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Abstract

In this paper, we study I-fuzzy bi-matrix games with I-fuzzy goals. The indeterminacy factor in the
I-fuzzy goal of each player is resolved using the Hurwicz optimism-pessimism rule. As a result, such
an I-fuzzy bi-matrix game reduces to solving a fuzzy optimization problem with S-shaped membership
functions. The latter problem is equivalently converted into its crisp counterpart using the conventional
methods available in the literature of the fuzzy optimization. The resultant problem so obtained is devoid
of any binary variable. A numerical example is presented to illustrate the proposed approach.
©2016 World Academic Press, UK. All rights reserved.
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1 Introduction

Atanassov [4, 6, 5] integrated the notion of hesitancy degree in the definition of a fuzzy set, by adding a
new component which describes the degree of nonmembership in a given fuzzy set, and called such a set an
intuitionistic fuzzy set. While the definition of fuzzy set provides the degree of membership of an element in a
given set and its nonmembership degree is understood as one minus its membership degree, the definition of an
intuitionistic fuzzy set provides more-or-less independent degree of membership and degree of nonmembership
of an element in a given set. The only requirement in latter is that the sum of the two degrees is not greater
than one. As a result, an intuitionistic fuzzy set exhibits characteristics of affirmation and negation, as
well as hesitation. For instance, in any confronting situation in decision making, beside support or positive
response and objection or negative response, there could also be an abstention which indicates hesitation and
indeterminacy in response to the situation. Intutionistic fuzzy set, very naturally, model such cases in decision
making problems. Quite a few applications of intutionistic fuzzy sets have emerged in recent years in various
areas; for instance, we may refer to Atanassov [7], Szmidt and Kacprzyk [24], and many other references cited
therein.

Intutionistic fuzzy set had its share of controversy (see, Dubois et al. [11] and Grzegorzewski and MrÓwka
[13]) surrounding its nomenclature because similar name had also been used for intuitionistic logic, and the
two concepts differ in their mathematical structure and treatment. It obviously makes sense to avoid using
same terminology for two different concepts. Hence, as suggested in [11] and [13], Atanassov’s intuitionistic
fuzzy set is called Atanassov’s I-fuzzy set or simply an I-fuzzy set. Henceforth, in this paper, we shall only be
using an I-fuzzy set.

Fuzzy matrix games have been extensively studied in literature. For instance, refer to the good texts by
Bector and Chandra [8] and Nishizaki and Sakawa [21]. Aggarwal et al. [2] studied duality for I-fuzzy linear
programming problems and applied it to define a solution concept for two person zero sum matrix games with
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I-fuzzy goals. Further, in [1], the authors studied two person zero sum matrix games having fuzzy payoffs and
I-fuzzy goals.

Compare to the literature on the fuzzy matrix games, few attempts have been made to study fuzzy bi-
matrix games. In [18], Mangasarian and Stone showed that every equilibrium point of a two person nonzero
sum game can always be obtained by solving a suitable quadratic programming problem. Maeda [17] studied
fuzzy bi-matrix game with fuzzy payoffs and showed the existence of Nash equilibrium in a fuzzy bi-matrix
game. Vidyottama et al. [25] established an equivalence of a fuzzy bi-matrix game with fuzzy goal to a
crisp nonlinear programming problem and extended this study to fuzzy bi-matrix games with fuzzy payoffs
and fuzzy goals. Recently, Nayak and Pal [20] studied an I-fuzzy bi-matrix game with intutionistic fuzzy
goals. They defined the notion of a Nash equilibrium solution for such a game on the lines of Nishizaki and
Sakawa [21].

On the other hand, several authors have used different membership functions to depict different prefer-
ences granularity of decision makers. Hannan [14] interpolated fuzzy sets defining goals and constraints in an
optimization problem by piecewise linear concave membership functions and solve the same using a goal pro-
gramming approach. Nakamura [19], Yang et al. [27] and Inuiguchi et al. [16] proposed different techniques to
solve fuzzy optimization problem with piecewise linear (quasi-concave) membership function. In Nakamura’s
approach [19], a subsidiary piecewise linear function was introduced which separates the whole membership
function into a finite number of concave and convex sub-functions. In this way, a piecewise linear membership
function is expressed in terms of logical functions and the fuzzy optimization problem is studied by solving
a finite number of sub- problems. Yang et al. [27] reformulated a fuzzy linear programming problem with
S-shaped membership functions as an integer linear program with binary variables.

The aim of this paper is to study a single objective I-fuzzy bi-matrix game with I-fuzzy goals. In this
context, we observe an ambiguity in the recent work of Nayak and Pal [20] in the way I-fuzzy sets are used in
defining the membership and the nonmembership functions of the I-fuzzy goals. We define an equilibrium so-
lution of the I-fuzzy bi-matrix game and propose to remove the ambiguity in [20] by making the representation
of the membership and the nonmembership functions of the I-fuzzy goals truly in the I-fuzzy spirit. We first
resolve the indeterminacy associated with each player’s I-fuzzy goal and then showed that solving such a game
is equivalent to solving a fuzzy bi-matrix game with piecewise linear S-shaped membership functions. Two
optimization problems are formulated to solve the latter game, depending upon the optimistic and pessimistic
attitude of the two players, using Inuiguchi et al. [16] and Yang et al. [27] schemes.

The remainder of the paper is organized as follows. Section 2 presents the basic definitions and prelimi-
naries on the intutionistic fuzzy sets. Section 3, describes the solution concept of the I-fuzzy bi-matrix game
with I-fuzzy goals. Section 4 presents the two equivalent nonlinear programming problems for obtaining the
equilibrium solution of the I-fuzzy bi-matrix game based on the optimistic and the pessimistic approaches of
the two players. Section 5 presents a numerical example to illustrate the proposed methodology. Section 6 is
concluding remarks.

2 Preliminaries

In this section, we present few definitions on I-fuzzy sets. We also state Yager’s [26] indeterminacy resolution
principle which transforms an I-fuzzy set into a fuzzy set. We next present the interpretation of an I-fuzzy
inequality as explained by Dubey et al. [10]. For all the notations and definitions, we shall be following
[4, 6, 5, 10, 26].

Definition 1 (I-fuzzy set) Let X be a universal set. An I-fuzzy set (originally called an intuitionistic fuzzy
set in [4]) Ã in X is described by Ã = {〈x, µÃ(x), νÃ(x)〉 | x ∈ X}, where µÃ : X → [0, 1] and νÃ : X → [0, 1]

define, respectively, the degree of belonging and the degree of not-belonging of an element x ∈ X to the set Ã
such that µÃ(x) + νÃ(x) ≤ 1.

If µÃ(x) + νÃ(x) = 1, for all x ∈ X, then Ã degenerates to the standard fuzzy set.

Definition 2 (Set theoretic operations in I-fuzzy sets) Let Ã and B̃ be two I-fuzzy sets in X. Their
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standard union and standard intersection are I-fuzzy sets C̃ = Ã ∪ B̃, and D̃ = Ã ∩ B̃, defined respectively as

C̃ = {〈x, max{µÃ(x), µB̃(x)}, min{νÃ(x), νB̃(x)}〉 | x ∈ X} ;

D̃ = {〈x, min{µÃ(x), µB̃(x)}, max{νÃ(x), νB̃(x)}〉 | x ∈ X} .

The standard negation of an I-fuzzy set Ã, is an I-fuzzy set

Ãc = {〈x, νÃ(x), µÃ(x)〉 | x ∈ X} .

Definition 3 (Measure of indeterminacy) Let Ã be an I-Fuzzy set in X. Then the value πÃ(x) given by

πÃ(x) = 1− µÃ(x)− νÃ(x) , x ∈ X,

is called the measure of indeterminacy or undecidedness of x ∈ Ã.

Note that the range of undecidedness of x ∈ Ã is an interval [µÃ(x) , 1 − νÃ(x)] , and the measure of its
indeterminacy is length of this interval.

Using the Hurwicz’s optimism-pessimism criterion [15], for a fixed λ, λ ∈ [0, 1], an I-fuzzy set Ã is
transformed into a fuzzy set Ã whose membership function is described by

fÃ(λ, x) = (1− λ)µÃ(x) + λ(1− νÃ(x)) , x ∈ X .

Henceforth, we shall be calling this function as indeterminacy resolving function of Ã. The parameter λ
depicts the outlook of the decision maker towards resolving indeterminacy; λ = 0, means that the decision
maker resolves indeterminacy fully in favor of membership (complete optimism in resolving indeterminacy),
while λ = 1 indicates that the decision maker resolves indeterminacy fully in negation of the nonmembership
function (complete pessimism in resolving indeterminacy).

2.1 Decision Making in I-fuzzy Environment

Consider a multiobjective optimization problem with r goals and q constraints. Let the set of goals be
G`, ` = 1, . . . , r, and let the set of constraints be Ck, k = 1, . . . , q, each of which can be characterized as an
I-fuzzy set on the universal set X.

Angelov [3] used the Bellman and Zadeh’s extension principle [9] and defined the I-fuzzy decision as follows:

D̃ = (G̃1 ∩ G̃2 ∩ . . . ∩ G̃r) ∩ (C̃1 ∩ C̃2 ∩ . . . ∩ C̃q)

with
D̃ = {〈x, µD̃(x), νD̃(x)〉 | x ∈ X},

where
µD̃(x) = min

`, k

{
µG̃`

(x), µC̃k
(x)
}

and νD̃(x) = max
`, k

{
νG̃`

(x), νC̃k
(x)
}
.

Angelov [3] associated a value function with D̃ as VD̃(x) = µD̃(x) − νD̃(x) , x ∈ X, and the optimal
solution is defined in the sense of finding an x? ∈ X such that VD̃(x?) = maxx∈X VD̃(x).

Dubey et al. [10] implemented Yager’s [26] idea of resolving indeterminacy in the interval uncertainty
represented by I-fuzzy sets in optimization problems. It was observed that this approach can yield a better
optimal value for decision making problem than the one proposed in [3]. We briefly describe their [10] decision
making approach in I-fuzzy environment.

Let λ ∈ [0, 1] be fixed. Associate a fuzzy set D̃, with an I-fuzzy decision set D̃, having membership function
explained as

fD̃(λ, x) = min
`, k

{
fG̃`

(λ, x), fC̃k
(λ, x) | x ∈ X

}
,

where fG̃`
(λ, x) and fC̃k

(λ, x) are the indeterminacy resolving functions of the I-fuzzy sets representing the

`th goal and the kth constraint, respectively. Then, x? ∈ X is an optimal decision, if fD̃(λ, x?) = max
x∈X

fD̃(λ, x) ,

that is, fD̃(λ, x?) ≥ fD̃(λ, x) , ∀ x ∈ X.
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Hence solving an optimization problem with Atanassov’s I-fuzzy goal is equivalent to solving the following
optimization problem:

max α

subject to fG̃`
(λ, x) ≥ α, ` = 1, . . . , r

fC̃k
(λ, x) ≥ α, k = 1, . . . , q

0 ≤ α ≤ 1, x ∈ X.

2.2 Interpretation of I-fuzzy Inequality aTx &IF b

Let a, b ∈ Rn, the n−dimensional real space. Though there is no unique way to define an I-fuzzy inequality
aTx &IF b but two natural approaches are ‘the optimistic approach’ and ‘the pessimistic approach’. We
briefly explain them (see, [2] and [10] for details) in the following.

For a given acceptance tolerance p̂ > 0, the linear membership function associated with this inequality is
described as follows:

µ(aTx) =


1, aTx ≥ b

1− b− aTx
p̂

, b− p̂ ≤ aTx ≤ b

0, aTx ≤ b− p̂ .

Let q̂ (0 < q̂ < p̂) be the tolerance in rejection of the I-fuzzy inequality aTx &IF b. Then, we have two
approaches, namely, the optimistic approach and the pessimistic approach, to define the nonmembership
function of aTx &IF b. The linear nonmembership function in optimistic and pessimistic approaches are
defined respectively as follows:

ν(aTx) = νoptimistic(a
Tx) =


0, aTx ≥ b

1− aTx− b+ p̂+ q̂

p̂+ q̂
, b− p̂− q̂ ≤ aTx ≤ b

1, aTx ≤ b− p̂− q̂.

ν(aTx) = νpessimistic(a
Tx) =


0, aTx ≥ b− p̂+ q̂

1− aTx− b+ p̂

q̂
, b− p̂ ≤ aTx ≤ b− p̂+ q̂

1, aTx ≤ b− p̂.

The I-fuzzy inequality aTx .IF b is treated equivalent to (−a)Tx &IF (−b).
In the section to follow, we present the I-fuzzy bi-matrix game with I-fuzzy goal.

3 I-fuzzy Bi-matrix Game with I-fuzzy Goals: Proposed Models

The following notations are used in the paper:

Rn : n−dimensional real space;

Rn+ : the non-negative orthant of Rn;

eT = (1, . . . , 1) vector of ‘ones’ whose dimension is as per the specific context;

Sm = {x ∈ Rm+ | eTx = 1}, the strategy space of Player I;

Sn = {x ∈ Rn+ | eT y = 1}, the strategy space of Player II;

A m× n real matrix representing payoffs of Player I;

B m× n real matrix representing payoffs of Player II.

Before we present our proposed work, we highlight a flaw in the recent work of Nayak and Pal [20] on I-
fuzzy bi-matrix game with I-fuzzy goal. Nayak and Pal [20] took the I-fuzzy bi-matrix game as (Sm, Sn, A, B)
with I-fuzzy goals. They considered

a = max
x

max
y

xTAy = max
i

max
j
aij , a = min

x
min
y
xTAy = min

i
min
j
aij ,
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and define the membership function and the nonmembership function for Player-I as follows:

µ1(xTAy) =


1, xTAy ≥ a
xTAy − a
a− a

, a ≤ xTAy ≤ a

0, xTAy ≤ a ,

and

ν1(xTAy) =


1, xTAy ≤ a
xTAy − a
a− a

, a ≤ xTAy ≤ a

0, xTAy ≥ a.

The membership function and the nonmembership function for Player II are defined on similar lines using
the expected payoff xTBy of Player II.

Here, the noteworthy fact is that µ1(xTAy) + ν1(xTAy) = 1, ∀ (x, y) ∈ Sm×Sn. Consequently, the study
by Nayak and Pal [20] fails to capture the true spirit of I-fuzzy set and reduces to the classical fuzzy case only
which had already been carried out by Nishizaki and Sakawa [21].

In this work we took a different approach so as to clearly distinguish the role of I-fuzzy goals in an I-fuzzy
bi-matrix game.

Let V0 ∈ R and W0 ∈ R denote the aspiration levels of Player-I and Player-II, respectively. Then, the
I-fuzzy bi-matrix game with I-fuzzy goals, denoted by (IFBG), is defined as

(IFBG) ≡ (Sm, Sn, A, B, V0, .
IF , W0, &

IF ) .

Here &IF and .IF shall be interpreted in the sense of subsection 2.2.

Definition 4 (Equilibrium solution of the game (IFBG))
A point (x?, y?) ∈ Sm × Sn is called an equilibrium solution of the I-fuzzy bi-matrix game (IFBG) if

xTAy? .IF V0 , ∀ x ∈ Sm,
x?TBy .IF W0 , ∀ y ∈ Sn,
x?TAy? &IF V0 ,

x?TBy? &IF W0 .

Since Sm and Sn are the convex polytopes, the specific choice of membership and nonmembership functions
will lead to the following I-fuzzy nonlinear programming problem:

(IFNLP ) Find (x, y) such that

Aiy .IF V0 , i = 1, . . . ,m,

xTBj .IF W0 , j = 1, . . . , n,

xTAy &IF V0 ,

xTBy &IF W0 ,

x ∈ Sm,
y ∈ Sn,

where for Ai , i = 1, . . . ,m, and Bj , j = 1, . . . , n, denote, respectively, the ith row of matrix A and the jth

column of matrix B.

4 Equivalent Optimization Models for Problem (IFNLP )

We next present two models for problem (IFNLP ), depending upon the optimistic/pessimistic interpretation
of the I-fuzzy inequalities.
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4.1 Model in the Optimistic Framework

A player has an optimistic attitude towards rejection, depicting the state that the player is not in a position
to accept a criterion but at the same time does not want to completely reject it. Hence the player has a liberal
view for rejection.

To model this, let p0 and q0 (0 < q0 < p0), respectively, denote the tolerances in the acceptance and
the rejection of I-fuzzy inequality Aiy .IF V0 , i = 1, . . . ,m, in (IFNLP ). Then, the membership and the
nonmembership functions for the ith I-fuzzy inequality are, respectively, as follows:

µi(Aiy) =


1, Aiy ≤ V0
1− Aiy − V0

p0
, V0 ≤ Aiy ≤ V0 + p0

0, Aiy ≥ V0 + p0 ,

and

νi(Aiy) =


0, Aiy ≤ V0
1 +

Aiy − (V0 + p0 + q0)

p0 + q0
, V0 ≤ Aiy ≤ V0 + p0 + q0

1, Aiy ≥ V0 + p0 + q0.

The indeterminacy resolving functions fi(λ,Aiy) , i = 1, . . . ,m, are as follows:

fi(λ,Aiy) =



1, Aiy ≤ V0
fi, 1 = 1 + (V0 −Aiy)

(p0 + (1− λ)q0
p0(p0 + q0)

)
, V0 ≤ Aiy ≤ V0 + p0

fi, 2 =
λ(V0 + p0 + q0 −Aiy)

(p0 + q0)
, V0 + p0 ≤ Aiy ≤ V0 + p0 + q0

0, Aiy ≥ V0 + p0 + q0 .

Next, let p1 and q1 (0 < q1 < p1), respectively, be the tolerances in the acceptance and the rejection of the
constraint xTAy &IF V0. Then the membership function and the nonmembership functions associated with
this constraint are, respectively, described as follows:

µ(xTAy) =


0, xTAy ≥ V0 − p1

1− V0 − xTAy
p1

, V0 − p1 ≤ xTAy ≤ V0
1, xTAy ≥ V0 ,

and

ν(xTAy) =


1, xTAy ≤ V0 − p1 − q1

1− xTAy − V0 + p1 + q1
p1 + q1

, V0 − p1 − q1 ≤ xTAy ≤ V0
0, xTAy ≥ V0 .

The associated indeterminacy resolving function is as follows:

fm+1(λ, xTAy) =



0, xTAy ≤ V0 − p1 − q1

fm+1, 1 =
λ(xTAy − (V0 − p1 − q1))

p1 + q1
, V0 − p1 − q1 ≤ xTAy ≤ V0 − p1

fm+1, 2 = 1 + (xTAy − V0)
(p1 + (1− λ)q1
p1(p1 + q1)

)
, V0 − p1 ≤ xTAy ≤ V0

1, xTAy ≥ V0.

Similarly, let s0 and t0 (0 < t0 < s0), respectively, be the tolerances in the acceptance and the rejection of
I-fuzzy inequalities xTBj .IF W0, j = 1, . . . , n, in (IFNLP ). Then the membership and the nonmembership
functions for the jth I-fuzzy inequality are respectively as follows:

µj(x
TBj) =


1, xTBj ≤W0

1− xTBj −W0

s0
, W0 ≤ xTBj < W0 + s0

0, xTBj ≥W0 + s0 ,
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and

νj(x
TBj) =


0, xTBj ≤W0

1 +
xTBj − (W0 + s0 + t0)

s0 + t0
, W0 ≤ xTBj ≤W0 + s0 + t0

1, xTBj ≥W0 + s0 + t0.

The indeterminacy resolving functions fm+1+j(η, x
TBj), j = 1, . . . , n, are as follows:

fm+1+j(η, x
TBj) =



1, xTBj ≤W0

fm+1+j, 1 = 1 + (W0 − xTBj)
(s0 + (1− η)t0
s0(s0 + t0)

)
, W0 ≤ xTBj ≤W0 + s0

fm+1+j, 2 =
η(W0 + s0 + t0 − xTBj)

(s0 + t0)
, W0 + s0 ≤ xTBj ≤W0 + s0 + t0

0, xTBj ≥W0 + s0 + t0 .

Similarly, let s1 and t1 (0 < t1 < s1), be the tolerances in the acceptance and the rejection of the I-fuzzy
inequality xTBy &IF W0. Then, the membership and the nonmembership functions are respectively as
follows:

µ(xTBy) =


0, xTBy ≥W0 − s1

1− xTBy −W0

s1
, W0 − s1 ≤ xTBy ≤W0

1, xTBy ≥W0 ,

and

ν(xTBy) =


1, xTBy ≤W0 − s1 − t1

1− xTBy −W0 + s1 + t1
s1 + t1

, W0 − s1 − t1 ≤ xTBy ≤W0

0, xTBy ≥W0 ,

and the indeterminacy resolving function is as follows:

fm+n+2(η, xTBy) =



0, xTBy ≤W0 − s1 − t1

fm+n+2, 1 =
η(xTBy − (W0 − s1 − t1))

s1 + t1
, W0 − s1 − t1 ≤ xTBy ≤W0 − s1

fm+n+2, 2 = 1 + (xTBy −W0)
(s1 + (1− η)t1
s1(s1 + t1)

)
, W0 − s1 ≤ xTBy ≤W0

1, xTBy ≥W0.

Such functions are depicted in Figure 1 and Figure 2.

It is important to note here that the functions fi(λ,Aiy), fm+1(λ, xTAy), fm+1+j(η, x
TBj), and

fm+n+2(η, xTBy) are piecewise linear S-shaped functions with convex type break points. Here, we imple-
ment the technique of Inuiguchi et al. [16] which convert a piecewise linear membership function with convex
break points into a piecewise linear membership function with concave break points. The algorithm in [16]
involves the following steps.

Step 1:– Arrange

0,
λq0

p0 + q0
,

λq1
p1 + q1

,
ηt0

t0 + s0
,

ηt1
t1 + s1

, 1,

in ascending order, and let them be re-named as c1 = 0, c2, c3, c4, c5, c6 = 1. For t = 1, . . . , 6, compute

vtp = f−1p (ct), p = 1, . . . ,m+ n+ 2.

Step 2:– Set δ
′

1 = 1, and for θ = 1, 2, 3, 4, calculate

δ
′

θ+1 = δ
′

θ min
1≤p≤m+n+2

(vθ+2
p − vθ+1

p

vθ+1
p − vθp

)
.

Step 3:– Compute

δθ =
δ
′

θ∑5
θ=1 δ

′
θ

, θ = 1, . . . , 5.
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Figure 1: Indeterminacy resolving functions in optimistic approach (a) Aiy .IF V0 (b) xTBj .IF W0

Figure 2: Indeterminacy resolving functions in optimistic approach (a) xTAy &IF V0 (b) xTBy &IF W0
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Step 4:– For p = 1, . . . ,m+ n+ 2, compute

hθp =
δθ

vθ+1
p − vθp

, θ = 1, . . . , 5,

and

f̂p(v
t
p) =


0, t = 1
t−1∑
θ=1

δθ, 2 ≤ t ≤ 6.

Step 5:– For p = 1, 2, . . . ,m,m+ 2,m+ 3, . . . ,m+ n+ 1, define

f̂p(x) =


0, x ≥ v1p
min

1≤θ≤5

(
(x− vθp)hθp + f̂p(v

θ
p)
)
, v6p ≤ x ≤ v1p

1, x ≤ v6p .

And for p = m+ 1 and m+ n+ 2, define

f̂p(x) =


0, x ≤ v1p
min

1≤θ≤5

(
(x− vθp)hθp + f̂p(v

θ
p)
)
, v1p ≤ x ≤ v6p

1, x ≥ v6p .

Note that, after applying Inuiguichi et al. [16] algorithm on all the constraints of (IFNLP ), the constraints
get transformed into concave piecewise linear functions. Subsequently, applying Yang et al. [27] approach, an
I-fuzzy optimization problem (IFNLP ) is equivalent to the following crisp nonlinear program:

(CENLP )o max α

subject to
δθ

vθ+1
i − vθi

(Aiy − vθi ) + f̂i(v
θ
i ) ≥ α, i = 1, . . . ,m, θ = 1, . . . , 5

δθ

vθ+1
m+1 − vθm+1

(xTAy − vθm+1) + f̂m+1(vθm+1) ≥ α, θ = 1, . . . , 5

δθ

vθ+1
m+1+j − vθm+1+j

(xTBj − vθm+1+j) + f̂m+1+j(v
θ
m+1+j) ≥ α,

j = 1, . . . , n, θ = 1, . . . , 5

δθ

vθ+1
m+n+2 − vθm+n+2

(xTBy − vθm+n+2) + f̂m+n+2(vθm+n+2) ≥ α, θ = 1, . . . , 5

x ∈ Sm, y ∈ Sn, α ∈ [0, 1].

Summarizing the above discussion, we get that, finding an equilibrium solution of an I-fuzzy bi-matrix game
(IFBG) with I-fuzzy goals, in an optimistic framework, requires to solve the crisp nonlinear programming
problem (CENLP )o. Also, if (x?, y?, α?) is an optimal solution of (CENLP )o, then (x?, y?) is an equilibrium
solution of (IFBG) and α? is the highest degree up to which the aspiration goals V0 and W0 for respective
players Player I and Player II are met, when both players have taken the optimistic approach.

4.2 Model in the Pessimistic Framework

In this approach, a player has a pessimistic approach towards acceptance of a criterion, amounting to saying
that a complete rejection of a criterion does not entail its full acceptance.

Let p′0 and q′0 (0 < q′0 < p′0), respectively, be the tolerances in the acceptance and the rejection of m
constraints Aiy

∗ .IF V0, i = 1, . . . ,m, in (IFNLP ). Then, the membership function and the nonmembership
function for the ith I-fuzzy inequality Aiy

∗ .IF V0 are, respectively, as follows:

µi(Aiy) =


1, Aiy ≤ V0
1− Aiy − V0

p′0
, V0 ≤ Aiy ≤ V0 + p′0

0, Aiy ≥ V0 + p′0 ,
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and

νi(Aiy) =


0, Aiy ≤ V0 + p′0 − q′0
1 +

Aiy − (V0 + p′0)

q0
, V0 + p′0 − q′0 ≤ Aiy ≤ V0 + p′0

1, Aiy ≥ V0 + p′0.

The indeterminacy resolving functions are as follows:

fi(λ,Aiy) =



1, Aiy ≤ V0
fi, 1 = 1 + (1− λ)

(V0 −Aiy)

p′0
, V0 ≤ Aiy ≤ V0 + p′0 − q′0

fi, 2 =
λp′0 + (1− λ)q′0

q′0

(
1 +

V0 −Aiy
p′0

)
, V0 + p′0 − q′0 ≤ Aiy ≤ V0 + p′0

0, Aiy ≥ V0 + p′0.

Similarly, if s′0 and t′0 (0 < t′0 < s′0), respectively, are the tolerances in the acceptance and the rejection of n
constraints xTBj .IF W0, j = 1, . . . , n, in (IFNLP ), then the indeterminacy resolving function for the jth

constraint xTBj .IF W0 are as follows:

fm+1+j(η, x
TBj) =



1, xTBj ≤W0

fm+1+j, 1 = 1 + (1− η)
(W0 − xTBj)

s′0
, W0 ≤ xTBj ≤W0 + s′0 − t′0

fm+1+j, 2 =
ηs′0 + (1− η)t′0

t′0

(
1 +

W0 − xTBj
s′0

)
, W0 + s′0 − t′0 ≤ xTBj ≤W0 + s′0

0, xTBj ≥W0 + s′0.

Here it is to be noted here that fi(λ,Aiy) and fm+1+j(η, x
TBj) are piecewise linear S-shaped functions with

concave break points.

Furthermore, let p′1 and q′1 (0 < q′1 < p′1), respectively, be the tolerances in the acceptance and the rejection
of the constraint xTAy &IF V0, then the indeterminacy function is as follows:

fm+1(λ, xTAy) =



0, xTAy ≤ V0 − p′1
fm+1, 1 =

λp′1 + (1− λ)q′1
q′1

(
1 +

xTAy − V0)

p′1

)
, V0 − p′1 ≤ xTAy ≤ V0 − p′1 + q′1

fm+1, 2 = 1 + (1− λ)
xTAy − V0

p′1
, V0 − p′1 + q′1 ≤ xTAy ≤ V0

1, xTAy ≥ V0.

Again let s′1 and t′1 (0 < t′1 < s′1) be, respectively, the tolerances in the acceptance and the rejection of the
last constraint xTBy &IF W0, then the indeterminacy resolving function is as follows:

fm+n+2(η, xTBy) =



0, xTBy ≤W0 − s′1
fm+n+2, 1 =

ηs′1 + (1− η)t′1
t′1

(
1 +

xTBy −W0)

s′1

)
, W0 − s′1 ≤ xTBy ≤W0 − s′1 + t′1

fm+n+2, 2 = 1 + (1− η)
xTBy −W0

s′1
, W0 − s′1 + t′1 ≤ xTBy ≤W0

1, xTBy ≥W0.

Here fm+1(λ, xTAy) and fm+n+2(η, xTBy) are S-shaped piecewise linear functions with concave break points.

Following the approach of Yang et al. [27], solving the I-fuzzy bi-matrix game (IFBG) is equivalent to
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solving the following nonlinear programming problem:

max α

subject to fi, 1(λ,Aiy) ≥ α, i = 1, . . . ,m

fi, 2(λ,Aiy) ≥ α, i = 1, . . . ,m

fm+1+j, 1(η, xTBj) ≥ α j = 1, . . . , n

fm+j+1, 2(η, xTBj) ≥ α j = 1, . . . , n

fm+1, 1(λ, xTAy) ≥ α
fm+1, 2(λ, xTAy) ≥ α
fm+n+2, 1(η, xTBy) ≥ α
fm+n+2, 2(η, xTBy) ≥ α
x ∈ Sm, y ∈ Sn, α ∈ [0, 1],

or equivalently solving the following problem:

(CENLP )p max α
subject to

α ≤ 1 + (1− λ)
(V0 −Aiy)

p′0
, i = 1, . . . ,m

α ≤ λp′0 + (1− λ)q′0
q′0

(
1 +

V0 −Aiy
p′0

)
, i = 1, . . . ,m

α ≤ 1 + (1− η)
(W0 − xTBj)

s′0
, j = 1, . . . , n

α ≤ ηs′0 + (1− λ)t′0
t′0

(
1 +

W0 − xTBj
s′0

)
, j = 1, . . . , n

α ≤ λp′1 + (1− λ)q′1
q′1

(
1 +

xTAy − V0)

p′1

)
α ≤ 1 + (1− λ)

xTAy − V0
p′1

α ≤ ηs′1 + (1− η)t′1
t′1

(
1 +

xTBy −W0)

s′1

)
α ≤ 1 + (1− η)

xTBy −W0

s′1
x ∈ Sm, y ∈ Sn, α ∈ [0, 1].

From the above discussion, we observe that finding an equilibrium solution of the I-fuzzy bi-matrix
game (IFBG), in a pessimistic approach, is equivalent to solving the crisp nonlinear programming prob-
lem (CENLP )p for different values of λ and η. Also, if (x?, y?, α?) is an optimal solution of (CENLP )p, then
(x?, y?) is an equilibrium solution of (IFBG) and α? is the maximum degree up to which the aspiration goals
V0 and W0 of respective players Player I and Player II are met, when both players have taken the pessimistic
approach.

Remark 1 When q0 = t0 = q1 = t1 = 0, the game problem (IFBG), in an I-fuzzy environment, subsumes
to a fuzzy bi-matrix game with fuzzy payoffs studied by Vidyottama et al. [25]. In this case, the Step 1 of the
algorithm (p. 13) has vtp values equal for t = 1, . . . , 5 and for p = 1, . . . ,m+ n+ 2. So, we denote all of them
by v1p only and the other distinct value (that is, v6p in Step 1) is then taken as v2p. Thus,

v1i = V0 + p0 , v2i = V0 , i = 1, . . . ,m,

v1m+1 = V0 − p1 , v2m+1 = V0 ,

v1m+1+j = W0 + s0 , v2m+1+j = W0 , j = 1, . . . , n,

v1m+n+2 = W0 − s1 , v2m+n+2 = W0.
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For this special case, problem (CENLP )o reduces to the following nonlinear programming problem:

max α

subject to 1− (Aiy − V0)

p0
≥ α i = 1, . . . ,m

1 +
(xTAy − V0)

p1
≥ α

1− (xTBj −W0)

s0
≥ α j = 1, . . . , n

1 +
(xTBy −W0)

s1
≥ α

x ∈ Sm, y ∈ Sn, α ∈ [0, 1] ,

which is same as the equivalent problem obtained for solving the fuzzy bi-matrix game in [25].

5 Numerical Illustration

We present the famous example of Mangasarian and Stone [18] which was also studied by Vidyottama et al. [25]
in fuzzy environment.

Example 1 Consider the two person non zero sum game with payoffs matrices as follows:

A =

(
2 −1

−1 1

)
, B =

(
1 −1

−1 2

)
.

When we employ the procedure in [25], we get, V0 = W0 = 0.20. Both player may aspire respective goals
values V0 and W0 close to 0.20.

Optimistic Approach

Consider the membership and the nonmembership functions of the I-fuzzy bi-matrix game (IFBG) in the
optimistic approach with V0 = 0.30, W0 = 0.40. Let the tolerances be p0 = 0.20, q0 = 0.10, s0 = 0.25, t0 =
0.15 and p1 = 0.20, q1 = 0.10, s1 = 0.30, t1 = 0.10. Assuming that λ = η = 1

3 . After resolving the
indeterminacy, we get the piecewise linear indeterminacy resolving functions, with convex break points, as
follows:

f1(A1y) =



1, 2y1 − y2 ≤ 0.30

1 +
40

9
(0.30− 2y1 + y2), 0.30 ≤ 2y1 − y2 ≤ 0.50

10

9
(0.60− 2y1 + y2), 0.50 ≤ 2y1 − y2 ≤ 0.60

0, 2y1 − y2 ≥ 0.60,

f2(A2y) =



1, y1 − y2 ≤ 0.30

1 +
40

9
(0.30− (−y1 + y2)), 0.30 ≤ −y1 + y2 ≤ 0.50

10

9
(0.60− (−y1 + y2)), 0.50 ≤ −y1 + y2 ≤ 0.60

0, y1 − y2 ≥ 0.60,

f4(BT1 x) =



1, x1 − x2 ≤ 0.40

1 +
7

2
(0.40− (x1 − x2)), 0.40 ≤ x1 − x2 ≤ 0.65

5

6
(0.80− (x1 − x2)), 0.65 ≤ x1 − x2 ≤ 0.80

0, x1 − x2 ≥ 0.80,
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f5(BT2 x) =



1, x1 − 2x2 ≤ 0.40

1 +
7

2
(0.40− (−x1 + 2x2)), 0.40 ≤ −x1 + 2x2 ≤ 0.65

5

6
(0.80− (−x1 + 2x2)), 0.65 ≤ −x1 + 2x2 ≤ 0.80

0, −x1 − 2x2 ≥ 0.80.

On the same lines, we also have

f3(xTAy) =



0, xTAy ≤ 0
10

9
(2x1y1 − x1y2 − x2y1 + x2y2), 0 ≤ xTAy ≤ 0.10

1 +
40

9
(2x1y1 − x1y2 − x2y1 + x2y2 − 0.30), 0.10 ≤ xTAy ≤ 0.30

1, xTAy ≥ 0.30,

f6(xTBy) =



0, xTBy ≤ 0
5

6
(x1y1 − x1y2 − x2y1 + 2x2y2), 0 ≤ xTBy ≤ 0.10

1 +
10

3
(x1y1 − x1y2 − x2y1 + 2x2y2 − 0.40), 0.10 ≤ xTBy ≤ 0.40

1, xTBy ≥ 0.40.

Again the indeterminacy resolving functions f3(xTAy) and f6(xTBy) are piecewise linear S-shaped linear
functions with convex break points.

To convert all the aforesaid piecewise linear indeterminacy functions into convex functions by employing
Inuiguichi et al. algorithm [16], we follow the procedure laid down in Section 3.1.
Step 1:–

c1 = 0, c2 = 0.083, c3 = 0.11, c4 = 0.125, c5 = 1.

v11 = v12 = 0.60, v21 = v22 = 0.525, v31 = v32 = 0.50, v41 = v42 = 0.49, v51 = v52 = 0.30,

v13 = 0, v23 = 0.075, v33 = 0.10, v43 = 0.103, v53 = 0.30,

v14 = v150.80, v24 = v25 = 0.70, v34 = v35 = 0.667, v44 = v45 = 0.650, v54 = v55 = 0.40,

v16 = 0, v26 = 0.10, v36 = 0.108, v46 = 0.113, v56 = 0.40.

Step 2:– Set δ
′

1 = 1 and obtain δ
′

θ for θ = 2, 3, 4,

δ′2 = δ
′

1 × min
1≤p≤6

(
v3p − v2p
v2p − v1p

)
= 0.08,

δ′3 = δ
′

2 × min
1≤p≤6

(
v4p − v3p
v3p − v2p

)
= 0.0096,

δ′4 = δ
′

3 × min
1≤p≤6

(
v5p − v4p
v4p − v3p

)
= 0.1824.

Step 3:– Normalizing δ′θ, θ = 1, 2, 3, 4, to obtain

δ1 = 0.7861, δ2 = 0.0628, δ3 = 0.00754, δ4 = 0.1433.

Step 4:– For all p = 1, . . . , 6, we have

f̂p(v
1
p) = 0, f̂

′

p(v
2
p) = 0.7861, f̂

′

p(v
3
p) = 0.8489, f̂

′

p(v
4
p) = 0.8564, f̂

′

p(v
5
p) = 1.

Step 5:– The membership functions are obtained as follows:

f̂1(A1y) =


1, 2y1 − y2 ≤ 0.30
min (−9.82(2y1 − y2) + 5.895, −3.14(2y1 − y2) + 2.4189,
−0.754(2y1 − y2) + 1.2259) , 0.30 ≤ 2y1 − y2 ≤ 0.60

0, 2y1 − y2 ≥ 0.60,
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f̂2(A2y) =


1, −y1 + y2 ≤ 0.30
min (−9.82(−y1 + y2) + 0.5895, −3.14(−y1 + y2) + 2.4189,
−0.754(−y1 + y2) + 1.2259) , 0.30 ≤ −y1 + y2 ≤ 0.60

0, −y1 + y2 ≥ 0.60,

f̂3(xTAy) =


0, xTAy ≤ 0
min

(
10.48(xTAy), 2.512(xTAy) + 0.597,

0.727(xTAy) + 0.7814
)
, 0 ≤ xTAy ≤ 0.30

1, xTAy ≥ 0.30,

f̂4(xTB1) =


1, x1 − x2 ≤ 0.40
min (−7.861(x1 − x2) + 6.288, −1.572(x1 − x2) + 1.8851,
−0.754(x1 − x2) + 1.346, −0.5732(x1 − x2) + 1.228) , 0.40 ≤ x1 − x2 ≤ 0.80

1, x1 − x2 ≥ 0.80,

f̂5(xTB2) =


1, −x1 + 2x2 ≤ 0.40
min (−7.861(−x1 + 2x2) + 6.288, −1.572(−x1 + 2x2) + 1.8851,
−0.754(−x1 + 2x2) + 1.346, −0.5732(−x1 + 2x2) + 1.228) , 0.40 ≤ −x1 + 2x2 ≤ 0.80

0, −x1 + 2x2 ≥ 0.80,

f̂6(xTBy) =

 0, xTBy ≤ 0
min

(
7.861(xTBy), 1.508(xTBy) + 0.6880, 0.50(xTBy) + 0.794

)
, 0 ≤ xTBy ≤ 0.40

1, xTBy ≥ 0.40.

The equivalent crisp non-linear program to (IFNLP ) is as follows:

max α

subject to −19.64y1 + 9.82y2 + 5.895 ≥ α
−6.28y1 + 3.14y2 + 2.418 ≥ α
−1.508y1 + 0.75y2 + 1.2259 ≥ α
9.82y1 − 9.82y2 + 5.895 ≥ α
3.14y1 − 3.14y2 + 2.418 ≥ α
0.754y1 − 0.754y2 + 1.2259 ≥ α
−7.861x1 + 7.861x2 + 6.288 ≥ α
−1.57x1 + 1.57x2 + 1.8551 ≥ α
−0.754x1 + 0.754x2 + 1.346 ≥ α
−0.5732x1 + 0.5732x2 + 1.228 ≥ α
7.861x1 − 15.72x2 + 6.288 ≥ α
1.57x1 − 3.14x2 + 1.8551 ≥ α
0.754x1 − 1.508x2 + 1.346 ≥ α
0.5732x1 − 1.1464x2 + 1.228 ≥ α
20.96x1y1 − 10.48x1y2 − 10.48x2y1 + 10.48x2y2 ≥ α
5.024x1y1 − 2.512x1y2 − 2.512x2y1 + 2.512x2y2 + 0.597 ≥ α
1.454x1y1 − 0.727x1y2 − 0.727x2y1 + 0.727x2y2 + 0.7814 ≥ α
7.86x1y1 − 7.86x1y2 − 7.86x2y1 + 15.72x2y2 ≥ α
1.508x1y1 − 1.508x1y2 − 1.508x2y1 + 3.016x2y2 + 0.6880 ≥ α
0.50x1y1 − 0.50x1y2 − 0.50x2y1 + x2y2 + 0.794 ≥ α
x1 + x2 = 1, x1, x2 ≥ 0

y1 + y2 = 1, y1, y2 ≥ 0

0 ≤ α ≤ 1.
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The optimal solution is x? = (0.4972, 0.5028), y? = (0.4304, 0.5696) and α? = 0.9375. Thus, the assumed
aspiration level for both players is achieved with 93.75%.

Tables 1, 2, and 3 depict optimal solutions of (CENLP )o for different combinations of (λ, η).

Table 1: Optimal solutions for players in the optimistic approach

λ = η α? x?1 x?2 y?1 y?2

0 0.60 0.5 0.5 0.44 0.56

1

3
0.9375 0.4972 0.5708 0.4304 0.5696

1

2
0.8591 0.576 0.424 0.438 0.562

3

4
0.7637 0.497 0.503 0.434 0.566

1 0.9275 0.5 0.5 0.434 0.566

Table 2: Optimal solutions for players in the optimistic approach when λ = 1/3 and η varies

η α? x?1 x?2 y?1 y?2

1

4
0.9011 0.6397 0.3602 0.4635 0.5364

1

3
0.9375 0.4972 0.5708 0.4304 0.5696

1

2
0.9346 0.5 0.5 0.4414 0.5585

2

3
0.9666 0.495 0.505 0.452 0.548

3

4
0.8376 0.495 0.505 0.453 0.547

Table 3: Optimal solutions for players in the optimistic approach when η = 1/3 and λ varies

λ α? x?1 x?2 y?1 y?2

1

4
0.9650 0.445 0.555 0.254 0.746

1

3
0.9375 0.4972 0.5708 0.4304 0.5696

1

2
0.9578 0.511 0.489 0.318 0.682

2

3
0.7384 0.726 0.274 0.495 0.505

3

4
0.8940 0.501 0.499 0.419 0.581
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Pessimistic Approach

Consider the I-fuzzy version of the I-fuzzy bi-matrix game with V0 = 0.30;W0 = 0.40. The tolerances are set
as p′0 = 0.20, q′0 = 0.10, s′0 = 0.25, t′0 = 0.15 and p′1 = 0.20, q′1 = 0.10, s′1 = 0.30, t′1 = 0.10.

Consider the membership functions and the nonmembership functions of the I-fuzzy bi-matrix game in
the pessimistic approach with given tolerances, and after resolving the indeterminacy with λ = η = 1

3 , we get
the piecewise linear indeterminacy resolving functions for both players, all with concave break points only, as
follows:

f1(A1y) =



1, 2y1 − y2 ≤ 0.30

1 +
(0.30− 2y1 + y2)

0.30
, 0.30 ≤ 2y1 − y2 ≤ 0.40

4

0.60
(0.50− 2y1 + y2), 0.40 ≤ 2y1 − y2 ≤ 0.50

0, 2y1 − y2 ≥ 0.50,

f2(A2y) =



1, −y1 + y2 ≤ 0.30

1 +
(0.30 + y1 − y2)

0.30
, 0.30 ≤ −y1 + y2 ≤ 0.40

4

0.60
(0.50 + y1 − y2), 0.40 ≤ −y1 + y2 ≤ 0.50

0, −y1 + y2 ≥ 0.50,

f4(B1x) =



1, x1 − x2 ≤ 0.40

1 +
2

0.75
(0.40− x1 + x2), 0.40 ≤ x1 − x2 ≤ 0.50

11

2.25
(0.65− x1 + x2), 0.50 ≤ x1 − x2 ≤ 0.65

0, x1 − x2 ≥ 0.65,

f5(B2x) =



1, −x1 + 2x2 ≤ 0.40

1 +
2

0.75
(0.40 + x1 − 2x2), 0.40 ≤ −x1 + 2x2 ≤ 0.50

11

2.25
(0.65 + x1 − 2x2), 0.50 ≤ −x1 + 2x2 ≤ 0.65

0, −x1 + 2x2 ≥ 0.65.

On the same line, we also obtain the following:

f3(xTAy) =



0, xTAy ≤ 0.10
4

0.60
(2x1y1 − x1y2 − x2y1 + x2y2 − 0.10), 0.10 ≤ xTAy ≤ 0.20

1 +
1

0.30
(2x1y1 − x1y2 − x2y1 + x2y2 − 0.30), 0.20 ≤ xTAy ≤ 0.30

1, xTAy ≥ 0.30,

f6(xTBy) =



0, xTBy ≤ 0.10
5

2.70
(x1y1 − x1y2 − x2y1 + 2x2y2 − 0.10), 0.10 ≤ xTBy ≤ 0.20

1 +
2

0.90
(x1y1 − x1y2 − x2y1 + 2x2y2 − 0.40), 0.20 ≤ xTBy ≤ 0.40

1, xTBy ≥ 0.40.
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The corresponding nonlinear program (CENLP )p to be solved is given as follows:

max α

subject to −2y1 + y2 + 0.60 ≥ 0.30α

−8y1 + 4y2 + 2 ≥ 0.60α

y1 − y2 + 0.60 ≥ 0.30α

4y1 − 4y2 + 2 ≥ 0.60α

−2x1 + 2x2 + 1.55 ≥ 0.75α

−11x1 + 11x2 + 7.15 ≥ 2.25α

2x1 − 4x2 + 1.55 ≥ 0.75α

11x1 − 22x2 + 7.15 ≥ 2.25α

8x1y1 − 4x1y2 − 4x2y1 + 4x2y2 − 0.40 ≥ 0.60α

2x1y1 − x1y2 − x2y1 + x2y2 ≥ 0.30α

5x1y1 − 5x1y2 − 5x2y1 + 10x2y2 − 0.50 ≥ 2.70α

2x1y1 − 2x1y2 − 2x2y1 + 4x2y2 + 0.10 ≥ 0.90α

x1 + x2 = 1

y1 + y2 = 1

α ≤ 1.

The optimal solution is x? = (0.4825, 0.5174), y? = (0.3312, 0.6687) and α? = 0.4774. Thus, the assumed
aspiration level for both players is achieved with 47.74%. Table 4 depicts optimal solutions for Player I and
Player II for different combinations of λ = η.

Table 4: Optimal solutions for players in the pessimistic approach

λ = η α? x?1 x?2 y?1 y?2

1

4
0.3125 0.4723 0.5276 0.40 0.60

1

3
0.4773 0.4825 0.5174 0.3312 0.6687

1

2
0.7999 0.5000 0.5000 0.44 0.56

2

3
0.4453 0.4756 0.5243 0.2769 0.7230

3

4
0.7918 0.4939 0.5060 0.3797 0.6202

We can easily work out the optimal solutions (equilibrium) for both players for different other values of λ
and η in the pessimistic situation.

Both nonlinear problems (CENLP )o and (CENLP )p are solved on LINDO solver on a Window 64 bits
platform.

6 Concluding Remarks

In this paper, we studied the I-fuzzy bi-matrix games with I-fuzzy goals. The earlier study on fuzzy bi-
matrix games by Vidyottama et al. [25] falls as a special case of our study. Also, we have improvised the
study of Nayak and Pal [20] by providing a true I-fuzzy framework to the I-fuzzy bi-matrix games. We
presented two models to compute equilibrium solution of the I-fuzzy bi-matrix game when both players either
adopt the optimistic approach or the pessimistic approach in describing the nonmembership functions for
their respective goals. Their attitude in resolving the indeterminacy in their respective I-fuzzy goals are
captured by parameters λ (for Player I) and η (for Player II) varying independently in the interval [0, 1]. The
advantage with the proposed scheme, especially in the optimistic framework, is that the resultant optimization
problems does not involve any binary/integer variables, which is often the case with S-shaped piecewise linear
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membership functions. In both the approaches, the equivalent crisp optimization problems are nonlinear
programming problems which can easily be solved on any of the available solvers. However, beside the
two parameters λ and η for the two players’ indeterminacy resolving interests, these nonlinear programming
problems involve certain tolerance parameters, consequently the equilibrium solution of the game is sensitive
to the changes in these parameters.

The other two natural optimization models could be when one player possesses an optimistic approach in
describing the nonmembership function for the I-fuzzy goal while the other player has a pessimistic approach
for doing the same. These optimization models can easily be worked out on similar lines. Moreover, in
recent literature, one found some studies on fuzzy bi-matrix games involving different types of payoffs. For
example, Gao [12] used uncertain variables and uncertainty theory to study uncertain bi-matrix games, Roy
and Mula [22] used bifuzzy numbers to investigate bifuzzy bi-matrix games, while Seikh et al. [23] used
triangular intuitionistic fuzzy numbers in bi-matrix games. The present study can easily be extended in
future to include different types of uncertainties in the pay-offs besides the fuzzy goals.
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