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the selling period. They applied their work in a mail-order apparel company and compared several existing and new 
forecasting methods. Pal et al. [26] analyzed a single-period newsvendor model to determine the optimal order 
quantity considering customers’ balking. They developed the model without assuming any specific distribution on 
demand. 

Some researchers like Chen & Chuang [7], Vairaktarakis [36], Abdel-Malek et al. [2], and Pasandideh et al. [27] 
worked on the constraints of mathematical models such as budget and shortage. Besides, in some cases, discount 
policies were used to purchase items. Khouja [20] formulated a single-period inventory model in the presence of sale-
price discounts and Taleizadeh et al. [32,34] modeled different sale discounts at different sale quantities. Moreover, 
Taleizadeh and Niaki [33] derived a bi-objective model for a single-period newsboy problem with fuzzy cost and 
incremental discount and Lee & Lodree [23] explored various backorder cases in a newsboy problem and tried to 
characterize a diversity of customer responses to shortages. They used the concept of the utility theory to classify 
customers in terms of their willingness to wait for the supplier replenishment in case of shortages. 

While in the classical single-period problem only one echelon is considered, Reyes [29] presented a 
mathematical model of a two-echelon supply chain problem. Chung et al. [9] proposed a model for an N-stage supply 
chain of the newsboy problem. Nowadays, many researchers tend to solve the single-period inventory problem 
strategically. Serel [30] derived an extension of the single-period inventory problem in competition environments 
between suppliers. In their work, there was a chance that when the first supplier could not be able to deliver the 
products, the second supplier would be considered. Zhang & Hua [39] employed a portfolio approach to a multi-
product newsboy problem with budget constraint, in which the procurement strategy for each product was designed as 
a portfolio contract. Lee & Hsu [22] studied the effects of advertising on distribution-free demand with known mean 
and variance. They assumed three cases for demand distribution and solved the problem analytically using closed-
form formulae. Bashiri et al. [6] presented a new mathematical model for strategic and tactical planning in a multiple-
echelon, multiple-commodity production–distribution network. They considered different time resolutions for 
strategic and tactical decisions and planned an expansion of the network based on cumulative net incomes. 

To name a few other recent relevant researches, Keren [19] assumed known demand, but stochastic supply called 
yield risks. He considered two types of risks; additive and multiplicative. His work is specially qualified for products 
with a high and random failure rate. Tiwari et al. [35] considered two sequential orders before the start of a selling 
period with an updated demand forecast after the first order in which two unrelated suppliers exist. Moreover, the 
mathematical formulation of Murray et al. [25] not only determines the order quantities, but also specifies the selling 
price of each product, which is good for pricing strategic perspectives. Wang et al. [37] brought a single period 
problem to food industry. They developed both single-item and multi-item single-period inventory models when 
market demands are assumed to be uncertain random variables. The objective of their study was to provide theoretical 
analysis of the models that attains optimality when demand information availability in subjective judgments leading 
to uncertainty along with random variation. Hnaein et al. [16] worked on replenishment planning of an assembly 
system with one type of finished product assembled from different types of components. The components are 
produced from diverse external suppliers to satisfy finished product demand. Chen et al. [8] worked on novel 
advances in applications of single period problem.    

In addition to its real-world applicability, this research concerns with the demand issue where a targeting market 
is considered. To be more specific, the multi-product multi-material version of a single-period inventory problem is 
investigated considering random demands, discount, shortage in terms of backorder, and non-conforming items that 
are either manufactured or are perishable. Moreover, to avoid lost sales in case of unanticipated excessive demands, 
re-production during the period is allowed. In addition, customers are assumed to have different needs categorized by 
some criteria, so that different selling policies are considered for each customer group of the target market. 
Furthermore, the satisfaction guarantee policy is considered for customers who do not like the products and return 
them to get their money back. The returning products, just like the unsold ones, are sold with reduced prices at the 
end of the period. Therefore, the main contribution of this paper relates to the market segmentation policy in the 
single period inventory problem that is concerned with the customer relationship management (CRM) in terms of 
customer importance and satisfaction. 

The remainder of the paper is organized as follows. In Section 2, the problem is formally defined. The 
mathematical formulation of the problem is derived in Section 3. In Section 4, a modified particle swarm optimization 
algorithm is proposed to solve the complicated problem of Section 3. Since there is no benchmark available in the 
literature, a simulated annealing algorithm is also developed in Section 4 to validate the results obtained. In this 
section, the parameters of both algorithms are calibrated to obtain solutions with better qualities. A numerical 
example to illustrate the applicability of the model and the solution algorithm is provided in Section 5. Finally, 
conclusion and some recommendations for future research come in Section 6. 
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j
C  The base unit cost of providing jth raw material 

j
L  The price per unit of the remaining jth raw material at the end of the period 

j
h  The holding cost per unit of the remaining jth raw material at the end of the period 

jl
y  A binary variable equal 1 if 

, , 1j l j j l
q QR q

+
£ <  , otherwise 0 

ik
QS  The quantity of ith final product provided for kth customer group at the beginning of the period, 

1, ,k K= ¼  
'
ik

QS  The quantity of ith final product manufactured for kth customer group during the period 

i
t  The fraction nonconformity of ith final product 

'
i
L  The price per unit of the remaining ith final product at the end of the period 

ik
r  The selling price per unit of ith final product for kth customer group 

ik
x  A fraction of kth customer group that are satisfied by ith final product ( 0 1

ik
x£ £  ) 

k
a  A fraction of kth customer group that wait for their products to be manufactured during the period 

'
i
C  The production cost per unit of ith final product 

'
i
h  The holding cost per unit of ith final product that is unused until the end of the period 

k
p  The shortage cost per unit of a final product for kth customer group 

ik
D  The demand of kth customer group for ith final product (a random variable) 

( )
ikD ik
f d  The probability density function for the demand of kth customer group for ith final product during the 

period 

( )
ikD ik
F d  The cumulative distribution functions of the demand of kth customer group for ith final product during 

the period 

i
e  A fraction of customers who return their purchased final product i 

B  The total available budget to provide raw materials and produce final products 
U  The profit (random variable) 

U  The expected profit 
 

3.2 Deriving Profit 
 
Four different costs are anticipated in the single-period inventory control problem; (a) cost of providing raw materials, 
(b) cost of transforming raw materials into final products, (c) holding cost of raw materials and final products that are 
unused during the period, and (d) the shortage cost. In what follows each of these costs are discussed and derived. 
(a) Cost of providing raw materials 
It is assumed the vendor is using the cumulative discount policy to provide raw materials. In this case, the more 
materials are bought, the more discount price is received. In other words the cost of providing raw materials is 

 ( )
1 0

1
m L

l

j j j jl
j l

C QR yg
= =

-åå       (1) 

where 
j

g  ( )0 1
j

g£ £ ,  is determined based on the market and the binary variable 
jl
y  is defined according to the 

quantity purchased as 

1,
1, if

0, else.
jl j j l

jl

q QR q
y +

ìï £ <ïï= íïïïî  
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(b) Cost of transforming raw materials into final products 
The quantity of conforming product i manufactured in the period is obtained based on the machine fraction 
nonconformity (and/or perishable percentage) and the quantity manufactured during the period. As a result, the cost 
of transforming raw materials into final products in the period becomes 

( )' '

1 1

1
.

1

n K

i ik ik
i ki

C QS QS
t= =

æ öæ ö ÷ç ÷ç ÷÷çç + ÷÷çç ÷÷çç ÷ ÷-çè øè ø
å å      (2) 

(c) Holding cost 
The holding cost is applied to remaining raw materials and final products at the end of the period. For raw materials, 
the total holding cost can be obtained as 

( )'

1 1 1

1
.

1

m n K

j j ij ik ik
j i ki

h QR QS QSh
t= = =

æ öæ ö ÷ç ÷ç ÷÷ç ç- + ÷÷ç ç ÷÷ç ç ÷ ÷-ç è øè ø
å å å     (3) 

For final products, the holding cost is calculated by 

( )' '

1 1 1 1

,
n K K K

i ik ik ik ik i ik ik
i k k k

h QS QS x D x De
= = = =

æ ö÷ç ÷ç + - + ÷ç ÷ç ÷çè ø
å å å å       (4) 

where the term 
1

K

i ik ik
k

x De
=
å  is used for products that are returned using the "satisfaction guarantee" policy and remain 

until the end of the period. 
(d) Shortage cost 
Since the returned products are considered lost sales, the shortage cost is derived based on the usual lost sale 
quantities along with the quantities returned. In other words, the shortage cost is obtained as 

1 1 1 1

.
n K K K

i ik ik ik i ik ik
i k k k

D x D x Dp e
= = = =

æ ö÷ç ÷ç - + ÷ç ÷ç ÷çè ø
å å å å          (5) 

 
3.3 Revenue 
 
In the single period inventory problem, revenue is not only obtained by selling the final products during the period but 
also by selling the remaining final products and raw materials at the end of the period. Hence, the revenue is 
calculated as 

( ) ( )

( )
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1 1 1 1
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Finally, the profit function can be simply derived using Eqs. (1) to (6) as 
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As a result, in order to obtain the expected profit function, one can simply employ the expectation operation to get 
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Since 
ik
x is dependent on the integral interval, without loss of generality, in the integral terms in which 

ik
x  

exists, if the interval is changed to a proper one, then 
ik
x can be eliminated. The simplified equation the of expected 

profit function can be written as 
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3.4 Constraints 
 
The first set of constraints corresponds to the cumulative discount policy used to purchase raw materials as 

1

1

, 1, ,  &  1, ,

, 1, ,  &  1, ,

1.

j jl jl

j jl jl
m

jl
j

QR q y j m l L

QR q y j m l L

y

+

=

³ " = ¼ = ¼
< " = ¼ = ¼

=å

    (10) 

In addition, since different products need different raw materials in various quantities and that the quantity of each 
product produced is lower than the total quantity of raw materials used to produce them, we have 

'

1 1

1 1
( ) , 1, , .

1

m K

j ik ik
j kij i

QR QS QS i n
h t= =

æ öæ ö ÷÷çç ÷÷çç³ + " = ¼÷÷çç ÷÷çç ÷ ÷ç-è øè ø
å å     (11) 

If final products that are manufactured at the beginning of the period are sold out during the period, there will be 
production set up for customers who are willing to wait. In this case, the number of manufactured products during the 
period is less than the demand of the waiting customers. Moreover, in order to obtain the number of manufactured 
products during the period the following constraints are used. These constraints assure us that total number of items 
produced in the period is not more than the demand. These constraints are provided for all the products and customer 
groups as 

'

, 1, , &  1, , .
ik ik

ik ik

QS QS

ik ik k ik ikQS QS
d dd d dd i n k Ka

+ ¥
£ " = ¼ = ¼ò ò               (12) 

To help decision makers to apply different policies on various customers with different priorities, customers are 
categorized. In the following constraints if the decision maker desires to satisfy the demand of some customer groups 
less than 100%, he simply can insert the percentage he wants, otherwise the model obtains the percentage satisfied, 
optimally. These constraints calculate the least number of items the manufacturer produces each product in order to 
not fail to employ a desired policy for that costumer group. 

'

0
, 1, , & 1, , .

ik ikQS QS

ik ik ik
d dd x i n k K

+
= " = ¼ = ¼ò                            (13) 

In the single period inventory problem, there are often some investors with limited budget to invest in the period. 
This budget is required to purchase raw materials and to transform them into final products. Thus, the budget 
constraint becomes 
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3.5 The Mathematical Model 
 
By summing up the mathematical relations (9) to (14), the final model is 
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As seen, the above model is a non-linear integer problem. The model is hard enough to solve due to its two main 
characteristics, i.e. having integer decision variables along with non-linear objective function and constraints. The 
complexity of the model grows as the numbers of integer decision variables and constraints become large in even 
medium-size problems. The above characteristics justify the use of a meta-heuristic method to solve the problem. 

 

4 A Solution Algorithm 
 
Since the non-linear integer mathematical problem modeled in Section 3 is hard to be solved analytically, the particle 
swarm optimization (PSO) algorithm is modified in this research to find a near-optimum solution. In this section, 
after providing the basis of the PSO algorithm in Subsection 4.1, the modified PSO algorithm is proposed in 
Subsection 4.2. In Subsection 4.3, the parameters of the proposed algorithm are tuned using a regression approach 
and solving a quadratic mathematical model. Besides, in order to validate the results obtained, a simulated annealing 
approach is proposed in Subsection 4.4 to serve as a benchmark. 

 
4.1 The Particle Swarm Optimization Algorithm 
 
PSO is a population-based algorithm first introduced by Kennedy & Eberhart [17]. Kennedy et al. [18] discussed 
social and computational concepts of PSO. This algorithm starts by a random population of solutions, named particles. 
Each particle is first assigned a randomized velocity and then it iteratively searches the problem space to find a 
solution. In each iteration, the objective function value based on each solution is the particle's current location [4]. 
The movement of each particle to another location determined by using some aspect of its current location, the 
location of the best fitness achieved so far across the whole population (global best fitness), and the previous best 
position of the particle. Eventually it is likely, the swarm become close to an optimum fitness of the objective 
function. The particle swarm is more than just a collection of particles. Particles by itself have no power to solve any 
problem; it is their interactions that make it a powerful procedure [4]. The following parameters are used to explain 
the PSO algorithm in detail. 

t  Iteration number 
w  The inertia weight as a coefficient of the particle's current location to update its velocity; it can be interpreted 

as the fluidity of the medium in which a particle moves 

d
w  A coefficient of w that gradually reduces w to a much lower value 
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1
c  Determines the magnitude of the random force in the direction of the last best particle location 

2
c  Determines the magnitude of the random force in the direction of the global best location 

1
a  A uniform random variable in [0,1] as a coefficient of the best location of a specific particle till the last 

iteration; this coefficient allows random possible moves of particles 

2
a  A uniform random variable in interval [0,1] as a coefficient of the best global location; this coefficient also 

allows random possible moves of particles 

Best
O Objective value of the best location of a specific particle till the last iteration 
Global
Best
O  Objective value of the global best location 

t

variable
P


 Position vector of iteration t  for a specific variable (in this paper ', ,QR QS QS ) 

Best

variable
P


 Position vector of the best location of a specific particle till the last iteration 

GBest

variable
P


 Position vector of the global best location 

variable
MaxV  Upper bound of velocity for a specific variable that limits the magnitude of particle movements 

In PSO, the velocity of each particle is iteratively updated so that particles randomly move toward the best 
location and eventually the global best location of all particles found until the last iteration. Assuming a D-
dimensional search space, the algorithm of implementing PSO is as follows [26]: 

1. Initialize a population array of particles with random positions and velocities on D dimensions of the search      
space. 

2. For each particle, evaluate the desired optimization fitness function in D variables. 

3. Compare particle’s fitness evaluation with its 
Best
O . If the current value is better than

Best
O , then replace 

Best
O with the current value and set Best

variable
P


 equal to the current location. 

4. Change the velocity and position of the particles according to the following equations: 
1 1 1

1 1 2 2
( )( ) ( )( ),t t Best t GBest t

variable variable variable variable variable variable
V wV c a P P c a P P- - -= + - + -
     

  (15) 

1 .t t t

variable variable variable
P P V-= +
  

              (16) 

5. If a stopping criterion is met, stop. Otherwise, go to Step 2. 
 

4.2 The Modified PSO Algorithm 
 
The steps involved in the modified PSO algorithm of this research to find near-optimum solutions of the problem at 
hand are shown in Algorithm (1) as follows: 
 

Algorithm (1) 

I. Initialization 
I.1. Set the algorithm parameters: 

1 2
, , , , , 30.

variable d
MaxV w w c c population =  

II. Produce the first particles randomly  
II.1. Calculate the maximum quantity of raw materials using 

1

1 1

.
0.75 , 1, , .

.

n

ij
i

j m n

j ij
j i

B

Max QR j m

C

h

h

=

= =

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= " = ¼ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷è ø

å

åå
    (17) 

In Eq. (17), 75 percent of the maximum quantity of raw materials is calculated so that some budget remains 
for production line. 

II.2. Generate a uniform random variable in [0, ]
j

MaxQR for each raw material j .  
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II.3. Using the random quantity of raw material generated in Step II.2, determine the quantity of the final 
product i to be produced within the budget as 

'
min 0.25 ,min , 1, , .

.
j

i j
iji

QRB
QS i n

nC h

ì üì üæ öï ïï ï÷ï ïç ï ïï ï ïï÷ç= " = ¼÷í í ýýç ÷ï ï ïïç ÷çè øï ï ïïï ïî þï ïî þ
                      (18) 

II.4. To determine the quantities of final products at the beginning of the period and their quantities produced 
during the period for each customer groups, use 

'(1 )
, .i i

ik ik

QS QS
QS QS

K K

a a-
= =      (19) 

II.5. As far as constraint (12) remains valid, subtract one unit from '
ik

QS . In case '
ik

QS  becomes zero, subtract 

one unit from 
ik

QS (this step is optional). 

II.6. In order to determine the discount level, calculate
jl
y using 

j
QR and then determine l . 

II.7. If the decision maker did not determine
ik
x , calculate it using 

ik
QS and '

ik
QS . 

III. Random particle fitness 

III.1. Set the global best objective function ( Global

Best
O ) value as negative infinity. 

III.2. Calculate the fitness of the random particle produced in Step (II). 

III.3. Set the best objective (
Best
O ) as a current fitness of the particle and set the best position ( Best

variable
P ) as the 

current position of the particle. 

III.4. If Global

Best Best
O O> , then replace Global

Best
O  and GBest

variable
P by 

Best
O and Best

variable
P . 

IV. Optimizing the particles 
IV.1. Update the particle velocity using following formulae 

1 1 1
1 1 2 2

1 1 1
1 1 2 2

. ( )( ) ( )( ),

. ( )( ) ( )( ).

t t Best t GBest t

QR QR QR QR QR QR
t t Best t GBest t

QS QS QS QS QS QS

V wV c a P P c a P P

V wV c a P P c a P P

- - -

- - -

= + - + -

= + - + -
    (20) 

IV.2. If the updated velocities are more than upper bound of velocities, change them by 

if   

 ,

0

if 0

t t

QR QR QRt
t tQR QR
QR QR QR

V V MaxV
V MaxV

V V MaxV

ìï >  =ïï>  íï <  = -ïïî
 

      

if  0

i .f 0

t t

QS QS QSt
t tQS QS
QS QS QS

V V MaxV
V MaxV

V V MaxV

ìï >  =ïï>  íï <  =-ïïî
     (21) 

IV.3. Update the particles position using 

' ' '

1

1

1

,

,

.

t t t

QR QR QR
t t t

QS QS QS
t t t

QS QS QS

P P V

P P V

P P V

-

-

-

= +

= +

= +

      (22) 

V. Checking the constraints 

V.1. Check Constraint (11); if it is not satisfied, inverse the velocity vector of 
j

QR for each j based on which 

Constraint (11) is not valid. 

V.2. Check Constraint (12); if it is not satisfied, inverse the velocity vector of '
ik

QS for each i and k based on 

which Constraint (11) is not valid. 

V.3. Check Constraint (13); if it is not satisfied for
ik
x , then inverse the velocity vector for each 

ik
QS based 

on which the Constraint (13) is not valid. 
V.4. Check Constraint (14); if it is not satisfied, set the value of the corresponding objective function a 

negative number (such as –1 or –big M or another optional negative number). 
VI. The particle fitness 

VI.1. If Constraint (14) is valid; calculate the objective value of the corresponding particle. 
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VI.2. If the calculated objective value of the particle is better than 
Best
O , update 

Best
O by the current objective 

value of the particle and subsequently update the best position (
Best
P ). 

VI.3. If Global

Best Best
O O> , then replace Global

Best
O  and GBest

variable
P  by 

Best
O and Best

variable
P . 

VII. Stopping criterion 

VII.1. Multiply w by wd , i.e., 1 .t t

d
w w w-= ´   

VII.2. If the number of iterations is less than 1000, go to Step (IV), otherwise stop and print the results. 
 

4.3 Parameter Calibration 
 
One of the parameters is the population size that usually affects the performance of a population-based meta-heuristic 
algorithm. This parameter is often set empirically based on the problem complexity. As indicated by Poli et al. [28], 
the range of 20–50 is quite common. For the problem under investigation, this parameter is set 30 empirically based 
on a trial and error procedure. However, the other parameters used in the modified PSO algorithm are tuned via a 
regression approach and solving a quadratic mathematical model. To do this, important parameters with significant 
impacts are first discussed. Then, these parameters are randomly changed 30 times, each in a range proposed in the 
literature, using a sample of size 5. Finally, the mean of the objective functions for each sample is treated as the 
performance of the algorithm in that sample. 

The parameters 1
c  and 2

c  that are often called acceleration coefficients have significant impacts on the 

performance of PSO. While the values of 1
c  and 2

c  in early PSO applications were adopted 1 2
2c c= = , in this 

article 1 2
c cc= = , where c changes in the range [1,3]. 

One of the techniques to control the magnitude of the velocity is to define bounds so that each velocity is kept 

within the range [ ,
variable variable

MaxV MaxV- + ]. Here, the bounds are examined in the range [2,5]. 

Another important parameter is "inertia weight." Some researchers have found that the best performance could 
be obtained by initially setting w to some relatively high value (e.g., 0.9), which allows particles move in low 
viscosity to perform extensive exploration. However, after some iterations  w will gradually reduce to have more 
exploitation so that homing into local optima would be better (e.g. 0.4). Nonetheless, it is possible to start values of 

1w > , which would make the swarm unstable, provided that the value is reduced sufficiently to bring the swarm in a 

stable region [31]. In this research, the inertia weight is changed in the range [0.4,1.2] and 
d
w takes values in [0.8,1]. 

Evaluating the mean objective function 30 times, each with a sample of 5 instances with different parameter 
settings, the experimental results of employing the modified PSO are given in Table 1. These results are obtained 
using a numerical example given in Section 5. Using the results in Table 1, the quadratic regression with four 

variables (
MaxV
X , 

w
X , 

dw
X , and 

c
X ) is first fitted for the mean objective value (Y ). Then, the combination of the 

variables that maximizes Y  is selected to be the calibrated values of the parameters. The fitted response is 

 

2 2

2 2

11600000 8800000 289700000 5900000 353900000

  71300000 67200000 5402100000 297300000 169300000

  355900000 505400000 8847400000 697000

d

d d d

d

MaxV MaxV w MaxV w MaxV c w

w w w c w w c c

MaxV w w

Y X X X X X X X X

X X X X X X X X

X X X

= - + - - -

+ - + + -

+ + - + 000 2203800000.
c
X +

     (23) 

Hence, the quadratic mathematical model is 
2

2 2

2

11600000 8800000 289700000 5900000

             353900000 71300000 67200000 5402100000

             297300000 169300000 355900000 5054000

d

d d

d

MaxV MaxV w MaxV w MaxV c

w w w w c w

w c c MaxV

Max Y X X X X X X X

X X X X X X

X X X X

= - + - -

- + - +

+ - + + 00

             8847400000 697000000 2203800000
d

w

w c

X

X X- + +

 

. .  2 5

     0.4 1.2

     0.8 1.0

     1 3.
d

MaxV

w

w

c

s t X

X

X

X

£ £
£ £
£ £

£ £

                                                                                            (24) 
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 Solving the model, the calibrated PSO parameters are determined as: 
* * * *2, 1.2, 0.8, 3

dMaxV w w c
X X X X= = = = . 

 
Table 1: Experimental results 

No.  Max V  w  d
w c  Objective Mean 

1 3 0.750 1.000 1.500 211,580,000 
2 5 1.016 0.826 1.836 145,650,000 
3 4 1.041 0.986 2.549 220,660,000 
4 5 0.935 0.970 2.607 211,130,000 
5 3 0.768 0.996 1.271 -95,850,000 
6 3 0.535 0.886 2.938 184,820,000 
7 2 0.826 0.858 1.723 -2,470,000 
8 5 1.151 0.938 2.263 118,080,000 
9 5 1.048 0.821 1.284 -58,940,000 

10 2 0.644 0.837 2.821 143,000,000 
11 5 0.449 0.963 2.698 264,910,000 
12 2 0.513 0.948 2.109 180,280,000 
13 2 0.751 0.876 2.828 252,960,000 
14 5 0.808 0.977 1.121 -130,110,000 
15 2 0.712 0.807 1.039 -240,700,000 
15 3 1.185 0.839 2.347 55,310,000 
17 4 0.602 0.908 1.513 49,160,000 
18 4 0.418 0.861 1.259 -98,630,000 
19 5 0.628 0.909 1.470 -47,930,000 
20 5 0.751 0.941 1.142 -208,110,000 
21 4 1.154 0.992 1.321 -27,610,000 
22 5 1.081 0.960 1.650 64,570,000 
23 4 0.618 0.881 1.613 119,210,000 
24 4 0.832 0.896 1.260 -89,050,000 
25 2 0.532 0.853 2.219 148,200,000 
26 5 0.527 0.977 1.062 -176,830,000 
27 4 0.805 0.908 1.021 -171,410,000 
28 3 0.577 0.805 1.776 50,150,000 
29 5 0.983 0.868 1.131 -203,520,000 
30 5 1.039 0.981 2.856 236,650,000 

 

4.4 The Simulated Annealing Algorithm 
 
SA works by analogy between the annealing process and the optimization of mathematical models. In this algorithm, 
it is assumed that an optimization problem is analogous to the arrangement status of molecules in a particular object 
in a specific temperatures, and the objective is to achieve the most regular crystal lattice configuration by minimizing 
the free energy of the system. If the cooling process is sufficiently slow, the final arrangement of molecules would 
have superiority [13,10].  

In SA, in order to improve the objective function value, a new solution is determined in each iteration. If this 
new solution is better than the previous solution, the new solution will be replaced with the previous solution. Further, 
if it is also better than the best solution achieved till now, these two solutions will be changed [5]. However, if this 
new solution is not better than the previous solution, it will be accepted and replaced with the previous solution with 



S.H.R. Pasandideh et al.: A Two-Echelon Single-Period Inventory Control Problem 

 

 
 

30 

some probability in the hope of escaping local optimal. The probability of this non-improved replacing depends on a 
temperature parameter, which is decreasing in each iteration of the Algorithm (2). 

The steps involved in the SA algorithm developed in this paper to validate the results obtained by PSO are 
shown in Algorithm (2): 

 
Algorithm (2) 

1) Choose the maximum iterations, It = 500. 
2) Choose the initial temperature T0 = 100; and set the temperature as T = T0. 
3) Choose the number of iterations at each temperature, Nt = 5. 

4) Set the final temperature (Tf = 0.001) and set the reduction constant Td of temperature as ( )(1/ )

0
/

It

f
T T  . 

5) Produce twenty initial random solutions (similar to PSO initial random population).  
6) Set the maximum objective values of solutions as the best solution. 
7) Create twenty new solutions as follows: 

produce an integer random number in range [1,2]. If it is 1 use Eq. (25), if it is 2 use Eq. (26) as 

1

New solution = Previous Solution +

 R 2.5 (a ( A Random Sultion  Previous Solution))´ ´ ´ -
                (25) 

1

New Solution = Previous Solution +

 R 2.5 (a ( Best Solution  Previous Solution))´ ´ ´ -
                    (26) 

where R is the direction of changing initially set equal to 1 and in iterations of the algorithm it can be 

changed into -1 or 1. 1
a  is a uniform random number in [0, 1]. The number 2.5 has been obtained empirically 

so that it makes the new solution to be generated suitably. 
8) Check all constraints (except constraint 14). If they are satisfied go to Step 9, otherwise set R R=- . 
9) Check the new solution with its lower bound. If it is infeasible (for example, when QS becomes negative), set 

the    new solution equal to its lower bound. 
10) Check Constraint (14). If it is satisfied, calculate the objective value of the new solution, otherwise set the 

corresponding objective value as –big M. 
11) Calculate D  by  

(Objective value of the new solution  objective value of the previous solution)
 = 

objective value of the previous solution

-
D  .            (27) 

12)  If D  is positive, replace the new solution with the previous solution. Otherwise, generate a uniform random   

number. If this random number is bigger than 
T

e
D

, replace the new solution with the previous one. Else, do 
nothing. 

13) If Nt = 5, go to step 14, otherwise set Nt = Nt +1 and go to Step 6. 
14) Update the temperature. T = T × Td. 
15) If It = 500, stop and print the best solution. Otherwise, go to Step 6. 

Note that a similar procedure to the one used for the PSO algorithm is employed to calibrate the parameters of 
the SA as well.    

 
5 Numerical Examples 
 
In order to demonstrate the application of the proposed model and to investigate the performance of the proposed 
solution methodology, a numerical example is provided in this section. Suppose there are 3 different products in a 
target market consisting of 3 different categories of customers. Let the random demand during the period follows a 

normal distribution with known mean (
ik

m ) and variance ( 2
ik

s ) for each product and each customer group. These 

products are manufactured using 9 different types of raw materials with different usages. The total budget available 

for this investment opportunity is 815 10´ currency units. For each raw material, the vendor proposes a cumulative 
discount with one break point at the quantity of 10,000. Table 2 shows the corresponding data of raw materials and 
Table 3 contains final product data. In Table 4, the usage rates of the raw materials used in final products are given 
and Table 5 contains the data corresponding to customer groups. The data of final products and customer groups are 
shown in Table 6. 
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Table 2: Data on raw materials 

j  1 2 3 4 5 6 7 8 9 

j
C

 
1000 200 100 100 2000 100 10000 100 200 

j
g

 
0.2 0.1 0.05 0.05 0.1 0.05 0.1 0.05 0.05 

j
L

 
500 0 0 0 400 0 2000 0 0 

j
h

 
10 5 5 2 20 5 25 5 2 

 
Table 3: Data on final products 

i  1 2 3 

i
t

 
0.01 0.01 0.001 

'
i
L

 
600 500 2000 

'
i
h

 
15 30 50 

'
i
C

 
700 500 600 

i
e

 
0.01 0.001 0.001 

 
Table 4: The usage rate of jth raw material in ith product 

ij
h

 
1 2 3 4 5 6 7 8 9 

1 1 2 2 1 0 0 0 0 0 

2 0 0 0 0 1 1 0 0 0 

3 0 0 0 0 0 0 1 2 1 
 

Table 5: Data on customer groups 

K 1 2 3 

k
a

 
0.4 0.2 0.1 

k
p

 
200 100 100 

 
Table 6: Data on final products and customer groups 

 i k 1 2 3 
 

ik
r

 

1 3800 6700 17,000 

2 3500 6500 17,000 

3 4500 7000 17,000 
 

ik
x

 

1 0.5 0 0 

2 0.7 0 0 

3 0.8 0 0 
 

ik
m

 

1 30,000 20,000 500 

2 10,000 20,000 200 

3 10,000 10,000 1000 
 

ik
s

 

1 1000 1000 50 

2 1000 1000 50 

3 800 800 50 
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The proposed parameter-tuned PSO algorithm is employed on the numerical illustration using the MATLAB 
software 50 times, where the best objective value achieved is 2.9322×108. The best result is summarized in Table 7. 
Note that since a high cost is associated with product 3, its production has no economic justification. As a result, the 
fractions of customer groups that are satisfied with product 3 are zeros. Similarly, to validate the results obtained, the 
SA described in Section 4 is utilized as well to find the best objective value of 2.5954×108. The best solution of the 
SA algorithm is shown in Table 8. As it can be seen, PSO provides a better near-optimum solution. 

Table 7: The summarized PSO solution 

 

j
QR

 

1
QR

 2
QR

 3
QR

 4
QR

5
QR

6
QR

7
QR

8
QR

 9
QR

77,750 155,500 155,500 77,750 57,730 57,730 0 0 0 
 

ik
QS

 

11
QS

 12
QS

 13
QS

 21
QS

22
QS

23
QS

31
QS

 32
QS

 33
QS

0 0 2,400 11,631 11,631 11,631 0 0 0 
 

'
ik

QS
 

'
11

QS
 12

'QS
 13

'QS
21

'QS
22

'QS
23

'QS
31

'QS
 32

'QS
 33

'QS

32,431 32,388 9,753 11,130 11,126 0 0 0 0 
 

ik
x

 

11
x

 12
x

 13
x

 21
x

22
x

23
x

31
x

32
x

 33
x

0.9925 0.9915 0.9964 0.9971 0.9971 0.9793 0 0 0 
 

Table 8: The summarized SA solution 

 

j
QR

1
QR

 2
QR

3
QR

 4
QR

5
QR

6
QR

7
QR

 8
QR

 9
QR

78,960 157,930 157,930 78,960 73,700 73,550 0 0 0 
 

ik
QS

11
QS

 12
QS

13
QS

 21
QS

22
QS

23
QS

31
QS

 32
QS

 33
QS

34,669 31,601 11,905 23,655 23,655 23,655 0 0 0 
 

'
ik

QS

'
11

QS
 12

'QS
 13

'QS
 21

'QS
22

'QS
23

'QS
31

'QS
 32

'QS
 33

'QS

0 0 0 683 0 0 0 0 0 
 

ik
x

 

11
x

 12
x

13
x

 21
x

22
x

23
x

31
x

32
x

 33
x

1.0000 0.9453 0.9914 1.0000 0.9999 1.0000 0 0 0 
 

Thirty numerical examples in larger scale were also solved, based on which PSO showed to be the better 
algorithm to solve all. While the second part of these examples is the same as the one of the above examples, the first 
part is twice the size. The detailed solutions of the examples are not shown here to save spaces. Nonetheless, for a 
typical example of large-size problems, the best value of the objective function found by PSO and SA are 3.678×1012 

and 3.4934×1012, respectively. 
 

6 Conclusion 
 
In this research, a single-period inventory problem with market targeting consideration was investigated in which 
there were several final products and several raw materials with different usage rates. The objective was to determine 
the order size of both final products and raw materials before the selling period such that customer demands are 
satisfied and within an available budget, the expected profit is maximized. The problem was first mathematically 
formulated and then a modified parameter-tuned particle swarm optimization algorithm was utilized to find a near-
optimum solution of the nonlinear programming problem. Finally, a numerical example was given to not only clarify 
the application of both the developed model and the solution algorithm, but also to validate the results obtained by 
employing a parameter-tuned simulated annealing algorithm. 
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