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Abstract

Partial entropy is a measure to characterize how much of entropy of an uncertain random variable belongs to
uncertain variables. In this paper, a definition of partial quadratic entropy of uncertain random variables is proposed.
Furthermore, some properties of partial quadratic entropy are derived such as positive linearity.
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1 Introduction
In real world, when mathematical models are built, we always have to face two types of indeterminacy. One term of
indeterminacy is the phenomena whose outcomes cannot be exactly predicted such as rolling a die, roulette wheel,
lifetime, stock price, coal reserve, strength of bridge, bank deposit. For modelling these types of indeterminacy, prob-
ability theory is one of the most important tools. As is known to us all, probability theory is valid when the estimated
probability is close enough to the real frequency according to the law of large numbers. However, it is usually diffi-
cult to obtain the observed data because of economic reasons or technical difficulties such as coal reserve, strength of
bridge. So, we have to consult with some domain experts to estimate their degrees of belief on whether that each event
will occur. In this case, information and knowledge cannot be described well by random variables. Although fuzzy
set theory founded by Zadeh [30] is used to model fuzziness by some researchers, a series of paradoxes presented by
Liu [20] show that fuzzy set is not suitable for modelling this type of uncertain phenomena. In order to model this type
of human uncertainty, Liu [20] suggests to deal with it by uncertainty theory. Uncertainty theory founded by Liu [16]
is a branch of mathematics based on the normality, duality, subadditivity, and product axioms. Nowadays, uncertainty
theory is well developed in both theoretical and practical aspect, for more details, see [6, 18, 19]. It is mentioned that,
the world is neither random nor uncertain, but sometimes it can be analyzed by probability theory, and sometimes by
uncertainty theory.

Entropy is used to characterize the degree of uncertainty in information sciences. It was first proposed by Shan-
non [26] for random variables in 1948. In many real cases, only little information about random variables is available,
but there is an infinite number of probability distributions satisfying the given information. In this case, Jaynes [10]
presented maximum entropy principle, that is of all the probability distributions with common expected value and vari-
ance, to choose the one with maximum entropy. Inspired by the Shannon entropy of random variables, fuzzy entropy
was first introduced by Zadeh [30] to quantify the fuzziness in 1968. After that, it has been studied by many researchers
such as De Luca and Termini [5], Kaufmann [11], Yager [28], Kosko [12], Bhandari and Pal [1].

In uncertainty theory, Liu [17] provided a definition of entropy for uncertain variables. The properties of entropy for
uncertain variables were investigated by Dai and Chen [4], and the maximum entropy principle for uncertain variable
was proposed by Chen and Dai [2]. In addition, the concepts of sine entropy for uncertain variable was proposed by
Yao and Dai [29]. Furthermore, Dai [3] introduced a definition of quadratic entropy for uncertain variables.

However, in many cases, randomness and uncertainty exist simultaneously in a complex system. Inspired by Kwak-
ernaak [14, 15], Puri and Ralescu [25], Kruse and Meyer [13], and Liu and Liu [23, 24], uncertain random variable
was first defined by Liu [21] to describe complex systems in which uncertainty and randomness always appear together.
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Thus, in order to describe such a system, Liu [21] first proposed chance theory, which is a mathematical methodology
for modelling complex systems with both uncertainty and randomness, including chance measure, uncertain random
variable, chance distribution, operational law, expected value, variance. Following that, Liu [22] presented the opera-
tional law of uncertain random variable, the formula of expected value and proposed uncertain random programming
as a branch of mathematical programming involving uncertain random variables. After chance theory was introduced,
some experts done some useful works. For example, Gao and Sheng [7] studied law of large numbers of uncertain
random variables with different chance distributions. Then Gao et al. [8] discussed order statistic of uncertain random
variables and its applications. Additionally, Sheng et al. [27] introduced several types of entropy for uncertain random
variables such as quadratic entropy, sine entropy.

The rest of this paper is organized as follows. In Section 2, some concepts of uncertainty theory and chance theory
are recalled as they are needed. In Section 3, a definition of partial quadratic entropy of uncertain random variables is
proposed and some properties are presented. Finally, some conclusions are given in Section 4.

2 Preliminaries
In this section, we will review some basic concepts and properties of uncertain variables and uncertain random variables.

2.1 Uncertain Variables

In this subsection, we provide several definitions and elementary concepts of uncertainty theory that will be used in the
next sections. For more details, the reader can refer to [16, 17].

Let L be a σ-algebra on a nonempty set Γ. A set function M : L→ [0, 1] is called an uncertain measure if it satisfies
the following axioms:
(i) (Normality Axiom) M{Γ} = 1 for the universal set Γ.
(ii) (Duality Axiom) M{Λ}+ M{Λc} = 1 for any event Λ.
(iii) (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, . . . , we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M {Λi} .

(iv) (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . , the product uncertain measure M is
an uncertain measure satisfying M{

∏∞
k=1 Λk} =

∧∞
k=1 Mk{Λk} where Λk are arbitrarily chosen events from Lk for

k = 1, 2, . . . , respectively.

Definition 1. An uncertain variable ξ is a function from an uncertainty space (Γ,L,M) to the set of real numbers such
that {ξ ∈ B} is an event for any Borel set B.

Definition 2. The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M

{
n⋂
i=1

{ξi ∈ Bi}

}
=

n∧
i=1

M {ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1. Let ξ1, ξ2, . . . , ξn be independent uncertain variables, and f1, f2, . . . , fn be measurable functions. Then
f1(ξ1), f2(ξ2), . . . , fn(ξn) are independent uncertain variables.

Definition 3. (Liu [17]) Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then the inverse
function Φ−1(α) is called the inverse uncertainty distribution of ξ.

Theorem 2. (Liu [17]) Let ξ1, . . . , ξn be independent uncertain variables with regular uncertainty distributions Φ1,
Φ2, . . . ,Φn, respectively. If f is a strictly increasing function, then ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain variable with
inverse uncertainty distribution

Ψ−1(α) = f(Φ−11 (α), · · · ,Φ−1n (α)).
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Definition 4. (Dai [3]) Suppose that ξ is an uncertain variable with uncertainty distribution Φ. Then its quadratic
entropy is defined by

Q[ξ] =

∫ ∞
−∞

S(Φ(x))dx,

where S(t) = t(1− t).

Theorem 3. (Dai [3]) Let ξ be an uncertain variable with regular uncertainty distribution Φ. Then

Q[ξ] =

∫ 1

0

Φ−1(α)(2α− 1)dα.

Theorem 4. (Dai [3]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular uncertainty distributions
Φ1,Φ2, . . . ,Φn, respectively. If f(x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly
decreasing with respect to xm+1, xm+2, . . . , xn, then the uncertain variable

ξ = f(ξ1, ξ2, · · · , ξn)

has an entropy

Q[ξ] =

∫ 1

0

f(Φ−11 (α), · · · ,Φ−1m (α),Φ−1m+1(1− α), · · · ,Φ−1n (1− α)) ln
α

1− α
(1− 2α)dα.

2.2 Uncertain Random Variable
The chance space refers to the product (Γ,L,M)×(Ω,A,Pr), in which (Γ,L,M) is an uncertainty space and (Ω,A,Pr)
is a probability space.

Definition 5. (Liu [21]) Let (Γ,L,M)× (Ω,A,Pr) be a chance space, and Θ ∈ L×A be an uncertain random event.
Then the chance measure of Θ is defined by

Ch{Θ} =

∫ 1

0

Pr{ω ∈ Ω |M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ r}dr.

Liu [21] proved a chance measure satisfies normality, duality, and monotonicity properties, that is (i) Ch{Γ×Ω} =
1; (ii) Ch{Θ} + Ch{Θc} = 1 for any event Θ; (iii) Ch{Θ1} ≤ Ch{Θ2} for any real number set Θ1 ⊂ Θ2. Besides,
Hou [9] proved the subadditivity of chance measure, that is, Ch {

⋃∞
i=1 Θi} ≤

∑∞
i=1 Ch{Θi} for a countable sequence

of events Θ1,Θ2, . . . .

Definition 6. (Liu [21]) An uncertain random variable is a measurable function ξ from a chance space (Γ,L,M) ×
(Ω,A,Pr) to the set of real numbers, i.e., {ξ ∈ B} is an event for any Borel set B.

To calculate the chance measure, Liu [22] presented a definition of chance distribution.

Definition 7. (Liu [22]) Let ξ be an uncertain random variable. Then its chance distribution is defined by

Φ(x) = Ch{ξ ≤ x}

for any x ∈ R.

Theorem 5. (Liu [22]) Let η1, η2, . . . , ηm be independent random variables with probability distributions Ψ1,Ψ2, . . . ,
Ψm, respectively, and let τ1, τ2, . . . , τn be uncertain variables. Then the uncertain random variable

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has a chance distribution
Φ(x) =

∫
<m

F (x, y1, · · · , ym)dΨ1(y1) · · · dΨm(ym)

where F (x, y1, · · · , ym) is the uncertainty distribution of ξ for any real numbers y1, y2, . . . , ym.
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The chance distribution is consistent with probability distribution and uncertainty distribution. That is, if an uncer-
tain random variable degenerate to a random variable, then the chance distribution becomes the probability distribution.
And if an uncertain random variable degenerate to a random variable, then the chance distribution becomes the uncer-
tainty distribution.

Definition 8. (Liu [22]) Let ξ be an uncertain random variable. Then its expected value is defined by

E[ξ] =

∫ +∞

0

Ch{ξ ≥ r}dr −
∫ 0

−∞
Ch{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Let Φ denote the chance distribution of ξ. Liu [22] proved a formula to calculate the expected value of an uncertain
random variable by using chance distribution, that is,

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx.

Theorem 6. (Liu [21]) Let η1, η2, . . . , ηm be independent random variables with probability distributions Ψ1,Ψ2, . . . ,
Ψm, respectively, and let τ1, τ2, . . . , τn be independent uncertain variables (not necessarily independent), then the
uncertain random variable

ξ = f(η1, · · · , ηm, τ1, · · · , τn)

has an expected value

E[ξ] =

∫
Rm

E[f(y1, · · · , ym, τ1, · · · , τn)]dΨ1 · · · dΨm

where E[f(y1, · · · , ym, τ1, · · · , τn)] is the expected value of ξ for any real numbers y1, . . . , ym.

Theorem 7. (Liu [21], Linearity of Expected Value Operator) Assume η1 and η2 are random variables (not necessarily
independent), τ1 and τ2 are independent uncertain variables, and f1 and f2 are measurable functions. Then

E[f1(η1, τ1) + f2(η2, τ2)] = E[f1(η1, τ1)] + E[f2(η2, τ2)].

3 Partial Quadratic Entropy of Uncertain Random Variables
Sheng et al. [27] introduced the concept of quadratic entropy for uncertain random variables. First, we review their
definition for uncertain random variables.

Definition 9. [27] Let ξ be an uncertain random variable with chance distribution Φ(x). Then its entropy is defined by

Q[ξ] =

∫ ∞
−∞

S(Φ(x))dx,

where S(t) = t(1− t).

However, one question may arise. How much of entropy of an uncertain random variable associated to uncertain
variable? For this purpose, we introduce the concept of partial quadratic entropy.

Definition 10. Suppose that η1, η2, . . . , ηm are independent random variables and τ1, τ2, . . . , τm are uncertain vari-
ables. Then partial quadratic entropy of uncertain random variable ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τm) is defined
as following

PQ[ξ] =

∫
Rm

∫ ∞
−∞

S(F (x, y1, · · · , ym))dxdΨ1(y1) · · · dΨm(ym),

where S(t) = t(1−t) andF (x, y1, · · ·, ym) is the uncertainty distribution of uncertain variablef(y1, · · ·, ym, τ1, · · ·, τm)
for any real numbers y1, . . . , ym.
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Remark 1: Partial entropy measures how much entropy of an uncertain random variable belongs to uncertain variables.
Furthermore, a random variable has no term of uncertain variable. Hence if the uncertain random variable degenerates
to random variable, then the partial entropy is zero. When an uncertain random variable degenerates to an uncertain
variable, the partial quadratic entropy becomes the entropy in Definition 4.

Example 1. Suppose that τ ∼ L(0, 1) and η ∼ U(0, 1) where L(0, 1) is linear uncertain variable and U(0, 1) is
uniform random variable. Then the partial quadratic entropy of ξ = η + τ is

PQ[ξ] =

∫
Rm

∫ ∞
−∞

S(F (x, y))dxdΨ(y) =

∫ 1

0

∫ 1

0

[(x− y)(1− x− y)]dxdy =
1

6
.

Theorem 8. Let η1, η2, . . . , ηm be independent random variables with probability distributions Ψ1,Ψ2, . . . ,Ψm, and
τ1, τ2, . . . , τn be independent uncertain variables with uncertainty distributions Υ1,Υ2, . . . ,Υn, respectively. If func-
tion f is measurable , then

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has partial quadratic entropy

PQ[ξ] =

∫
Rm

∫ 1

0

F−1(α, y1, · · · , ym)(2α− 1)dαdΨ1(y1) · · · dΨm(ym).

Proof. It is clear that S(α) is a derivable function with S′(α) = 1− 2α. Since

S(F (x, y1, · · · , ym)) =

∫ F (x,y1,··· ,ym)

0

S′(α)dα =

∫ 1

F (x,y1,··· ,ym)

−S′(α)dα,

we have

PQ[ξ] =

∫
Rm

∫ ∞
−∞

S(F (x, y1, · · · , ym))dxdΨ1(y1) · · · dΨm(ym)

=

∫
Rm

∫ 0

−∞
S(F (x, y1, · · · , ym))dxdΨ1(y1) · · · dΨm(ym)

+

∫
Rm

∫ ∞
0

S(F (x, y1, · · · , ym))dxdΨ1(y1) · · · dΨm(ym)

=

∫
Rm

∫ 0

−∞

∫ F (x,y1,··· ,ym)

0

S′(α)dαdxdΨ1(y1) · · · dΨm(ym)

−
∫
Rm

∫ ∞
0

∫ 1

F (x,y1,··· ,ym)

S′(α)dαdxdΨ1(y1) · · · dΨm(ym).

It follows from Fubini’s theorem that

PQ[ξ] =

∫
Rm

∫ F (0,y1,··· ,ym)

0

∫ 0

F−1(α,y1,··· ,ym)

S′(α)dxdαdΨ1(y1) · · · dΨm(ym)

−
∫
Rm

∫ 1

F (0,y1,··· ,ym)

∫ F−1(α,y1,··· ,ym)

0

S′(α)dxdαdΨ1(y1) · · · dΨm(ym)

=

∫
Rm

∫ F (0,y1,··· ,ym)

0

F−1(α, y1, · · · , ym)S′(α)dαdΨ1(y1) · · · dΨm(ym)

−
∫
Rm

∫ 1

F (0,y1,··· ,ym)

F−1(α, y1, · · · , ym)S′(α)dαdΨ1(y1) · · · dΨm(ym)

= −
∫
Rm

∫ 1

0

F−1(α, y1, · · · , ym)S′(α)dαdΨ1(y1) · · · dΨm(ym)

=

∫
Rm

∫ 1

0

F−1(α, y1, · · · , ym)(2α− 1)dαdΨ1(y1) · · · dΨm(ym).
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Example 2. Suppose that τ ∼ L(0, 1) and η ∼ U(0, 1) where L(0, 1) is linear uncertain variable and U(0, 1) is
uniform random variable. Then the partial quadratic entropy of ξ = η + τ is

PQ[ξ] =

∫
Rm

∫ 1

0

F−1(α, y)dαdΨ(y)

=

∫ 1

0

∫ 1

0

(α+ y)(2α− 1)dαdy

=
1

6
.

Remark 2: The results derived by using Definition 10 and Theorem 8 are same. And it is convenient for us to use the
inverse distribution, so this theorem is necessary.

Theorem 9. Let τ be an uncertain variable with uncertainty distribution function Φ and η be a random variable with
probability distribution function Ψ. If ξ = η + τ , then

PQ[ξ] = Q[τ ].

Proof. It is obvious that F−1(α, y) = Φ−1(α) + y, therefore by using Theorem 8, we obtain

PQ[ξ] =

∫
R

∫ 1

0

F−1(α, y)(2α− 1)dαdΨ(y) =

∫
R

∫ 1

0

(Φ−1(α) + y)(2α− 1)dαdΨ(y)

=

∫
R

∫ 1

0

Φ−1(α)(2α− 1)dαdΨ(y) +

∫
R

∫ 1

0

y(2α− 1)dαdΨ(y)

= Q[τ ].

Remark 3: The partial quadratic entropy of the sum of uncertain variables and random variables is the quadratic
entropy of uncertain variables.

Example 3. Suppose that τ ∼ L(0, 1) and η ∼ U(1, 2) where L(0, 1) is linear uncertain variable and U(1, 2) is
uniform random variable. Then the partial quadratic entropy of ξ = η + τ is

PQ[ξ] =

∫
Rm

∫ ∞
−∞

S(F (x, y))dxdΨ(y) =

∫ 2

1

∫ 1

0

(y + α)(2α− 1)dαd(y − 1)

=
1

6
=

∫ 1

0

x(1− x)dx = Q[τ ].

Theorem 10. Let τ be an uncertain variable with uncertainty distribution function Φ and η be a random variable with
probability distribution function Ψ. If ξ = ητ , then PQ[ξ] = Q[τ ]E[η].

Proof. It is obvious that F−1(α, y) = Φ−1(α)y, therefore by using Theorem 8, we obtain

PQ[ξ] =

∫
R

∫ 1

0

F−1(α, y)(2α− 1)dαdΨ(y) =

∫
R

∫ 1

0

yΦ−1(α)(2α− 1)dαdΨ(y)

=

∫ 1

0

Φ−1(α)(2α− 1)dα
∫
R
ydΨ(y)

= Q[τ ]E[η].

Remark 4: The partial quadratic entropy of the product of an uncertain variable and an random variable is the product
of quadratic entropy of the uncertain variable and the expected value of the random variable.
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Example 4. Suppose that τ ∼ L(0, 1) and η ∼ U(1, 2) where L(0, 1) is linear uncertain variable and U(1, 2) is
uniform random variable. Then the partial quadratic entropy of ξ = η + τ is

PQ[ξ] =

∫
Rm

∫ ∞
−∞

S(F (x, y))dxdΨ(y) =

∫ 2

1

∫ 1

0

yα(2α− 1)dαd(y − 1)

=
1

4
=

∫ 1

0

α(1− α)dα
∫ 2

1

yd(y − 1) = Q[τ ]E[η].

Theorem 11. Let η1, η2, . . . , ηn be independent random variables and τ1, η2, . . . , ηn be independent uncertain vari-
ables. Also, suppose that

ξ1 = f1(η1, τ1), ξ2 = f2(η2, τ2), . . . , ξn = fn(ηn, τn)

If f(x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect to xm+1,
xm+2, . . . , xn, then ξ = f(ξ1, ξ2, · · · , ξn) has partial quadratic entropy

PQ[ξ] =

∫
Rn

∫ 1

0

f(F−11 (α, y1), F−12 (α, y2) · · · , F−1m (α, ym), F−1m+1(1− α, ym+1), · · · ,

F−1n (1− α, yn))(2α− 1)dαdΨ1(y1) · · · dΨn(yn).

where F−1i (α, yi) is the inverse uncertainty distribution of uncertain variable fi(yi, τi) for any real number yi, i =
1, 2, . . . , n

Proof. Since f(x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect
to xm+1, xm+2, . . . , xn, it follows from Theorem 2 that

F−1(α, y1, · · · , yn) = f(F−11 (α, y1), · · · , F−1m (α, ym), F−1m+1(1− α, ym+1), · · · , F−1n (1− α, yn)).

By invoking Theorem 8, the proof is complete.

Theorem 12. Let η1 and η2 be random variables with probability distribution functions Ψ1 and Ψ2 respectively, and
τ1 and τ2 be uncertain variables with uncertainty distribution functions Φ1 and Φ2, respectively. If ξ1 = η1 + τ1 and
ξ2 = η2 + τ2, then

PQ[ξ1ξ2] = Q[τ1τ2] + E[η1]Q[τ2] + E[η2]Q[τ1].

Proof. It is clear that F−11 (α, y1) = y1 + Φ−11 (α) and F−12 (α, y2) = y2 + Φ−12 (α). By using Theorem 11, we have

PQ[ξ1ξ2] =

∫
R2

∫ 1

0

F−1(α, y1, y2)(1− 2α)dαdΨ1(y1)dΨ2(y2)

=

∫
R2

∫ 1

0

F−11 (α, y1)F−12 (α, y2)(2α− 1)dαdΨ1(y1)dΨ2(y2)

=

∫
R2

∫ 1

0

{y1 + Φ−11 (α)}{y2 + Φ−12 (α)}(2α− 1)dαdΨ1(y1)dΨ2(y2)

=

∫ 1

0

Φ−11 (α)Φ−12 (α)(2α− 1)dα+

∫
R

∫ 1

0

y1Φ−12 (α)(2α− 1)dαdΨ1(y1)

+

∫
R

∫ 1

0

y2Φ−11 (α)(2α− 1)dαdΨ2(y2)

= Q[τ1τ2] + E[η1]Q[τ2] + E[η2]Q[τ1].

Example 5. Suppose that τ1 ∼ L(0, 1), τ2 ∼ L(1, 2), η1 ∼ U(0, 1), and η2 ∼ U(1, 2) where L(0, 1), L(1, 2)
are linear uncertain variables and U(0, 1), U(1, 2) are uniform random variables, respectively. If ξ1 = η1 + τ1 and



Journal of Uncertain Systems, Vol.10, No.4, pp.292-301, 2016 299

ξ2 = η2 + τ2, then ξ1ξ2 has the partial quadratic entropy

PQ[ξ1 − 2ξ2] = Q[τ1τ2] + E[η1]Q[τ2] + E[η2]Q[τ1]

=

∫ 1

0

α(1 + α)(2α− 1)dα+

∫ 1

0

xdx
∫ 1

0

(1 + α)(2α− 1)dα

+

∫ 2

1

xd(x− 1)

∫ 1

0

α(2α− 1)dα

=
2

3
.

Theorem 13. Let η1 and η2 be random variables with probability distribution functions Ψ1 and Ψ2 respectively, and
τ1 and τ2 be uncertain variables with uncertainty distribution functions Φ1 and Φ2, respectively. If ξ1 = η1τ1 and
ξ2 = η2τ2, then

PQ

[
ξ1
ξ2

]
= Q

[
τ1
τ2

]
E[η1]E

[
1

η2

]
.

Proof. By using a similar method of Theorem 12 and independence of random variables, the proof is straightforward.

Example 6. Suppose that τ1 ∼ L(0, 1), τ2 ∼ L(1, 2), η1 ∼ U(0, 1), and η2 ∼ U(1, 2) where L(0, 1), L(1, 2) are
linear uncertain variables and U(0, 1), U(1, 2) are uniform random variables, respectively. If ξ1 = η1τ1 and ξ2 = η2τ2,
then ξ1/ξ2 has the partial quadratic entropy

PQ

[
ξ1
ξ2

]
= Q

[
ξ1
ξ2

]
E[η1]E

[
1

ξ2

]
=

∫ 1

0

α

2− α
(2α− 1)dα

∫ 1

0

xdx
∫ 2

1

1

x

1

x2
dx

=
3

8
(5 ln 2− 2).

Theorem 14. Let η1 and η2 be independent random variables and τ1 and τ2 be independent uncertain variables. Also
suppose that ξ1 = f1(η1, τ1) and ξ2 = f2(η2, τ2). Then for any real numbers a and b, we have

PQ[aξ1 + bξ2] = |a|PQ[ξ1] + |b|PQ[ξ2].

Proof. STEP 1: We prove PQ[aξ1] = |a|PQ[ξ1]. If a > 0, then the inverse uncertainty distribution of af1(τ1, y1) is

F−1(α, y1) = aF−11 (α, y1),

where F−11 (α, y1) is the inverse uncertainty distribution of f1(τ1, y1). It follows from Theorem 11 that

PQ[aξ1] = a

∫
R

∫ 1

0

F−11 (α, y1)(2α− 1)dαdΨ1(y1) = |a|PQ[ξ1].

If a < 0, then the inverse uncertainty distribution of af1(τ1, y1) is

F−1(α, y1) = aF−11 (1− α, y1).

It follows from Theorem 11 that

PQ[aξ1] = a

∫
R

∫ 1

0

F−11 (1− α, y1)(2α− 1)dαdΨ1(y1)

= a

∫
R

∫ 0

1

F−11 (α, y1)(1− 2α)d(−α)dΨ1(y1)

= −a
∫
R

∫ 1

0

F−11 (α, y1)(2α− 1)d(α)dΨ1(y1)

= |a|PQ[ξ1].
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STEP 2: We prove PQ[ξ1 + ξ2] = PQ[ξ1] + PQ[ξ2]. Note that the inverse uncertainty distribution of f1(τ1, y1) +
f2(τ2, y2) is

F−1(α, y1, y2) = F−11 (α, y1) + F−12 (α, y2).

It follows from Theorem 11 that

PQ[ξ1 + ξ2] =

∫
R2

∫ 1

0

(F−11 (α, y1) + F−12 (α, y2))(2α− 1)dαdΨ1(y1)dΨ2(y2) = PQ[ξ1] + PQ[ξ2].

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1 and 2 that

PQ[aξ1 + bξ2] = PQ[aξ1] + PQ[bξ2] = |a|PQ[ξ1] + |b|PQ[ξ2].

The theorem is proved.

The above theorem implies that the partial quadratic entropy of uncertain random variables has the property of
positive linearity.

Example 7. Suppose that τ1 ∼ L(0, 1), τ2 ∼ L(1, 2), η1 ∼ U(0, 1), and η2 ∼ U(1, 2) where L(0, 1), L(1, 2) are
linear uncertain variables and U(0, 1), U(1, 2) are uniform random variables, respectively. If ξ1 = η1 + τ1 and
ξ2 = η2τ2, then ξ1 − 2ξ2 has the partial quadratic entropy

PQ[ξ1 − 2ξ2] = PQ[ξ1] + 2PQ[ξ2]

=

∫ 1

0

∫ 1

0

(y + α)(2α− 1)dαdy + 2

∫ 2

1

∫ 2

1

y(1 + α)(2α− 1)dαd(y − 1)

=
31

2
.

4 Conclusions
This paper studied some properties of partial quadratic entropy of uncertain random variables. We first introduced a
definition of partial quadratic entropy for uncertain random variables. Then we proved a formula to calculate the partial
quadratic entropy for uncertain random variables by using inverse distribution. Based on the definition and formula,
several properties were derived such as positive linearity. The study of properties of other partial entropies such as cross
entropy are potential works for future research.
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