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Abstract

In this paper, we develop a quasi-Newton method for unconstrained optimization problems with fuzzy
functions. Here, we extend the well-know BFGS method to fuzzy optimization problems. To this end, the
generalized Hukuhara differentiability for fuzzy functions is employed. By using a Hessian approximation,
we resolve the high computational cost of finding the Hessian in Newton method for fuzzy optimization
problems. Utilizing the quasi-Newton algorithm, we find nondominated solutions of a fuzzy optimization
problem. Finally, we provide some numerical examples to show the efficiency of the proposed approach
over the other methods.
c⃝2017 World Academic Press, UK. All rights reserved.
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1 Introduction

In optimizing real world systems, we deal with linear and nonlinear programming problems. In the con-
ventional optimization problems, all of the coefficients are real numbers. However, in the real world, the
coefficients involved in the objective and constraint functions are imprecise in nature and have to be stated in
fuzzy sense to reflect the real world situation. Fuzzy optimization problems were first considered by Bellman
and Zadeh [5]. Thereafter, Tanaka et al. [26] introduced the concept of fuzzy mathematical programming in a
general level. Over the last decades, many researchers have studied optimization problems with fuzzy-valued
objective functions. We refer to [1, 8, 9, 14, 15, 16, 17, 18, 19, 20] that have been done in this direction.

Pirzada and Pathak [22] proposed the Newton method for unconstrained optimization problems with
fuzzy-valued functions. In their proposed method, they utilized Hukuhara differentiability of fuzzy-valued
functions and max-ordering relation defined on the set of fuzzy numbers. Afterwards, Chalco-Cano et al. [6]
addressed some of the difficulties of the method proposed by Pirzada and Pathak [22] and by using general-
ized Hukuhara differentiability (gH-differentiability) of fuzzy functions they resolved these difficulties. More
recently, Ghosh [10, 11, 12] proposed (quasi-)Newton methods for finding efficient solutions of optimization
problems with interval-valued objective functions.

The Newton method proposed in [6, 22] is well defined only when the optimization problem is convex.
Moreover, for large scale optimization problems, computing the Hessian matrix is very hard and cost effective.
Therefore, in this paper, we are going to provide a quasi-Newton method to resolve the computational cost
in computing the Hessian of the Newton method [6, 22] for unconstrained fuzzy optimization problems.
Resolving the computational cost is done through approximating the Hessian matrix by another matrix that
is available at lower cost. Quasi-Newton methods are among the most widely used methods for solving
nonlinear optimization problems, see [2, 21]. They are effective in solving a wide variety of small to mid-
size optimization problems, in particular when the Hessian is hard to compute. There are many different
quasi-Newton methods, but they are all based on approximating the Hessian matrix by another matrix that
is available at lower cost. Here, we extend the well-known BFGS method to fuzzy optimization problems.
There are several advantages in this approach. At first, an approximation matrix can be found by using
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only first-derivatives information. Second, for problems that their Hessian is hard to compute, the proposed
algorithm works efficiently. We show that the method converges superlinearly.

The outline of this paper is as follows. In Section 2, some basic properties and arithmetics of fuzzy sets
are introduced. In Section 3, some results on gH-differentiability of fuzzy functions and fuzzy optimization
are provided. The proposed quasi-Newton method is given in Section 4. To illustrate the efficiency of the
proposed method, numerical examples are presented in Section 5. Finally, conclusions and suggestions for
future research are given in Section 6.

2 Preliminaries and Basic Definitions

Let R be the set of real numbers. A fuzzy set u on R is a mapping u : R → [0, 1]. A fuzzy set u is characterized
by its membership function µu : R → [0, 1], which associates with each x in R, a real number µu(x) in [0, 1].
Let u be a fuzzy set. The α-cut or α- level of the fuzzy set u is given by [u]α = {x ∈ R : u(x) ≥ α}. Also, the
support of u, is denoted by S(u) = {x ∈ R : u(x) > 0}. The closure of support u defines the 0-level of u, that
is, [u]0 = cl(S(u)).

Definition 2.1. [3] A fuzzy set u on R that satisfies the following properties, is called a fuzzy number:

(i) u is normal, i.e. there exists x0 ∈ R such that u(x0) = 1;

(ii) u if a fuzzy convex set, i.e., u(λx+ (1− λ)y) ≥ min{u(x), u(y)}, whenever x, y ∈ R and λ ∈ [0, 1];

(iii) u is upper semi-continuous on R;

(iv) [u]0 is a compact set.

Let F (R) denote the family of all fuzzy numbers on R. By definition, it can be seen that [u]α is a compact
interval in R, for all α ∈ [0, 1], and therefore the α-level of a fuzzy number u is denoted by [u]α = [uα, uα],
where uα, uα ∈ R for all α ∈ [0, 1].

Let u and v be two fuzzy numbers. Using the α-level sets, their addition and scalar multiplication in F (R)
are defined as follows, respectively:

[u+ v]α = [uα + vα, uα + vα] (2.1)

and

[λu]α = [min{λuα, λuα},max{λuα, λuα}], (2.2)

where λ ∈ R and α ∈ [0, 1].

Definition 2.2. [3] Triangular fuzzy numbers are a special type of fuzzy numbers which are defined as
u = (a, b, c), where a, b and c are three real numbers and their membership function is defined as:

µu(x) =


x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, otherwise.

(2.3)

The α-level set of a triangular fuzzy number u = (a, b, c) is given by:

[u]α = [(1− α)a+ αb, (1− α)c+ αb], ∀α ∈ [0, 1].

Definition 2.3. [3] Let u and v be two fuzzy numbers in F (R). Hence [u]α = [uα, uα] and [v]α = [vα, vα] are
two intervals in R, for all α ∈ [0, 1]. We define

u ≼ v ↔ [u]α ≼ [v]α, ∀α ∈ [0, 1] ↔ uα ≤ vα and uα ≤ vα, ∀α ∈ [0, 1]

and

u ≺ v ↔ u ≼ v and u ̸= v ↔ [u]α ≼ [v]α ∀α ∈ [0, 1], and ∃α∗ ∈ [0, 1] s.t. uα∗
< vα

∗
or uα∗

< vα
∗
.
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Definition 2.4. [24] Given u, v ∈ F (R). The fuzzy number w is called the generalized Hukuhara difference
(gH-difference for short) between u and v, if

u⊖gh v = w ⇐⇒
{

(i) u = v + w or
(ii) v = u+ (−1)w.

Using the α-levels we have

[u⊖gh v]
α
= [u]

α ⊖gh [v]
α
= [min {uα − vα, uα − vα} ,max {uα − vα, uα − vα}] , ∀α ∈ [0, 1]

where [u]
α ⊖gh [v]

α
is the gH-difference between two intervals (see [24, 25]).

3 Differentiable Fuzzy Functions and Fuzzy Optimization

In this section, at first we introduce the concept of differentiability of fuzzy functions. Later, we consider
fuzzy optimization problems, and define nondominated solutions of a fuzzy optimization problem.

3.1 Differentiable Fuzzy Functions

Henceforth, X denotes an open subset of Rn. A mapping F : X −→ F (R) is said to be a fuzzy function
defined on X. Let Xc denote the family of all bounded closed intervals in R. We associate with each fuzzy
function F : X → F (R), the family of interval-valued functions Fα : X → Xc given by Fα(x) = [F (x)]α. For

each α ∈ [0, 1], we denote Fα(x) = [F (x)]α =
[
fα(x), f

α
(x)

]
. The endpoint functions fα, f

α
: X −→ R are

said to be upper and lower functions of Fα(x), respectively.

Definition 3.1. [4] Let X ⊂ R and F : X −→ F (R) be a fuzzy function. Also, assume that x0 ∈ X and h
be such that x0 + h ∈ X. The generalized Hukuhara derivative (gH-derivative) of F at x0 is defined as

F ′(x0) = lim
h→0

F (x0 + h)⊖gh F (x0)

h
. (3.1)

If F ′(x0) ∈ F (R) satisfying (3.1) exists, then F is said to be generalized Hukuhara differentiable (gH-
differentiable) at x0. If F is gH-differentiable at any x ∈ X, we say that F is gH-differentiable over X.

Definition 3.2. [25] Let X be an open set in R. An interval-valued function F : X → Xc is gH-differentiable
at x0 ∈ X, if (3.1) exists with respect to the limit in the metric space (Xc,H), where the difference is given
by the gH-difference between intervals.

Theorem 3.3. [1] Let F : X −→ F (R) be a fuzzy function. If F is gH-differentiable, then the interval-valued
function Fα : X −→ Xc is gH-differentiable for each α ∈ [0, 1]. Moreover

F ′
α(x) = [F ′(x)]

α
=

[
(fα)′(x), (f

α
)′(x)

]
.

Theorem 3.4. [6] Let F : X −→ F (R) be a fuzzy function. If F is gH-differentiable at x0 ∈ X then, for each
α ∈ [0, 1], one of the following cases holds:

a) fα and f
α
are differentiable at x0 and

[F ′(x0)]
α
=

[
min{(fα)′(x0), (f

α
)′(x0)},max{(fα)′(x0), (f

α
)′(x0)}

]
;

b) (fα)′−(x0), (f
α
)′−(x0), (f

α)′+(x0) and (f
α
)′+(x0) exist and satisfy (fα)′−(x0) = (f

α
)′+(x0) and (fα)′+(x0)

= (f
α
)′−(x0). Moreover

[F ′(x0)]
α

=
[
min{(fα)′−(x0), (f

α
)′−(x0)},max{(fα)′−(x0), (f

α
)′−(x0)}

]
=

[
min{(fα)′+(x0), (f

α
)′+(x0)},max{(fα)′+(x0), (f

α
)′+(x0)}

]
.
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Definition 3.5. [1] Let F : X −→ F (R) be a fuzzy function and let x0 = (x0
1, x

0
2, · · · , x0

n) be a fixed element
of X. Consider the fuzzy function h(xi) = F (x0

1, · · · , x0
i−1, xi, x

0
i+1, · · · , x0

n). If h is gH-differentiable at x0
i ,

then we say that F has the ith partial gH-derivative at x0 (denoted by ∂F
∂xi

(x0)) and ∂F
∂xi

(x0) = (h′)(x0
i ).

Definition 3.6. [1] Let F be a fuzzy function defined on X ⊆ Rn and let x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ X be a fixed

element of X. F is said to be gH-differentiable at x0 if all the partial gH-derivatives ∂F
∂x1

(x0), ∂F
∂x2

(x0), . . . ,
∂F
∂xn

(x0) exist in some neighborhood of x0 and are continuous at x0.

Definition 3.7. [1] Let F : X −→ F (R) be a fuzzy function. The gradient of F at x0, denoted by ∇̃F (x0),
is defined by

∇̃F (x0) =

(
(
∂F

∂x1
)(x0), (

∂F

∂x2
)(x0), · · · , (

∂F

∂xn
)(x0)

)
.

The α-level set of ∇̃F (x0) is defined and denoted by

[∇̃F (x0)]α =

(
[
∂F

∂x1
]α(x0), [

∂F

∂x2
]α(x0), · · · , [

∂F

∂xn
]α(x0)

)
,

where

[
∂F

∂xi
]α = [

∂Fα

∂xi
,
∂F

α

∂xi
].

Theorem 3.8. [6] Let F : X −→ F (R) be a fuzzy function. If F is gH-differentiable at x0 ∈ X then, for each
α ∈ [0, 1], the real-valued function fα + f

α
: X −→ R is differentiable at x0. Moreover,

∂Fα

∂xi
(x0) +

∂F
α

∂xi
(x0) =

∂
(
fα + f

α
)

∂xi
(x0). (3.2)

Definition 3.9. [6] Let F : X −→ F (R) be a fuzzy function. If gradient of F , ∇̃F, is itself gH-differentiable
at x0, that is, for each i, the function ∂F

∂xi
: X −→ F (R) is gH-differentiable at x0, then we say that F is twice

gH-differentiable at x0. Denote the gH-partial derivative of ∂F
∂xi

by

D̃2
ijF (x0) =

∂2F

∂xixj
(x0), i ̸= j,

and

D̃2
iiF (x0) =

∂2F

∂x2
i

(x0), i = j.

If for each i, j = 1, 2, . . . , n, the cross-partial derivative ∂2F
∂xixj

is continuous from X to F (R), we say that F is

twice continuously differentiable.

Theorem 3.10. [6] Let F : X −→ F (R) be a fuzzy function. If F is m-times gH-differentiable at x0 ∈ X
then, for each α ∈ [0, 1], the real-valued function fα + f

α
: X −→ R is m-times differentiable at x0.

3.2 Fuzzy Optimization

We consider the following fuzzy optimization problem (FOP):

(FOP ) minx∈X F (x) (3.3)

where the objective function F : X −→ F (R) is a fuzzy-valued function and X ⊆ Rn is the domain of F
which is assumed to be an open set. In the remainder of the paper we assume that F is gH-differentiable.

Definition 3.11. [22] Let X ⊂ Rn be an open set. We say that x∗ ∈ X is a locally nondominated solution
of FOP (3.3) if there exists no x ∈ Nϵ(x

∗) ∩X such that F (x) ≺ F (x∗), where Nϵ(x
∗) is an ϵ-neighborhood

of x∗.



Journal of Uncertain Systems, Vol.11, No.1, pp.3-17, 2017 7

Theorem 3.12. [6] Let X ⊂ Rn be an open set and F : X −→ F (R) be a fuzzy function. If x∗ is a local
minimizer of the real-valued function fα + f

α
, for all α ∈ [0, 1], then x∗ is a locally nondominated solution of

the FOP (3.3).

Theorem 3.13. Let α ∈ [0, 1] and the real-valued function fα+ f
α
: X −→ R be differentiable at x0. If there

is a vector d such that
(
∇(f

α
+ fα)(x0)

)T

d < 0, then there exists a δ > 0 such that (fα + f
α
)(x0 + λd) <

(fα + f
α
)(x0) for each λ ∈ (0, δ). So that, d is a descent direction of fα + f

α
.

Proof. Let α ∈ [0, 1] and
(
∇(f

α
+ fα)(x0)

)T

d < 0. By the differentiability of f
α
+ fα at x0, we have

(f
α
+ fα)(x0 + λd) = (f

α
+ fα)(x0) + λ

(
∇(f

α
+ fα)(x0)

)T

d+ λ∥d∥o(x0;λd),

where o(x0;λd) → 0 as λ → 0. We get

(f
α
+ fα)(x0 + λd)− (f

α
+ fα)(x0)

λ
=

(
∇(f

α
+ fα)(x0)

)T

d+ ∥d∥o(x0;λd), λ ̸= 0.

Since
(
∇(f

α
+ fα)(x0)

)T

d < 0 and o(x0;λd) → 0 as λ → 0, there is a δ > 0 such that
(
∇(f

α
+ fα)(x0)

)T

d+

∥d∥o(x0;λd) < 0 for all λ ∈ (0, δ). Therefore, the proof is completed.

We assume that at each point xk, we can calculate F (xk), ∇̃F (xk). Since F is gH-differentiable, according
to Theorems 3.8 and 3.10 we can calculate ∇(fα + f

α
)(xk).

4 Quasi-Newton Method

In order to solve the fuzzy optimization problem (3.3), the Newton method proposed in [6, 22] requires
computation of the Hessian matrix. When ∇2(f

α
+ fα)(xk) is not positive definite, the Newton direc-

tion pα(xk) = −
[
∇2(f

α
+ fα)(xk)

]−1

∇(f
α
+ fα)(xk) may not even be defined, since

[
∇2(f

α
+ fα)(xk)

]−1

may not exist. Even when the Newton direction pα(xk) is defined, it may not satisfy the descent property

∇(f
α
+ fα)(xk)

T
pα(xk) < 0, in this case it is unsuitable as a search direction. The main drawback of the

Newton method given in [6, 22], is the need of the Hessian ∇2(f
α
+ fα)(xk). However, explicit computation of

this matrix of second derivatives is sometimes, though not always, a cumbersome, error-prone and expensive
process. Therefore, in this section, we will provide a quasi-Newton method for the FOP (3.3) to sidestep
the high computational expense of the Newton method. The most popular quasi-Newton algorithm for crisp
optimization problems is the BFGS method [2, 21]. We extend this algorithm for the unconstrained fuzzy
optimization problem (3.3). In this algorithm, computation of ∇2(f

α
+ fα) is not required. Instead of the

true Hessian ∇2(f
α
+ fα)(xk), we will use an approximation (Bα+B

α
)(xk), which is updated after each step

to take account of the additional knowledge gained during the step.
Consider the following quadratic forms in x, around xk and xk+1 for α ∈ [0, 1],

mα
k (x) = (fα + f

α
)(xk) + (x− xk)

T∇(fα + f
α
)(xk) +

1

2
(x− xk)

T (Bα +B
α
)(xk)(x− xk)

and

mα
k+1(x) = (fα + f

α
)(xk+1) + (x− xk+1)

T∇(fα + f
α
)(xk+1) +

1

2
(x− xk+1)

T (Bα +B
α
)(xk+1)(x− xk+1).

The matrix (Bα + B
α
)(xk+1) will be a good approximation of ∇2(fα + f

α
)(xk) if the following condition

holds:
∇mα

k (xk) = ∇mα
k+1(xk). (4.1)

After simplifying (4.1) we have

∇(fα + f
α
)(xk) = ∇(fα + f

α
)(xk+1) + (Bα +B

α
)(xk+1)(xk − xk+1).
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So,
(Bα +B

α
)(xk+1)(xk+1 − xk) = ∇(fα + f

α
)(xk+1)−∇(fα + f

α
)(xk).

We define
yα(xk) = ∇(fα + f

α
)(xk+1)−∇(fα + f

α
)(xk), sk = xk+1 − xk

for α ∈ [0, 1]. So we have
(Bα +B

α
)(xk+1)sk = yα(xk), (4.2)

which is the fuzzy secant condition.

Theorem 4.1. Let α ∈ [0, 1]. If dα(xk) is a descent direction of fα + f
α
, and(

∇(fα + f
α
)(xk+1)

)T

dα(xk) ≥ c
(
∇(fα + f

α
)(xk)

)T

dα(xk)

for some c < 1, then yα(xk)
T sk > 0.

Proof. Let xk+1 = xk + tkd
α(xk) be chosen in such way that(

∇(fα + f
α
)(xk+1)

)T

dα(xk) ≥ c
(
∇(fα + f

α
)(xk)

)T

dα(xk),

for some c < 1. Since dα(xk) is a descent direction so(
∇(fα + f

α
)(xk)

)T

dα(xk) < 0.

Hence

yα(xk)
T sk =

(
∇(fα + f

α
)(xk+1)−∇(fα + f

α
)(xk)

)T

tkd
α(xk)

≥ tkc
(
∇(fα + f

α
)(xk)

)T

dα(xk)− tk

(
∇(fα + f

α
)(xk)

)T

dα(xk)

= tk(c− 1)
(
∇(fα + f

α
)(xk)

)T

dα(xk) > 0.

Relation yα(xk)
T sk > 0 is the fuzzy curvature condition. The fuzzy curvature condition for all α ∈ [0, 1]

implies that ∫ 1

0

yα(xk)
T skdα = y(xk)

T sk > 0. (4.3)

This relation is called the curvature condition.
Since in the Newton method [6, 22], the Hessian matrix ∇2(f

α
+ fα) for all α ∈ [0, 1] is a symmetric

positive definite matrix, it is reasonable that the approximation matrix (Bα +B
α
)(xk+1) be positive definite

for all α ∈ [0, 1], as well. This will be possible only if the fuzzy curvature condition holds, as is easily seen
by premultiplying (4.2) by sTk . Note that if Theorem 4.1 holds, then (Bα + B

α
)(xk+1) is positive definite.

Due to the above relations, the BFGS method updating formula for the FOP (3.3) follows as in the classical
BFGS method updating formula. Therefor, we have

(Bα +B
α
)(xk+1) = (Bα +B

α
)(xk)−

(Bα +B
α
)(xk)sks

T
k (B

α +B
α
)T (xk)

sTk (B
α +B

α
)(xk)sk

+
yα(xk)y

α(xk)
T

yα(xk)T sk
(4.4)

for all α ∈ [0, 1]. The new matrix (Bα +B
α
)(xk+1) will be positive definite only if yα(xk)

T sk > 0.

Theorem 4.2. Let α ∈ [0, 1] and (Bα + B
α
)(xk) be a symmetric positive-definite matrix. Assume that

(Bα+B
α
)(xk+1) is obtained from (Bα+B

α
)(xk) using the BFGS update formula (4.4). Then (Bα+B

α
)(xk+1)

is positive definite if and only if yα(xk)
T sk > 0, for all α ∈ [0, 1].

Proof. The proof is similar to that of Lemma 12.10 in [13], and hence it is omitted here.
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Consider the following quadratic model of (f
α
+ fα)(x) at xk:

mα
k (d

α) = (f
α
+ fα)(xk) +∇(f

α
+ fα)(xk)

T dα +
1

2
dαT (Bα +B

α
)(xk)d

α. (4.5)

Here, for α ∈ [0, 1], (Bα + B
α
)(xk) is an n × n symmetric positive definite matrix that will be updated at

every iteration. The minimizer dα(xk) of this convex model, can be written explicitly as

dα(xk) = −
(
(Bα +B

α
)(xk)

)−1

∇(f
α
+ fα)(xk). (4.6)

We define,

φ(x) =

∫ 1

0

(fα + f
α
)(x)dα, B(x) =

∫ 1

0

(Bα +B
α
)(x)dα.

As the fuzzy function F is continuously gH-differentiable, fα + f
α
is continuously gH-differentiable for all

α ∈ [0, 1]. Thus φ is also continuously gH-differentiable. Therefore from (4.6), we have

d(xk) = −B(xk)
−1∇φ(xk),

which is used as the search direction. The new iterate is

xk+1 = xk + tkd(xk), (4.7)

where the step length tk is chosen to satisfy the following relationships:

φ(xk + tkd(xk)) ≤ φ(xk) + c1tk (∇φ(xk))
T
d(xk)

and
(∇φ(xk + tkd(xk)))

T
d(xk) ≥ c2 (∇φ(xk))

T
d(xk),

with 0 < c1 < c2 < 1. Therefore, by Theorems 4.1 and 4.2 we have y(xk)
T sk > 0 and B(xk+1) is positive

definite.
Note that, the BFGS method updating formula (4.4) for the FOP (3.3) changes to:

B(xk+1) = B(xk)−
B(xk)sks

T
kB(xk)

sTkB(xk)sk
+

y(xk)y(xk)
T

y(xk)T sk
. (4.8)

In Algorithm 1, we describe the quasi-Newton algorithm for fuzzy optimization problems.

Algorithm 1: Quasi-Newton algorithm for fuzzy optimization problems

Step 0. Let x(0) be the initial decision vector chosen from X. Given c1, c2, tolerance ϵ > 0 and Hessian
approximation B(x(0)). Set k := 0 and define J = {1/2n | n = 0, 1, 2, . . . }.

Step 1. If ∥x(k+1) − x(k)∥ ≤ ϵ, then stop. Else, go to Step 2.

Step 2. Compute search direction d(x(k)) = −(B(x(k)))−1∇φ(x(k)).

Step 3. Define x(k+1) := x(k) + tkd(x
(k)), where tk, as the largest t ∈ J, is chosen such that satisfies in the

following relationships:

φ(x(k) + td(x(k))) ≤ φ(x(k)) + c1t
(
∇φ(x(k))

)T

d(x(k)),

and (
∇φ

(
x(k) + tkd(x

(k))
))T

d(x(k)) ≥ c2

(
∇φ(x(k))

)T

d(x(k)),

with 0 < c1 < c2 < 1.

Step 4. Generate B(x(k+1)) by means of (4.8) and set k := k + 1. Go to Step 1.

In the following theorem, we consider convergence analysis of the proposed quasi-Newton method.
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Theorem 4.3. Suppose that F is a two times continuously gH-differentiable fuzzy function defined on Rn.
Let x0 be some given initial point and let {xk} be defined by xk+1 := xk + tkd(xk). Assume that

(i) the set S = {x : φ(x) ≤ φ(x0)} is bounded;

(ii) φ, ∇φ and ∇2φ are continuous for all x ∈ S;

(iii) ∇2φ is positive definite for all x;

(iv) the search directions {d(xk)} are computed using B(xk)d(xk) = −∇φ(xk), where B(x0) = I, and the
matrices B(xk) are updated using the formula (4.8);

(v) the step lengths tk satisfy

φ(xk + tkd(xk)) ≤ φ(xk) + c1tk
(
∇φ(xk)

)T
d(xk),(

∇φ(xk + tkd(xk))
)T

d(xk) ≥ c2∇φ(xk)
T d(xk),

with 0 < c1 < c2 < 1, and the line search algorithm uses the step length tk = 1 whenever possible.

Then, the quasi-Newton method is well defined for all k and

lim
k→∞

xk = x∗,

that is, the method converges to x∗ and the rate of convergence is superlinear.

Proof. Since F is two times continuously gH-differentiable fuzzy function, then φ is tow times continuously
differentiable function. So, the proof follows as in the classical proof of the quasi-Newton method [2, 13, 21].

5 Numerical Examples

In this section we state illustrative examples to justify the proposed algorithm. All examples are executed
within MATLAB (R2013a). We use the stopping criterion ∥x(k+1) − x(k)∥ ≤ ϵ for some specified parameter
ϵ > 0 in order to stop at the point x(k) and we set B(x(0)) = I.

Example 5.1. Consider the following nonlinear programming problem with fuzzy parameters:

(FOP ) minx∈R2 F (x),

F (x) =(−1

2
,
1

2
,
3

2
)x4

1 + (0,
25

2
, 25)x2

1 + (−99

4
,−99

10
,
99

20
)x1x2 + (−2, 2, 6)x2

2

+ (−40,−16, 8)x1 + (−32, 16, 32).

We have (
f
α
+ fα

)
(x) = x4

1 + 25x2
1 − 19.8x1x2 + 4x2

2 − 32x1 + 32α,

and ∫ 1

0

(
f
α
+ fα

)
(x)dα =

(
f + f

)
(x) = x4

1 + 25x2
1 − 19.8x1x2 + 4x2

2 − 32x1 + 16.

Also

∇
(
f + f

)
(x) =

(
4x3

1 + 50x1 − 19.8x2 − 32
−19.8x1 + 8x2

)
.

Then

∇2
(
f + f

)
(x) =

[
12x2

1 + 50 −19.8
−19.8 8

]
.

A program in MATLAB (R2013a) is written following the Algorithm 1 and a summary of the results is
provided. Consider an initial point x(0) = (0, 3) and stopping condition ∥x(k+1)−x(k)∥ ≤ 10−3. Nondominated
solution of this problem is found at 7th iteration as x(7) = (1.9585, 4.8474). Table 1 exhibits the performance
of Algorithm 1 in this example.
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Table 1: Convergence of the quasi-Newton Algorithm 1 for Example 5.1
k x(k) tk φ(x(k)) ∇φ(x(k)) d(x(k)) = −(B(x(k)))−1∇φ(x(k)) ∥x(k+1) − x(k)∥

0 (0, 3) 0.0156 52

(
−91.4000
24.0000

)
(91.4000,−24.0000) 1.4765

1 (1.4281, 2.6250) 0.2500 −21.2160

(
−0.9179
−7.2769

)
(2.3441, 6.8267) 1.8045

2 (2.0142, 4.3317) 1 −28.2694

(
15.6247
−5.2268

)
(−0.0804, 0.5337) 0.5398

3 (1.9337, 4.8654) 1 −30.0114

(
−2.7243
0.6352

)
(0.0281,−0.0073) 0.0290

4 (1.9618, 4.8581) 1 −30.0507

(
0.1029
0.0207

)
(−0.0038,−0.0130) 0.0136

5 (1.9580, 4.8451) 1 −30.0510

(
−0.0043
−0.0082

)
(0.0005, 0.0023) 0.0024

6 (1.9585, 4.8474) 1 −30.0510

(
−10−3 × 0.3526
10−3 × 0.0912

)
(10−5 × 0.2776,−10−5 × 0.4741) 10−6 × 5.4943

7 (1.9585, 4.8474) −30.0510

(
10−5 × 0.7850
−10−5 × 0.1750

)
(−10−7 × 0.7486, 10−7 × 0.3342)

Table 2: Convergence of the Newton method [6] for Example 5.1
k x(k) φ(x(k)) ∇φ(x(k)) d(x(k)) = −∇φ(x(k))(∇2φ(x(k)))−1 ∥x(k+1) − x(k)∥

0 (0, 3) 52

(
−91.4000
24.0000

)
(32.1608, 76.5980) 83.0757

1 (32.1608, 79.5980) 106 × 1.0693

(
105 × 1.3306

105 × 0

)
(−10.7194,−26.5305) 28.6142

2 (21.4414, 53.0675) 105 × 2.1091

(
104 × 3.9419
104 × 0.0000

)
(−7.1439,−17.6812) 19.0699

3 (14.2975, 35.3863) 104 × 4.1447

(
104 × 1.1673
104 × 0.0000

)
(−4.7567,−11.7727) 12.6973

..

.
..
.

..

.
..
.

..

.
..
.

11 (1.9585, 4.8474) −30.0510

(
10−4 × 0.1725

10−4 × 0

)
(−10−6 × 0.3668,−10−6 × 0.9079) 10−7 × 9.7918

12 (1.9585, 4.8474) −30.0510

(
10−11 × 0.3141

10−11 × 0

)
(−10−12 × 0.0668,−10−12 × 0.1653)

The Newton method proposed in [6, 22] could be applied for this example. Employing the Newton method
[6] with the same starting point and stopping criterion results in a slower convergence after 12 iterations, with
x(12) = (1.9585, 4.8474). The iterations of x(k) by Newton method [6] are given in Table 2. As it can be seen
in this example, for fuzzy optimization problems that explicit computation of the Hessian matrix is hard, the
proposed quasi-Newton method converges faster than the Newton method.

Example 5.2. Consider the following nonlinear programming problem with fuzzy parameters:

(FOP ) minx∈R2 F (x),

where

F (x) = e(−
1
2 ,

1
2 ,

3
2 )x1+(− 5

4 ,−
1
2 ,

1
4 ) + e(−

3
2 ,−

1
2 ,

1
2 )x2+(− 1

4 ,
1
2 ,

5
4 ) + (−2, 1, 2)x2

1 + (−4, 1, 4)x2
2 + (−3,−1, 1)x1x2.

Using fuzzy arithmetic, we have:∫ 1

0

(
f
α
+ fα

)
(x)dα = ex1−1 + e−x2+1 + x2

1 + x2
2 − 2x1x2.

Also,

∇
(
f + f

)
(x) =

(
ex1−1 + 2x1 − 2x2

−e−x2+1 + 2x2 − 2x1

)
,

∇2
(
f + f

)
(x) =

[
ex1−1 + 2 −2

−2 e−x2+1 + 2

]
.
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Consider an initial point x(0) = (−20, 15) and stopping condition ∥x(k+1) − x(k)∥ ≤ 10−3. Nondominated
solution of this problem is found at 11th iteration as x(11) = (0.7961, 1.2039). The iterations of x(k) are given
in Table 3.

Employing the Newton method [6] with the same starting point and stopping criterion results in a slower
convergence after 19 iterations, with x(19) = (0.7961, 1.2039). Table 4 exhibits the performance of the Newton
algorithm [6] in this example. As it can be seen, the proposed quasi-Newton method converges faster than the
Newton method.

Example 5.3. Consider the following nonlinear programming problem with fuzzy parameters:

(FOP ) minx∈R2 F (x),

F (x) =(−2, 1, 2)x4
1 + (−12,−4, 4)x3

1 + (−25

2
,
25

2
,
75

2
)x2

1 + (0, 2, 4)x2
2

+ (−6,−2, 2)x1x2 + (−48,−16, 16)x1 + (−32, 16, 32).

We have, (
f
α
+ fα

)
(x) = 2αx4

1 − 8x3
1 + 25x2

1 + 4x2
2 − 4x1x2 − 32x1 + 32α,

and ∫ 1

0

(
f
α
+ fα

)
(x)dα =

(
f + f

)
(x) = x4

1 − 8x3
1 + 25x2

1 + 4x2
2 − 4x1x2 − 32x1 + 16.

Then

∇
(
f + f

)
(x) =

(
4x3

1 − 24x2
1 + 50x1 − 4x2 − 32
8x2 − 4x1

)
.

Nondominated solution of this problem with the initial point x(0) = (1, 1) and termination condition ∥x(k+1)−
x(k)∥ ≤ 10−3 is found at 5th iteration as x(5) = (2.0451, 1.0225). The performance of Algorithm 1 is given in
Table 5.

If we apply the Newton algorithm [6] for this problem with the same initial point and the same termination
condition, we will find the nondominated solution at the 16th iteration as x(16) = (1.9985, 0.9992).

Example 5.4. Consider the following nonlinear programming problem with fuzzy parameters:

(FOP ) minx∈R3 F (x),

where
F (x) = (2.9, 3.0, 3.15)x2

1 + (4.7, 5.0, 5.35)x2
2 + (−2, 1, 2)x2

3.

Using fuzzy arithmetic, it follows:∫ 1

0

(
f
α
+ fα

)
(x)dα = 6.025x2

1 + 10.025x2
2 + x2

3.

Also,

∇
(
f + f

)
(x) =

12.05x1

20.05x2

2x3

 .

Consider an initial point x(0) = (1, 1, 2) and stopping condition ∥x(k+1)−x(k)∥ ≤ 10−3. Nondominated solution
of this problem is found at 6th iteration as x(6) = (10−7 × 0.0274, 10−7 × 0.0132,−10−7 × 0.2396) ≃ (0, 0, 0).
Table 6 shows the performance of the proposed algorithm for this example.

6 Conclusions

In this article, we extended the quasi-Newton method for solving unconstrained fuzzy optimization problems.
In the proposed method, we found an approximation of the Hessian matrix to find a nondominated solution of
a fuzzy optimization problem. An algorithmic procedure for the proposed approach accompanied by numerical
examples were given to illustrate the efficiency of the proposed approach over the existing Newton method.
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Table 4: Convergence of the Newton method [6] for Example 5.2
k x(k) φ(x(k)) ∇φ(x(k)) d(x(k)) = −∇φ(x(k))(∇2φ(x(k)))−1 ∥x(k+1) − x(k)∥

0 (−20, 15) 103 × 1.2250

(
−70.0000
70.0000

)
(35.9663, 0.9633) 35.9793

1 (15.9663, 15.9663) 106 × 3.1607

(
106 × 3.1607
106 ×−0.0000

)
(−1.0000,−10000) 1.4142

2 (14.9663, 14.9663) 106 × 1.1627

(
106 × 1.1627
−106 × 0.0000

)
(−1.0000,−1.0000) 1.4142

3 (13.9663, 13.9663) 105 × 4.2775

(
105 × 4.2775
−105 × 0.0000

)
(−1.0000,−1.0000) 1.4142

.

..
.
..

.

..
.
..

.

..
.
..

18 (0.7965, 1.2041) 1.7974

(
10−3 × 0.7018
−10−3 × 0.1945

)
(−10−3 × 0.4040,−10−3 × 0.2179) 10−4 × 4.5901

19 (0.7961, 1.2039) 1.7974

(
10−7 × 0.6657
−10−7 × 0.1936

)
(−10−7 × 0.3787,−10−7 × 0.2002)

However, as it can be seen in Algorithm 1, the proposed procedure generates only one nondominated
solution for a fuzzy optimization problem. Extending the method for finding the set of complete nondominated
solutions can be a worthwhile direction for the future research. Moreover, we employed an exact line-search
technique along the search direction. Employing an inexact line search technique [21] can be worth studying.
Furthermore, future research can also be performed on extending the proposed quasi-Newton approach for
unconstrained fuzzy multi-objective optimization problems. To this end, studying the references [7, 23] is
recommended.
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