedy et al. [18] discussed
social and computational concepts of PSO. This algorithm starts by a random population of solutions, named particles.
Each particle is first assigned a randomized velocity and then it iteratively searches the problem space to find a
solution. In each iteration, the objective function value based on each solution is the particle's current location [4].
The movement of each particle to another location determined by using some aspect of its current location, the
location of the best fitness achieved so far across the whole population (global best fitness), and the previous best
position of the particle. Eventualy it is likely, the swarm become close to an optimum fitness of the objective
function. The particle swarm is more than just a collection of particles. Particles by itself have no power to solve any
problem; it is their interactions that make it a powerful procedure [4]. The following parameters are used to explain
the PSO algorithm in detail.

t Iteration number
w The inertia weight as a coefficient of the particle's current location to update its velocity; it can be interpreted
as the fluidity of the medium in which a particle moves

w, A coefficient of w that gradually reduces w to a much lower value
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¢, Determines the magnitude of the random force in the direction of the |ast best particle location
¢, Determines the magnitude of the random force in the direction of the global best location

a, A uniform random variable in [0,1] as a coefficient of the best location of a specific particle till the last
iteration; this coefficient allows random possible moves of particles

a, A uniform random variable in interval [0,1] as a coefficient of the best global location; this coefficient also
allows random possible moves of particles

0,,., Objective value of the best location of a specific particletill the last iteration

0% Objective value of the global best location

Best

P! Position vector of iteration ¢ for a specific variable (in this paper QR, @S, QS")

variable

HZ“U Position vector of the best location of a specific particletill the last iteration
q”,g Position vector of the global best location
MazV . Upperbound of velocity for a specific variable that limits the magnitude of particle movements

In PSO, the velocity of each particle is iteratively updated so that particles randomly move toward the best
location and eventually the global best location of all particles found until the last iteration. Assuming a D-
dimensional search space, the algorithm of implementing PSO is as follows [26]:

1. Initialize a population array of particles with random positions and velocities on D dimensions of the search
space.

2. For each particle, evaluate the desired optimization fitness function in D variables.

3. Compare particle’s fitness evaluation with its O, . If the current value is better thanO,_ , then replace
0,,., with the current value and set ﬁyfff‘szs equal to the current location.
4. Change the velocity and position of the particles according to the following equations:
Vi = WVl + @) (Pl = P ) e (a) (B, = P, (15
P = Brire Vo (16)

5. If astopping criterion is met, stop. Otherwise, go to Step 2.

4.2 The Modified PSO Algorithm

The steps involved in the modified PSO algorithm of this research to find near-optimum solutions of the problem at
hand are shown in Algorithm (1) asfollows:

Algorithm (1)
I. Initialization
I.1. Set the algorithm parameters:

MazV w, w,, ¢ Cys population = 30.

variable’

[1. Produce thefirst particles randomly
[1.1. Calculate the maximum quantity of raw materials using

B.i us

Maz QR, = 0.75 —= Vi=1...,m. (17)

m n

CJ Z Z 77,]

j=1 i=1

In Eq. (17), 75 percent of the maximum quantity of raw materialsis calculated so that some budget remains
for production line.

I1.2. Generate a uniform random variablein [0, Maz QR |for each raw material ;.
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VI.

[1.3. Using the random quantity of raw materia generated in Step 11.2, determine the quantity of the final
product i to be produced within the budget as
R
,min{Q ’H, Vi=1,...,n. (18)
J n

[1.4. To determine the quantities of final products at the beginning of the period and their quantities produced
during the period for each customer groups, use
(1-a)@Ss, . a@s,

QS, ===t QS =T (19)

I1.5. Asfar as constraint (12) remains valid, subtract one unit from QSk .Incase QS;.,C becomes zero, subtract

i

@S, = min [0.25

one unit from @S, (this step is optional).
[1.6. In order to determine the discount level, calculateyﬂ using @R, and then determine [ .

[1.7. If the decision maker did not determinez,, , calculateit using @S, and QS;,k .
Random particle fitness
111.1. Set the global best objective function (05" ) value as negative infinity.

[11.2. Calculate the fitness of the random particle produced in Step (I1).

[11.3. Set the best objective (O, _, ) asa current fitness of the particle and set the best position (B,f:f:w@ ) asthe
current position of the particle.
1.4, 1f OBest > Ogizlf)al ! then repla:e OEZZI(N and ‘Ptgf;;;?c by OBesi and Puf::atble )
. Optimizing the particles
IV.1. Update the particle velocity using following formulae
Vor = w.VQt];1 +¢ (al)(PQljg‘“ - PC;;) + 02((12)(}’5?35“ - PQ’;), (20)
V(; o= w.Végl + ¢, (al)(PQifSt - Pés’l) + ¢, (aQ)(PQC’SB et _ Pé;l).
IV.2. If the updated velocities are more than upper bound of velocities, change them by
if V! >0=V' = MazV
Vis| > [Mazvi, | =1 0 Jon o
if Vor <0=V,, =—MazV,,,
if V!.>0=V' = MazV
Vis| > [Maav, | =1 @ s es (21)
if VQS <0= VQS = —MaxVQS.
IV.3. Update the particles position using
PQ;R = P(\;l +VC$R’
t t—1
Py = Fo' + Voo (22)
t  _ pt-l t
PQS. = PQs‘ + VQS,.

Checking the constraints

V.1. Check Constraint (11); if it is not satisfied, inverse the velocity vector of QR, for each j based on which
Constraint (11) isnot valid.

V.2. Check Constraint (12); if it is not satisfied, inverse the velocity vector of QS;kfor each 7and & based on
which Constraint (11) is not valid.

V.3. Check Congtraint (13); if it is not satisfied for z, , then inverse the velocity vector for each S, based

on which the Constraint (13) is not valid.

V.4. Check Congtraint (14); if it is not satisfied, set the value of the corresponding objective function a
negative number (such as—1 or —hig M or another optional negative number).

The particle fitness

VI1.1. If Constraint (14) isvalid; calculate the objective value of the corresponding particle.
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V1.2, If the calculated objective value of the particle is better than O, , , update O, , by the current objective
value of the particle and subsequently update the best position (P, ).
VI3.If 0, , > 05" thenreplace 05" and P by O, , and P*

variable variable *

VII. Stopping criterion
VII.1. Multiply w by wg, i.e, w' =w'" Xw,.
VI11.2. If the number of iterationsis less than 1000, go to Step (1V), otherwise stop and print the results.

4.3 Parameter Calibration

One of the parameters is the population size that usually affects the performance of a popul ation-based meta-heuristic
algorithm. This parameter is often set empirically based on the problem complexity. As indicated by Poli et al. [28],
the range of 20-50 is quite common. For the problem under investigation, this parameter is set 30 empirically based
on atrial and error procedure. However, the other parameters used in the modified PSO algorithm are tuned via a
regression approach and solving a quadratic mathematical model. To do this, important parameters with significant
impacts are first discussed. Then, these parameters are randomly changed 30 times, each in a range proposed in the
literature, using a sample of size 5. Finally, the mean of the objective functions for each sample is treated as the
performance of the algorithm in that sample.

The parameters ¢, and ¢, that are often called acceleration coefficients have significant impacts on the
performance of PSO. While the values of ¢ and ¢, in early PSO applications were adopted ¢, = ¢, =2, in this

article ¢, = ¢, = ¢, where c changesin the range [1,3].
One of the techniques to control the magnitude of the velocity is to define bounds so that each velocity is kept
within the range [ —MaxV ,+MazV ]. Here, the bounds are examined in therange [2,5].

variable variable

Another important parameter is "inertia weight." Some researchers have found that the best performance could
be obtained by initially setting w to some relatively high value (e.g., 0.9), which alows particles move in low
viscosity to perform extensive exploration. However, after some iterations w will gradually reduce to have more
exploitation so that homing into local optima would be better (e.g. 0.4). Nonetheless, it is possible to start values of
w > 1, which would make the swarm unstable, provided that the value is reduced sufficiently to bring the swarmin a

stable region [31]. In this research, the inertiaweight is changed in the range [0.4,1.2] and w, takes valuesin [0.8,1].

Evaluating the mean objective function 30 times, each with a sample of 5 instances with different parameter
settings, the experimental results of employing the modified PSO are given in Table 1. These results are obtained
using a numerical example given in Section 5. Using the results in Table 1, the quadratic regression with four

variables ( X X, , X, ,and X)) isfirst fitted for the mean objective value (Y"). Then, the combination of the

MazV !

variables that maximizes Y is selected to be the calibrated values of the parameters. The fitted response is
Y = —11600000X;, ,, +8800000X,, X —289700000X, , X —5900000X, X —353900000X°

+71300000X, X, — 67200000X, X+ 5402100000X> -+ 297300000X, X — 169300000X (23)

+355900000X,, ~ +505400000X — 8847400000)(“,/1 +697000000.X, + 2203800000.
Hence, the quadratic mathematical model is
Maz Y = —11600000X;, . +8800000X,, .
—353900000X° + 71300000X, X, — 67200000X, X + 5402100000.X"
+ 297300000de X — 169300000)(? + 355900000X + 505400000X1

MazV
— 8847400000X, + 697000000, + 2203800000

X, —289700000X,, X, —5900000X, X

MazV™ " w,

st. 2< XMan <5
04<X, <12
08<X, <10
1<X <3

(24)
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Solving the model, the calibrated PSO parameters are determined as:

* *

X =2 X =12 X =058, X =3,

MazxV w w,

Table 1: Experimental results

No. Mazx 'V w w, c Objective Mean
1 3 0.750 1.000 1.500 211,580,000
2 5 1.016 0.826 1.836 145,650,000
3 4 1.041 0.986 2.549 220,660,000
4 5 0.935 0.970 2.607 211,130,000
5 3 0.768 0.996 1.271 -95,850,000
6 3 0.535 0.886 2.938 184,820,000
7 2 0.826 0.858 1.723 -2,470,000
8 5 1.151 0.938 2.263 118,080,000
9 5 1.048 0.821 1.284 -58,940,000
10 2 0.644 0.837 2.821 143,000,000
11 5 0.449 0.963 2.698 264,910,000
12 2 0.513 0.948 2.109 180,280,000
13 2 0.751 0.876 2.828 252,960,000
14 5 0.808 0.977 1.121 -130,110,000
15 2 0.712 0.807 1.039 -240,700,000
15 3 1.185 0.839 2.347 55,310,000
17 4 0.602 0.908 1513 49,160,000
18 4 0.418 0.861 1.259 -98,630,000
19 5 0.628 0.909 1.470 -47,930,000
20 5 0.751 0.941 1.142 -208,110,000
21 4 1.154 0.992 1.321 -27,610,000
22 5 1.081 0.960 1.650 64,570,000
23 4 0.618 0.881 1.613 119,210,000
24 4 0.832 0.896 1.260 -89,050,000
25 2 0.532 0.853 2.219 148,200,000
26 5 0.527 0.977 1.062 -176,830,000
27 4 0.805 0.908 1.021 -171,410,000
28 3 0.577 0.805 1.776 50,150,000
29 5 0.983 0.868 1.131 -203,520,000
30 5 1.039 0.981 2.856 236,650,000

4.4 The Smulated Annealing Algorithm

SA works by analogy between the annealing process and the optimization of mathematical models. In this algorithm,
it is assumed that an optimization problem is analogous to the arrangement status of molecules in a particular object
in a specific temperatures, and the objective is to achieve the most regular crystal lattice configuration by minimizing
the free energy of the system. If the cooling process is sufficiently slow, the final arrangement of molecules would
have superiority [13,10].

In SA, in order to improve the objective function value, a new solution is determined in each iteration. If this
new solution is better than the previous solution, the new solution will be replaced with the previous solution. Further,
if it is also better than the best solution achieved till now, these two solutions will be changed [5]. However, if this
new solution is not better than the previous solution, it will be accepted and replaced with the previous solution with
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some probability in the hope of escaping local optimal. The probability of this non-improved replacing depends on a
temperature parameter, which is decreasing in each iteration of the Algorithm (2).

The steps involved in the SA agorithm developed in this paper to validate the results obtained by PSO are
shown in Algorithm (2):

Algorithm (2)
1) Choose the maximum iterations, It = 500.
2) Choosetheinitial temperature Ty = 100; and set the temperature as T = T,,.
3) Choose the number of iterations at each temperature, N; = 5.
4)  Setthefina temperature (T; = 0.001) and set the reduction constant Ty of temperature as (Tf /T U)(w) .
5)  Produce twenty initial random solutions (similar to PSO initial random population).
6) Set the maximum objective values of solutions as the best solution.
7) Create twenty new solutions as follows:
produce an integer random number inrange[1,2]. If itis 1 use Eq. (25), if itis 2 use Eq. (26) as
New solution = Previous Solution +

25
R x2.5x (a, x( A Random Sultion — Previous Solution)) (29

New Solution = Previous Solution + 26
R x2.5x (a, x ( Best Solution — Previous Solution)) (26)

where Ris the direction of changing initially set equal to 1 and in iterations of the algorithm it can be
changedinto -1 or 1. a, isauniform random number in [0, 1]. The number 2.5 has been obtained empirically
so that it makes the new solution to be generated suitably.
8) Check al constraints (except constraint 14). If they are satisfied go to Step 9, otherwiseset R = —R .
9) Check the new solution with its lower bound. If it isinfeasible (for example, when QS becomes negative), set
the new solution equal to its lower bound.
10) Check Constraint (14). If it is satisfied, calculate the objective value of the new solution, otherwise set the
corresponding objective value as—big M.
11) Cadculate A by

Objective value of the new solution — objective value of the previous solution)

A

(27)
|objective value of the previous solution

12) If A ispositive, replace the new solution with the previous solution. Otherwise, generate a uniform random

number. If this random number is bigger than &’ , replace the new solution with the previous one. Else, do
nothing.

13) If Ny =5, go to step 14, otherwise set N; = N; +1 and go to Step 6.

14) Update thetemperature. T=T X Ty

15) If It = 500, stop and print the best solution. Otherwise, go to Step 6.

Note that a similar procedure to the one used for the PSO algorithm is employed to calibrate the parameters of
the SA aswell.

5 Numerical Examples

In order to demonstrate the application of the proposed model and to investigate the performance of the proposed
solution methodology, a numerical example is provided in this section. Suppose there are 3 different products in a
target market consisting of 3 different categories of customers. Let the random demand during the period follows a

normal distribution with known mean (., ) and variance (ofk) for each product and each customer group. These
products are manufactured using 9 different types of raw materials with different usages. The total budget available

for this investment opportunity is 15 x 10° currency units. For each raw material, the vendor proposes a cumulative
discount with one break point at the quantity of 10,000. Table 2 shows the corresponding data of raw materials and
Table 3 contains final product data. In Table 4, the usage rates of the raw materials used in final products are given
and Table 5 contains the data corresponding to customer groups. The data of final products and customer groups are
shown in Table 6.
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Table 2: Dataon raw materias

J 1 2 3 4 5 6 7 8 9
C, 1000 200 100 100 2000 100 10000 100 200
7, 0.2 0.1 0.05 0.05 0.1 0.05 0.1 0.05 0.05
; 500 0 0 0 400 0 2000 0 0
h, 10 5 5 2 20 5 25 5 2
Table 3: Data on final products
i 1 2 3
T, 0.01 0.01 0.001
L 600 500 2000
h, 15 30 50
C. 700 500 600
€ 0.01 0.001 0.001
Table 4: The usage rate of jth raw material in ith product
us 1 2 3 4 5 6 7 8 9
1 1 2 2 1 0 0 0 0 0
2 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 2 1
Table 5: Data on customer groups
K 1 2 3
Q, 0.4 0.2 0.1
o 200 100 100
Table 6: Dataon final products and customer groups
ik 1 2 3
1 3800 6700 17,000
T 2 3500 6500 17,000
3 4500 7000 17,000
1 05 0 0
Ly, 2 0.7 0 0
3 0.8 0 0
1 30,000 20,000 500
i 2 10,000 20,000 200
3 10,000 10,000 1000
1 1000 1000 50
g 2 1000 1000 50
3 800 800 50
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The proposed parameter-tuned PSO agorithm is employed on the numerical illustration using the MATLAB
software 50 times, where the best objective value achieved is 2.9322x10°. The best result is summarized in Table 7.
Note that since a high cost is associated with product 3, its production has no economic justification. As a result, the
fractions of customer groups that are satisfied with product 3 are zeros. Similarly, to validate the results obtained, the
SA described in Section 4 is utilized as well to find the best objective value of 2.5954x10°. The best solution of the
SA dgorithm is shown in Table 8. Asit can be seen, PSO provides a better near-optimum solution.

Table 7: The summarized PSO solution

QR @R, QR, | @R, QR, QR, QR, QR @R,
@R, 77750 | 155500 | 1555500 | 77.750 | 57.730 | 57,730 0 0 0
QSI 1 QSI 2 QSI 3 QSQI QSQZ QSZ 3 QS31 QS‘}Z QS33
@5, 0 0 2400 | 11631 | 11,631 | 11,631 0 0 0
| QSI‘I QS' 12 QS' 13 QS' 21 QS' 22 QS' 23 QS' 31 QS' 32 QS' 33
QS, [ 32431 | 32388 | 9753 | 11130 | 11126 0 0 0 0
‘xll xl? xlS x?l $22 x23 xfﬂl xﬁi? x33
z, 09925 | 09915 | 09964 | 09971 | 09971 | 0.9793 0 0 0
Table 8: The summarized SA solution
QR @R, QR, QR, QR, QR QR, QR, QR,
QR 78960 | 157,030 | 157,930| 78960 | 73.700 | 73550 0 0 0
QSH QS]? QSI3 QS?I QSZ? QSZZS QS31 QSS? QSSS
OS5, 34669 | 31601 | 11905 | 23655 | 23655 | 23655 0 0 0
| QSI‘I QS‘ 12 QS‘ 13 QS' 21 QS‘ 22 QS‘ 23 QS' 31 QS' 32 QS' 33
@5, 0 0 0 633 0 0 0 0 0
xll xl? x13 x?l IQ? :U23 :USI :U32 :E33
T, [T 10000 | 09453 | 09914 | 1.0000 | 0.9999 1.0000 0 0 0

Thirty numerica examples in larger scale were also solved, based on which PSO showed to be the better
algorithm to solve all. While the second part of these examples is the same as the one of the above examples, the first
part is twice the size. The detailed solutions of the examples are not shown here to save spaces. Nonetheless, for a
typical example of large-size problems, the best value of the objective function found by PSO and SA are 3.678x10"
and 3.4934x10%, respectively.

6 Conclusion

In this research, a single-period inventory problem with market targeting consideration was investigated in which
there were several final products and several raw materials with different usage rates. The objective was to determine
the order size of both final products and raw materials before the selling period such that customer demands are
satisfied and within an available budget, the expected profit is maximized. The problem was first mathematically
formulated and then a modified parameter-tuned particle swarm optimization agorithm was utilized to find a near-
optimum solution of the nonlinear programming problem. Finally, a numerical example was given to not only clarify
the application of both the developed model and the solution algorithm, but also to validate the results obtained by
employing a parameter-tuned simulated annealing algorithm.
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