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8 Ways of Speedup in Searching Conceded NE Situations and Conceded 
Strong NE Situations 

 
There are five main ways to speed up searching both  n n B

 -conceded NE situations and    1,C C N
 -conceded 

strong NE situations: 

1. The players are re-numbered so that the smaller concession corresponds to the lesser player’s number. The 

coalitions    cltn

cltn
cltn 1

T

q
H q


 are numbered likewise: by the same number of players within the coalition, the smaller 

concession corresponds to the lesser coalition’s number. 
2. While calculating expected payoffs (4), the multidimensional matrix multiplication is parallelized [28, 7]. 
3. Concessions are adjusted not great to obtain the single equilibrium or a few ones. 

4. For condition (8), magnitudes  
1

N

n n
  are adjusted starting with great ones. 

5. Numbers   1

1

nM

nm m
s




 are assigned through adjusting them by increment. The adjustment starts at the primitive 

set   11 1
5 n

NM

nm m n
s



 
  or about that. 

For testing the possible concessions along with magnitudes  
1

N

n n
  and numbers   1

1

nM

nm m
s




 for the sampling, 

matrices whose elements are random and normalized values fit well [23, 24]. Randomization can issue from standard 
normal distribution. Uniform distribution is used subsequently. 

 

9 Discussible Items 
 
Sampling and approximation in NCG-modeling are motivated by INCGI. In real applications of modeling interest 
interaction processes, an ISS must be sampled, deliberately or during the interaction. Losses in accuracy are 
unavoidable, but they can be controlled with relaxations. 

Relaxations  n n B
  and    1,C C N

  are bound to approximation, and they are consequence of the sampling. 

The sampling is a particular consequence of DPDL which allows an RSF to converge to the corresponding probability 
in FNCGSS. DPDL surely influences on magnitudes of relaxations. And FNCGSS are realizable owing to DPDL. 
Nevertheless, full realizability is always depending on how many cycles the interaction conditions would repeat. 

Both irregularity of selecting points on fundamental simplexes and DPDL ensure faster calculation of the payoff 
(4). Faster calculation comes from that there are no infinite repeating decimals within the approximated FNCGSS, 
and DPDL allows to switch over to single precision [7, 28]. This saves memory and disk space. However, this works 
fine if probability is not, say, 1 3  or 3 7 , and payoffs have DPDL. 

Convenience of sampling irregularly fundamental simplexes consists in that some probabilities are extraneous or 
insignificant. For instance, as probability increases, we may sample denser, and probabilities closer to 0 are selected 
sparser. Besides, if an exact NE strategy is known then sampling points are aspired to be rounded closer to 
probabilities in the known exact NE strategy. 

The proved theorems prompt how to organize searching efficiently. If strong equilibria are of interest, then they 
are to be checked first amenably to Theorem 1. And according to Theorem 2, the search process is recommended to 

be split into N  parts. But note that the assertion about that     cltn

1j

T k

C k
j

 -conceded k -strong NE situation is of greater 

likelihood than     cltn 1

1
1j

T k

C k
j






 -conceded  1k  -strong NE situation by  1, 1k N   is purely probabilistic. It 

relies on the concessions are not very scattered. If relaxations     cltn 1

1
1j

T k

C k
j






  are taken big, and relaxations 

    cltn

1j

T k

C k
j

  are taken far less, then the set of     cltn 1

1
1j

T k

C k
j






 -conceded  1k  -strong NE situations is going to be 

nonempty, while the set of     cltn

1j

T k

C k
j

 -conceded k -strong NE situations may turn out empty. 
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