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Abstract 

 

The design of acceptance sampling plans for hybrid exponential distribution under a truncated life test is considered 

in this paper.  In this work, experimental values are treated as observed values of exponential random variables whose 

mean is assumed to be a fuzzy variable in the sense of Liu [25]. A new chance distribution called hybrid exponential 

distribution is considered in this paper and its properties are investigated. Under the chance distribution, the question 

of developing time truncated sampling plan is considered.  For various acceptance numbers, consumer’s confidence 

levels and values of the ratio of the fixed experimental time to the specified median life, the minimum sample sizes 

required to ensure the specified median life are obtained. The operating characteristic function values of the given 

sampling plans and associated producer’s risk are presented in the fuzzy environment. The results are illustrated with 

examples.  

© 2016 World Academic Press, UK. All rights reserved.  

Keywords: acceptance sampling plan, hybrid exponential distribution, operating characteristic function value, 

consumer’s risk and producer’s risk 

 

1 Introduction 
 

Designing of suitable Acceptance Sampling Plans for various situations is an important exercise in the study of 

Statistical Quality Control systems. Acceptance sampling plans help us to examine whether the manufactured 

products meet the pre-specified quality levels. They are primarily used in statistical quality control when it is not 

possible to perform complete inspection of the manufactured products for various reasons like, the manufactured 

products being destructive in nature or complete inspection may be a time consuming process. Basically, acceptance 

sampling plans help us to assess the quality level of the product based on sampled items. Acceptance sampling plans 

can be broadly classified as, “Sampling plans for Attributes” and “Sampling plans for Variables”. If the quality level 

of the product is measured in terms of attributes like defectives or non-defectives, then the sampling plans for 

attributes are used. On the other hand, if the manufactured products are inspected by means of measurements like 

length, height, life time, etc., then sampling plans for variables used.  Characteristics of an acceptance sampling plan 

are studied mainly with the help of probability distributions which involve certain parametric values. For example, in 

sampling plans for attributes, distributions like Binomial, Poisson, Hyper-Geometric, etc. play important roles. In the 

case of acceptance sampling plans for variables, distributions like Normal, Exponential, Gamma, Log-normal, etc. 

find wide applications. Several researchers have contributed to the development of sampling plans for variables under 

situations involving randomness. Some of them are Zimmer and Burr [40], Owen [27], Guenther [14], Aminzadeh [2], 

Soundararajan and Christina [37], Eric et al. [35], Geetha and Vijyaraghavan [9], etc. 

It is to be noted that various types of acceptance sampling plans for variables are available in the literature like, 

chain sampling, continuous sampling, skip-lot sampling, time truncated sampling, tightened normal tightened 

sampling, reliability sampling, etc. A class of acceptance sampling plans known as time truncated sampling plan that 

has received the attention of many researchers is to be considered in this paper. Time truncated sampling plans have 

been considered by many authors under various probability distributions. Such time truncated sampling plans were 

developed by Epstein [8] in exponential case, Sobel and Tsichendrof [36] for Exponential distribution, Goode and 
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Kao [10] for Weibull distribution, Gupta and Groll [17] for Gamma distribution, Kantam and Rosaiah [21] for Half 

logistic distribution, Kantam et al. [22] for Log-logistic, Rosaiah and Kantam [29] for Rayleigh, Baklizi [5] for Pareto 

distribution of second kind, Baklizi and El Masri [6] for Birnbaum Saunders model, and Balakrishnan et al. [7] for 

generalized Birnbaum-Saunders distributions. Recently, Aslam and Shahbaz [4], Tsai and Wu [39], Al-Nasser and 

Al-Omari [1], Singh et al. [34], Gui and Zhang [15] developed acceptance sampling plans for truncated life test for 

generalized exponential distribution, inverse Rayleigh distribution, generalized Rayleigh distribution, Exponentiated 

Freche’t distribution, Compound Rayleigh distribution and Gompertz distribution. 

In conventional acceptance sampling plans, a random sample is selected from the lot and the consumer decides 

to accept or reject the lot based on the information obtained from the sample. In life test sampling plans or time 

truncated acceptance sampling plans, units are subjected to life test and the number of failures up to a pre-specified 

time point is observed. If the number of failures reaches the acceptance number within the specified time then the 

inspection is stopped and the lot is rejected. On the other hand, if the number of failures is less than or equal to the 

acceptance number then the lot is accepted.   

The quality characteristic considered under the life time experiment is a continuous variable in nature; we 

assume a probability distribution for the life time distribution with either mean/median as a parameter. Since the 

quality characteristic is a variable, there exists either a lower confidence limit or an upper confidence limit or both 

which establish the acceptable values of this parameter.  The primary objective of time truncated acceptance sampling 

plan is to fix the lower confidence limit on the mean/median life of the product and make sure that the actual 

mean/median life of the product satisifies the consumer’s confidence level with a minumum probability  Invariably, 

the parameters involved in these probability distributions are assumed to be either known or estimated through some 

statistical techniques. In real life situations, finding good estimated values for parameters remains as a challenging 

problem. The introduction of the Fuzzy theory paved a way for an alternative solution to this problem. Various 

approaches for designing of sampling plans for attributes using fuzzy set theory have been considered by several 

researchers including Ohta and Ichihashi [26], Kanagawa and Ohta [20], Arnold [3], Grzegorzwski [11, 12, 13], 

Hryniewicz [18], Jamkhaneh et al. [19], Tong and Wang [38] etc. It is to be mentioned that the majority of these 

works are related to sampling plans for attributes and they assume the presence of fuzziness in the parameters related 

to the underlying distributions. While some of these works considered fuzziness in producer’s risk and consumer’s 

risk, others considered fuzziness in the submitted lot quality level. 

To study environments involving imprecise situations, Liu and Liu [24] and Liu [25] introduced a theory called 

credibility theory parallel to probability theory. Sampath [30, 31] and Sampath and Deepa [32] have applied chance 

theory developed by Liu [25] which is an integration of impreciseness and randomness in the theory of acceptance 

sampling for designing fuzzy acceptance sampling plans for attributes. Recently, Sampath, et al. [33] have considered 

the application of hybrid normal distribution (the normal distribution where the parameters involved are treated as 

fuzzy variables) in developing a single sampling plan for variables for situations involving both randomness and 

impreciseness.  

A thorough review of the literature on life test sampling plans indicates that the exponential distribution plays a 

vital role in designing life test sampling plans under random environment. In this paper, the question of developing 

truncated life test sampling plan for variables using hybrid exponential distribution (exponential distribution where 

the parameter is treated as a fuzzy variable) is considered. Developing an acceptance sampling plan for Hybrid 

exponential distribution to ensure the median lifetime of the products under inspection exceeds a pre-determined 

quality provided by the consumer with a minimum probability is the main aim of this paper.  

The rest of the paper is organized as follows.  In Section 2, in order to maintain the readability of the paper we 

give a brief introduction to Chance theory. In Section 3, hybrid exponential distribution is developed under chance 

environment and its properties are discussed. The design of time truncated acceptance sampling plan for hybrid 

exponential distribution is considered in Section 4. Some important characteristics of the plan under chance 

environment are studied. In Section 5, numerical examples are given for illustrating the use of theoretical 

developments made in this paper. Concluding remarks are given in the final section of the paper. 

 

2 Hybridization of Credibility and Probability Theories 
 

The introduction of chance theory requires an understanding of the credibility theory that provides the foundation for 

the introduction of fuzzy variables and Probability theory. 
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2.1 Credibility Theory 
 

Let   be a nonempty set and   be the power set of .  Each element of   is called an event. For every event ,A  we 

associate a number denoted by { }Cr A , which indicates the credibility that A  will occur and that satisfying the 

following four axioms: 

Axiom 1 (Normality)  ( ) 1;Cr    

Axiom 2 (Monotonicity)  ( ) ( )Cr A Cr B whenever ;A B  

Axiom 3 (Self duality)  ( ) ( ) 1cCr A Cr A  for any event ;A  

Axiom 4 (Maximality)  ( ) ( )i i
ii

Cr A SupCr A  for any events { }iA  with ( ) 0.5.i
i

SupCr A   

Credibility measure:  The set function Cr is called a credibility measure if it satisfies the normality, monotonicity, 

self-duality and maximality axioms. 

Credibility space: Let   be a nonempty set,   be the power set of  and Cr a credibility measure. Then the triplet 

( , , )Cr  is called a credibility space. 

Fuzzy variable: A fuzzy variable is a measurable function from a credibility space ( , , )Cr  to the set of real numbers. 

Membership function: Let   be a fuzzy variable on the credibility space ( , , ).Cr   Then its membership function is 

derived from the credibility measure by  

  ( ) 2 1, .x Cr x x      

Credibility distribution: The credibility distribution : [0,1]  of a fuzzy variable is defined by  

 ( ) | ( ) .x Cr x       

 

2.2 Probability Theory 
 

Let   be a nonempty set and  be the power set of .  Each element of   is called an event. For every event ,A  

we associate a number denoted by Pr{ },A  which indicates the probability that A  will occur. The axioms of 

probability theory are as follows. 

Axiom 1 (Normality)   Pr( ) 1; 
 
 

Axiom 2 (Nonnegativity)  Pr( ) 0A   for any event ;A  

Axiom 3 (Countable additivity)  Pr( ) Pr( )i i

ii

A A for every countable sequence of disjoint events{ }.iA  

Probability measure: The set function Pr is called a probability measure if it satisfies the normality, non-negativity, 

and countable additive axioms. 

Probability space: Let   be a nonempty set,   be the power set of   and Pr a probability measure. Then the 

triplet ( , ,Pr)  is called a probability space. 

Random variable: A random variable is a measurable function from a probability space ( , ,Pr)  to the set of real 

numbers. 

Probability distribution: The probability distribution : [0,1]  of a random variable   is defined by  

 ( ) Pr | ( ) .x x       

 

2.3 Chance Theory  
 

Using the above definitions related to credibility and probability spaces, Li and Liu [23] developed ideas relevant for 

handling situations where both impreciseness and randomness play simultaneous roles in the given system. The 

hybrid development based on credibility and probability space has been named as Chance theory. The following 

definitions are due to Li and Liu [23]. 

Chance space: Suppose that ( , , )Cr  is a credibility space and ( , ,Pr)   is a probability space. The product 

( , , )Cr   ( , ,Pr)  is called a chance space. 
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Let ( , , )Cr   ( , ,Pr)   be a chance space. A subset  is called an event if ( )  for each .   

Chance measure: Let ( , , )Cr   ( , ,Pr)   be a chance space. Then a chance measure of an event  is defined as  

         

         

sup Pr ( ) ,           sup Pr ( ) 0.5

( )
1 sup Pr ( ) ,     sup Pr ( ) 0.5.c

Cr if Cr

Ch
Cr if Cr

 

 

   

   

 

 

     


  
     


  

            (1) 

To describe a quantity with both fuzziness and randomness, the concept of hybrid variable is used. It is formally 

defined as follows. 

Hybrid variable: A hybrid variable is a measurable function from a chance space ( , , )Cr   ( , ,Pr)  to the set of 

real numbers. That is, for any Borel set B of real numbers,    ( , ) | ( , )B B         is an event. 

Li and Liu [23] have identified five different approaches to defining Hybrid variable. The Model IV of Li and 

Liu [23] will be used in our further discussion. This model is suitable for dealing with situations where the parameters 

involved in a given probability distribution are fuzzy by nature. The model proposed by Liu is explained below. 

Let   be a random variable with probability density function 1 2( ; , ,..., )nx     where 1 2,( , ,..., )n    is a set of 

fuzzy parameter variables. If 1 2,, ,..., n    have membership function 1 2,, ,..., n    respectively, then for any Borel set 

B of real numbers, the chance ( )Ch B  due to Qin and Liu [28] is given by 

1 2

1 2

1 2

1 2
1, ,...,

1 2
1, ,...,

, ,...,

( )
sup min ( , , ,..., ) ,     

2

( )
                        sup min ( , , ,..., )  0.5

2
( )

1 sup mi

n

n

n

i i

n
i m

B

i i

n
i m

B

x dx

if x dx

Ch B

  

  

  

 
   

 
   



 

 

   
  

   

   
   

   
 







1 2

1 2
1

1 2
1, ,...,

( )
n ( , , ,..., ) ,       

2

( )
                     sup min ( , , ,..., )  0.5.

2

c

n

i i

n
i m

B

i i

n
i m

B

x dx

if x dx
  

 
   

 
   

 

 










   
  

   
    
    
    





              (2) 

Chance distribution: The chance distribution : [0,1]  of a hybrid variable   is defined by  

 ( ) ( , ) | ( , ) .x Ch x         

Chance density function: The chance density function : [0, )   of a hybrid variable   is a function such that 

( ) ( ) ,   x
x

x y dy


     and ( ) 1y dy



 where   is the chance distribution of  . The definitions presented 

are relevant for further discussion made in this paper. For more detailed and exhaustive discussion, one can refer to Li 

and Liu [23]. 

Expected value: The definition of the expected value operator of a fuzzy variable was given by Liu and Liu [24]. This 

definition is applicable both for continuous fuzzy variables and also discrete ones.  

Let   be a fuzzy variable. Then the expected value of   is defined by 

 
0

0

( ) ( )E ch r dr ch r dr  




                    (3) 

provided that at least one of the two integrals is finite. 

 

3 Hybrid Exponential Distribution 
 
The probability density function of the random variable X having an exponential distribution with mean   is given 

by ( , ) , 0, 0xx e x      . Here we assume   is a fuzzy variable. Clearly the above distribution is a hybrid 

distribution (randomness created through the random variable X and fuzziness entering in the form impreciseness 

created by the parameter  ). We shall denote by  the hybrid variable. If  is a membership function associated with 

  then it had been shown by Qin and Liu [28], for any Borel set B of real numbers, the chance ( )Ch B  is given 

by  
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( ) ( )
sup ( , ) ,         sup ( , )  0.5

2 2
( )

( ) ( )
1 sup ( , ) ,   sup ( , )  0.5.

2 2c

B B

BB

x dx if x dx

Ch B

x dx if x dx

 

 

   
   


   

   

 

 

          
         

         
  

         
         

        

 

 

             

 (4) 

 

( , )x 
 
is an exponential probability density function. Therefore, 

( ) 1 ( ) 1
   sup ,         sup  0.5

2 2
( )

( ) 1 ( ) 1
1 sup 1 ,  sup  0.5.

2 2c

x x

B B

x x

BB

dx if dx

Ch B

dx if dx

e e

e e

 

 

 

 

   

 


   

 

 

 

 

 

          
         

         
  

         
          

        

 

 




                        (5) 

In this paper we shall assume   is a triangular membership function over ( , , )a b c . That is, 

,       a

( ) ,       

0,           .

a
if b

b a

b
if b c

b c

otherwise





  


  




  






                    (6)

 
For hybrid exponential distribution, the distribution function is given below 

 ,t    
0 0

0 0

( ) 1 ( ) 1
   sup ,             sup  0.5

2 2

( ) 1 ( ) 1
1 sup 1 ,       sup  0.5.

2 2

t tx x

t tx x

dx if dx

dx if dx

e e

e e

 

 

 

 

   

 

   

 

 

 

 

 

         
        

         

         
          

         

 

 









                  (7) 

By taking into account of this, we get the distribution function as 

 ,t  

( ) ( )
sup 1 ,        sup 1  0.5

2 2

( ) ( )
1 sup ,        sup 1  0.5.

2 2

t t

t t

e if e

e if e

 

 

 

 

   

   

 

 

 

 

       
           

       


      
          

      

                                 (8)

 The following theorem gives expressions for the chance distribution considered above. 
 
Theorem 1: The distribution function of a hybrid variable   which follows the hybrid exponential distribution is 

given below

 

*
1

*
2

0,  0

1 ,  0 *ln(2)

( ) ( , ) 1
,  *ln(2)

2

1 ,  *ln(2)

t

t

if t

e if t b

Ch t t
if t b

e if t b





 








  

    




 

 

where  
*

1  
and 

*

2  
are the solutions of ( ) 2  =1 ,te   ( ) 2  = ,te   respectively. 

Proof: The distribution function of hybrid exponential stated in equation (8) is 
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 ,t  

( ) ( )
sup 1 ,        sup 1  0.5

2 2

( ) ( )
1 sup ,        sup 1  0.5.

2 2

t t

t t

e if e

e if e

 

 

 

 

   

   

 

 

 

 

       
           

       


      
          

      
 In order to find,  ,t 

 
over different values of t , we need to examine the behavior of ( ) 2   and  1 te   over 

the permissible values of t  and  . Note that, t R  and  ,a c   the maximum value attained by ( ) 2   (which is 

independent of t ) is 1 2 , and 1 te   is decreasing in   for a given t . The curve 1 te   will either intersect with 

( ) 2   depending on the choice of t . It may be noted that the curve 1 te   is non-decreasing in t  for a given   as 

shown in Figure 1 for 1 2 3 4 5 6t t t t t t     . 

 
Figure 1: Impact of the value of t on the intersection of ( ) 2  and

 

1 te   

Therefore, the curve may lie entirely above ( ) 2   or will intersect at two different points. The third possibility is 

that the curve may touch the triangle at only one point. This case will arise when 1 te  = ( ) 2  . Note that 

( ) 2  =1 2  if  = b . In this case, we have 1
t be =1 2 , solving for t , we get  *ln 2t b . Hence, we conclude 

that 1
te   will be greater than 1 2  for all   as long as  *ln 2t b  and it is less than 0.5 if  *ln 2 .t b Therefore, 

we conclude that  

( ) ( )
1

2 2

t

e 
   


 

   
 

, for all  *ln 2t b . 

This implies that 

( ) 1
1

2 2

t

Sup e 



 
  

    
  

, for all  *ln 2t b . 

When  *ln 2t b , ( ) 2  and 1
te   intersect at two different points, say 

*

1  
and 

*

2 .  Since ( ) 2   is a triangle 

and  1
te   is a monotone curve (in terms of  ) we conclude that intersections will take place on different sides of 

the triangle as shown in Figure 2.  

Evidently, 

*
1

( )
sup 1 1

2

tt

e e




  



  
     

  
               (9) 

where 
*

1  is the solution of ( ) 2  =1 te  . Therefore, we have ( , )t  
*
11

t
e


  for all  *ln 2t b . 

For all  *ln 2t b ,  

  1
( , ) sup

2

t

t

t e dt







 




   
    

   
 = 

 
sup

2

t

e 



     
  

   

. 
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Figure 2: Intersection of ( ) 2  and

 

1 te   

Since 
te 

is strictly increasing in   for a given ,t  by following the lines of earlier arguments, we understand the 

scenario prevailing in this case, will be as shown in Figure 3. 

 
Figure 3: Intersection of ( ) 2  and

 

te 
 

Evidently,  

*
2

( )
sup

2

tt

e e




  



  
   

  
             (10) 

where 
*

2  is the solution of ( ) 2  = .te 
 Therefore, we have  ( , )t  

 

*
21

t
e


 for all  *ln 2t b . 

Thus we have proved Theorem 1. 

Expected Value of Hybrid Exponential Distribution 

Since the chance variable corresponding to hybrid exponential distribution assumes only non-negative values, the 

expected value of the exponential hybrid variable 
 
is calculated using the formula, 

  E   =  
0

1 ,t dt


                                      (11) 

The value of the integral given in (11) cannot be theoretically computed. Hence it is decided to investigate the 

value of the above integral on making use of trapezoidal rule for numerical integration. The interval of integration is 

partitioned into 100 sub intervals where the lower limit of the interval considered for integration is taken as zero and 

the upper limit is determined by a very large value whose value is closer to zero. It may be noted that the integrand is 

a decreasing function. 

Table 1 furnished below gives the expected value of hybrid exponential distribution for different choices of ,a  

,b  c  were a  and c  are determined by fixing the value of b  and defining a b    and .c b    Four different 

choices were used for  , say, 0.05, 0.1, 0.15 and 0.2.  

The quality of product whose life time has skewed distribution can be more meaningfully assessed using the 

median of the distribution rather than its mean [16]. Hence, it is worthwhile to determine the value of median in 
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hybrid exponential distribution. The median of the hybrid exponential distribution denoted by 
h

m  is obtained by 

solving  

 ,t  
1

.
2

 

Table 1: Expected values of hybrid exponential distribution 

b ε=0.05 0.1 0.15 0.2 

1 0.956571 0.981155 1.005553 1.029842 

2 1.913142 1.962311 2.011106 2.059684 

3 2.869713 2.943466 3.01666 3.089526 

4 3.826284 3.924622 4.022213 4.119368 

5 4.782855 4.905777 5.027766 5.14921 

6 5.739426 5.886933 6.033319 6.179052 

7 6.695997 6.868088 7.038873 7.208894 

8 7.652568 7.849243 8.044426 8.238736 

9 8.609139 8.830399 9.049979 9.268578 

10 9.56571 9.811554 10.05553 10.29842 

11 10.53 10.79954 11.06786 11.33434 

12 11.48658 11.78109 12.07322 12.36429 

13 12.44309 12.76262 13.07862 13.39359 

14 13.39951 13.74363 14.08477 14.42354 

15 14.35636 14.72482 15.09083 15.45336 

16 15.31292 15.70552 16.09637 16.48254 

17 16.26952 16.68632 17.1017 17.51249 

18 17.22617 17.66736 18.10748 18.54293 

19 18.18277 18.64833 19.11321 19.57293 

20 19.13937 19.62926 20.11835 20.60276 

 

Table 2: Median and mean of hybrid exponential distribution 

B Median Mean Ratio 

1 0.6928 1.037387 0.667834 

2 1.38516 2.075775 0.667297 

3 2.07935 3.101884 0.670352 

4 2.77423 4.140722 0.669986 

5 3.45907 5.179359 0.667857 

6 4.1583 6.204763 0.670179 

7 4.85943 7.243632 0.670856 

8 5.54113 8.26846 0.670152 

9 6.23725 9.307648 0.670121 

10 6.92084 10.34655 0.668903 
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From Theorem 1, it can be seen that, the median of the hybrid exponential distribution is  *ln 2 .m b   It may 

be recalled that in the case of crisp exponential distribution, the median is a constant multiplied by the mean of the 

distribution. That is, we have  *ln 2 .m   Now, we shall examine whether there exists any such relationship 

between the expected value and median in the case of hybrid exponential distribution. Towards this, for different 

values of ,b  the ratio of the median value to the expectation of hybrid distribution were computed and it was found 

that in the case of hybrid exponential distribution (0.67) [ ]h

m E  . Table 2 gives the values of median, expectation 

and ratio of median
 
to the expectation for hybrid distribution for different values of .b   

 

4 Design of Time Truncated Acceptance Sampling Plan for Hybrid 

Exponential Distribution 
 
In time truncated acceptance sampling plans, n  items from the lot are inspected over a given period of time, say, t . 

The lot is accepted if the number of observed failures till time point t  does not exceed a pre-specified acceptance 

number c , and the test is terminated with rejection of the lot if the number of failures observed before the time period 

t  exceeds the acceptance number c . The inspection time t  is a pre-specified quantity. The sampling plan should use 

a carefully chosen value for t . It is usually taken as a multiple of a targeted median life time of the product, say, 
0 .m  

That is, we take 
0

mt a , where a  is also a pre-determined quantity which indicates the number of cycles needed to 

guarantee specified median life time of the product. This is based on the reasoning that inspection over various cycles 

where the number of cycles is made dependent on the given median life time will ensure a minimum quality level 

expressed interms of a desired  median life time 
0 .m  

It may be noted that arriving at a decision based on a time truncated acceptance sampling plan is equivalent to 

taking a decision while testing the null hypothesis 
0

0 : m mH  
 
against the alternative hypothesis 

0

1 : m mH    at 

level of significance *1 ,P  which is nothing but the consumer’s risk. Here, m  denotes the actual median life time 

which is in general unknown. The constant 
*P  referred to as consumer’s confidence level is the lower bound for 

rejecting a bad lot. Here, we have  

 0 *  / 1m mP rejecting a lot P       (level of significance- consumer’s risk)                     (12) 

and 

  0 *  / m mP rejecting a lot P     (consumer’s confidence level)                                            (13) 

The parameters of the time truncated acceptance sampling plan are the number of items n  to be drawn from the 

lot, an acceptance number c , the time ratio 
0 ,mt   where 

0

m  the specified median life time and t  is the pre-assigned 

testing time. Symbollically, the sampling plan is denoted by the triplet  0, , .mn c t   Any set of values for the 

parameters of a time truncated acceptance sampling plan is expected to satisfy the conditions stated in (12) and (13). 

Here, we restrict ourselves to those sampling plans satisfying inequality related to consumer’s risk. It may be noted 

that several set of plan parameter values satisfying this requirement. Hence, we look for a sampling plan by fixing the 

inspection time ,t  median life time 
0

m  and acceptance number c  for a given *.P  When these values are fixed, one 

can find  several n  for which the consumer’s risk inequality is satisfied. Hence, we look for a small positive integer 

n  such that  

  *

0

1 1
c

n ii

i

n
p p P

i





 
   

 
                   (14) 

where p  is the probability that an item fails before the time .t  In our study, where we integrate randomness and 

impreciseness, instead of probability p , we use the chance of an item fails before time .t  This chance value is 

computed using the chance distribution obtained earlier, namely, 
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*
1

*
2

0,  0

1 , 0 *ln(2)

( ) ( , ) 1
, *ln(2)

2

1 , *ln(2)

t

t

if t

e if t b

Ch t t
if t b

e if t b





 








  

    




 

 

where 
*

1 and 
*

2 are the solutions of  ( ) 2  =1 te   and ( ) 2  = .te   

To be precise, p  used in (14) is computed using the relation  0, mp t    where 
0

m   is the desired median life 

time and 
0

mt a  where a  is a pre-specified constant. It may be noted that the cumulative distribution function of 

crisp exponential distribution and hence the chance distribution function is monotonically decreasing in median. 

Hence from the inequality (14), we observe, if the number of failures less than or equal to c  then the chance of the 

event    , ) , o

m mt t    
 

 will be
 

*.P  This ensures that 
0

m m  ,  where m  is the true or actual median life time. 

The desired quality level expressed in terms of the median life time 
0

m  can be uniquely determined by the 

expected value of the hybrid exponential distribution through the relation  0

0 ln 2m  , where  0  is the expected 

value of the hybrid exponential distribution. Hence, taking 
0

mt a
 
is equivalent to 0 ln(2).t a    It is clear that 

chance value p
 
depends on the inspection duration .t  As mentioned above, in our study, we take 

0

mt a  where 
0

m  

is the median of the chance distribution, and the value a  is a pre-specified constant. We assign different values for a  

in this work pursuing the lines of earlier similar investigations done under crisp situation. 

Table 3 gives the minimum values of n  satisfying the inequality (14), for 
*P = 0.75, 0.90, 0.95, 0.99 and 

0

mt 
 

=0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712. These choices were motivated by the works of  Gupta and 

Groll [17], Kantam [22], Tsai and Wu [39], Balakrishnan et al. [7], and Aslam and Shabaz [4]. It is well known that, 

if the sample size n  is large and p  is very small then binomial is approximated by Poisson distribution with mean 

0 np  .  Table 4 gives the minimum values of n  under Poisson approximation for the same set of values used in 

Table 3.  

Operating Characteristic (OC) Functions of the Time Truncated Acceptance Sampling Plan 

The operating characteristic (OC) function describes the efficiency of acceptance sampling plans. It calculates the 

efficiency of a statistical hypothesis test which is designed to accept or reject a lot / product. The OC function for the 

above time truncated sampling plan  0, , mn c t   is defined as   

OC( p )=

  

 
0

1
c

n ii

i

n
p p

i





 
 

 
                        (15) 

where  , .p t    It is treated as a function of the lot quality parameter. OC( p ) is a decreasing function of p  

which decreases when m  decreases.  For the given time truncated acceptance sampling plan, the OC function values 

have been computed for different combinations of 
*P and 0

m m  and they are listed in Table 5. 

Producer’s Risk 

In the usual frame work, the producer’s risk is the probability of rejection of a lot when 
0

m m  . For a given value of 

the producer’s risk, say, , in the given sampling plan, one may be interested in knowing the minimum value of the 

median ratio 0

m m   that will ensure the producer’s risk to be at most  . The value of 0

m m   is the smallest positive 

number for which p  satisfies the following inequality 

               
 

1

1
n

n ii

i c

n
p p

i




 

 
  

 


 

              (16) 
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Table 3: Minimum sample size necessary to assert the median life to exceed a given value, 
0

m  with  

probability 
*P  and corresponding acceptance number, ,c using binomial probabilities 

P* c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 4 3 2 2 1 1 1 1 

 
1 7 5 4 4 3 2 2 2 

 
2 11 8 6 5 4 4 3 3 

 
3 14 10 8 7 6 5 5 4 

 
4 17 12 10 9 7 6 6 5 

 
5 20 15 12 10 8 7 7 6 

 
6 23 17 14 12 10 8 8 8 

 
7 26 19 16 14 11 10 9 9 

 
8 29 21 17 15 12 11 10 10 

 
9 32 24 19 17 14 12 11 11 

 
10 36 26 21 18 15 13 12 12 

0.9 0 6 4 3 3 2 2 1 1 

 
1 10 7 6 5 4 3 3 2 

 
2 14 10 8 7 5 4 4 4 

 
3 17 12 10 8 6 6 5 5 

 
4 21 15 12 10 8 7 6 6 

 
5 24 17 14 12 9 8 7 7 

 
6 28 20 16 14 11 9 9 8 

 
7 31 22 18 15 12 11 10 9 

 
8 34 25 20 17 13 12 11 10 

 
9 38 27 22 19 15 13 12 11 

 
10 41 30 24 21 16 14 13 12 

0.95 0 7 5 4 3 2 2 2 1 

 
1 12 8 7 5 4 3 3 3 

 
2 16 11 9 7 6 5 4 4 

 
3 20 14 11 9 7 6 5 5 

 
4 23 17 13 11 9 7 7 6 

 
5 27 19 15 13 10 9 8 7 

 
6 31 22 17 15 12 10 9 8 

 
7 34 24 20 17 13 11 10 9 

 
8 38 27 22 18 14 12 11 11 

 
9 41 29 24 20 16 14 12 12 

 
10 44 32 26 22 17 15 14 13 

0.99 0 11 8 6 5 3 3 2 2 

 
1 16 11 9 7 5 4 4 3 

 
2 21 14 11 9 7 6 5 4 

 
3 25 17 14 11 9 7 6 6 

 
4 29 20 16 14 10 8 7 7 

 
5 33 23 18 15 12 10 9 8 

 
6 37 26 21 17 13 11 10 9 

 
7 41 29 23 19 15 12 11 10 

 
8 44 31 25 21 16 14 12 11 

 
9 48 34 27 23 18 15 13 13 

 
10 52 37 29 25 19 16 15 14 
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Table 4: Minimum sample size necessary to assert the median life to exceed a given value,  
0

m  with  

probability 
*P  and corresponding acceptance number, ,c using Poisson probabilities 

P* c  0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 4 3 3 3 2 2 2 2 

 

1 8 6 5 5 4 4 3 3 

 

2 12 9 7 6 5 5 5 5 

 

3 15 11 9 8 7 6 6 6 

 

4 18 14 11 10 8 8 7 7 

 

5 21 16 13 12 10 9 8 8 

 

6 25 18 15 13 11 10 10 9 

 

7 28 21 17 15 13 11 11 11 

 

8 31 23 19 17 14 13 12 12 

 

9 34 25 21 19 15 14 13 13 

 

10 37 28 23 20 17 15 14 14 

          0.9 0 7 5 4 4 3 3 3 3 

 

1 11 9 7 6 5 5 5 5 

 

2 15 12 10 9 7 7 6 6 

 

3 19 14 12 11 9 8 8 7 

 

4 23 17 14 13 10 10 9 9 

 

5 27 20 16 15 12 11 10 10 

 

6 30 22 19 16 14 12 12 11 

 

7 34 25 21 18 15 14 13 13 

 

8 37 28 23 20 17 15 14 14 

 

9 40 30 25 22 18 17 16 15 

 

10 44 33 27 24 20 18 17 17 

          0.95 0 9 7 6 5 4 4 4 4 

 

1 14 10 9 8 6 6 6 5 

 

2 18 14 11 10 8 8 7 7 

 

3 22 17 14 12 10 9 9 9 

 

4 26 20 16 14 12 11 10 10 

 

5 30 22 19 16 14 12 12 11 

 

6 34 25 21 18 15 14 13 13 

 

7 38 28 23 20 17 15 15 14 

 

8 41 31 25 22 19 17 16 16 

 

9 45 33 28 24 20 18 17 17 

 

10 48 36 30 26 22 20 19 18 

          0.99 0 13 10 8 7 6 6 5 5 

 

1 19 14 12 11 9 8 8 7 

 

2 24 18 15 13 11 10 10 9 

 

3 29 21 18 16 13 12 11 11 

 

4 33 25 20 18 15 14 13 13 

 

5 37 28 23 20 17 15 15 14 

 

6 42 31 26 23 19 17 16 16 

 

7 46 34 28 25 20 19 18 17 

 

8 49 37 30 27 22 20 19 19 

 

9 53 40 33 29 24 22 21 20 

 

10 57 42 35 31 26 23 22 22 
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Table 5: Operating characteristic values of given sampling plan for hybrid exponential distribution 

P* 0

m

t


 c  n  0

m




=2 4 6 8 10 12 

0.75 0.628 2 11 0.39657 0.79295 0.91176 0.95515 0.97428 0.98394 

 
0.942 2 8 0.36833 0.7749 0.90254 0.95004 0.9712 0.98195 

 
1.257 2 6 0.40825 0.79828 0.91416 0.95639 0.975 0.98439 

 
1.571 2 5 0.41773 0.8026 0.9161 0.9574 0.97558 0.98476 

 
2.356 2 4 0.36225 0.765 0.89637 0.9463 0.96883 0.98037 

 
3.141 2 4 0.19312 0.61879 0.81199 0.8964 0.9375 0.95958 

 
3.927 2 3 0.36476 0.75545 0.8892 0.94163 0.96575 0.97826 

 
4.712 2 3 0.25829 0.66847 0.83898 0.91181 0.94695 0.96575 

0.9 0.628 2 14 0.22863 0.66723 0.84378 0.91636 0.95048 0.96839 

 
0.942 2 10 0.20983 0.64798 0.83226 0.90946 0.94611 0.96548 

 
1.257 2 8 0.1928 0.62903 0.8206 0.90236 0.94159 0.96245 

 
1.571 2 7 0.16072 0.5903 0.79604 0.88719 0.93182 0.95586 

 
2.356 2 5 0.17368 0.60208 0.80268 0.89104 0.93419 0.95742 

 
3.141 2 4 0.19312 0.61879 0.81199 0.8964 0.9375 0.95958 

 
3.927 2 4 0.09726 0.48059 0.71646 0.83445 0.89636 0.93124 

 
4.712 2 4 0.04735 0.36225 0.61873 0.765 0.8476 0.89637 

0.95 0.628 2 16 0.15282 0.58297 0.79191 0.88481 0.93035 0.95491 

 
0.942 2 11 0.15474 0.5848 0.79295 0.88542 0.93072 0.95515 

 
1.257 2 9 0.12729 0.5457 0.76681 0.86883 0.91988 0.94776 

 
1.571 2 7 0.16072 0.5903 0.79604 0.88719 0.93182 0.95586 

 
2.356 2 6 0.07691 0.45141 0.69723 0.82242 0.88858 0.92599 

 
3.141 2 5 0.0642 0.41794 0.66942 0.80272 0.8748 0.91617 

 
3.927 2 4 0.09726 0.48059 0.71646 0.83445 0.89636 0.93124 

 
4.712 2 4 0.04735 0.36225 0.61873 0.765 0.8476 0.89637 

0.99 0.628 2 21 0.05108 0.39356 0.65215 0.79155 0.86743 0.91113 

 
0.942 2 15 0.04104 0.36209 0.62481 0.77179 0.85346 0.9011 

 
1.257 2 11 0.05241 0.39604 0.65386 0.79263 0.86814 0.91161 

 
1.571 2 9 0.05361 0.39841 0.65557 0.79375 0.86888 0.91212 

 
2.356 2 7 0.03222 0.326 0.59043 0.74576 0.83452 0.88724 

 
3.141 2 6 0.01952 0.26529 0.52865 0.69729 0.79846 0.86047 

 
3.927 2 5 0.02216 0.27464 0.5369 0.70323 0.80265 0.86345 

 
4.712 2 4 0.04735 0.36225 0.61873 0.765 0.8476 0.89637 
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equivalently, 

   

 
0

1 1 .
c

n ii

i

n
p p

i






 
   

 
                               (17) 

Hence, for a given sampling plan  0, , mn c t  with specified confidence level * ,P  the minimum value of 0

m m 

satisfying the inequality (16) are worked out, and they are presented in Table 6. 

Table 6: Minimum ratio of true median life to specified median life for the acceptance of a lot  

with producer’s risk of 0.05 

P* c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 48.98 55.1 49.02 61.26 45.94 61.24 76.56 91.87 

 

1 11.45 11.85 12.24 15.3 16.21 12.42 15.52 18.62 

 

2 7.65 8 7.57 7.49 8.25 10.99 8.55 10.26 

 

3 5.72 5.8 5.87 6.16 7.45 7.49 9.37 7.36 

 

4 4.76 4.72 5 5.43 5.65 5.8 7.26 5.92 

 

5 4.18 4.45 4.47 4.35 4.61 4.82 6.02 5.05 

 

6 3.8 3.96 4.11 4.15 4.72 4.17 5.22 6.26 

 

7 3.53 3.61 3.85 4 4.12 4.63 4.65 5.57 

 

8 3.32 3.36 3.38 3.53 3.69 4.17 4.22 5.07 

 

9 3.16 3.34 3.26 3.48 3.83 3.81 3.89 4.67 

 

10 3.14 3.16 3.17 3.16 3.51 3.53 3.63 4.36 

0.9 0 73.46 73.46 73.52 91.89 91.87 122.48 76.56 91.87 

 

1 16.77 17.18 19.37 19.76 22.94 21.6 27.01 18.62 

 

2 9.97 10.32 10.68 11.4 11.23 10.99 13.74 16.49 

 

3 7.11 7.19 7.74 7.34 7.45 9.93 9.37 11.24 

 

4 6.04 6.17 6.3 6.25 6.91 7.53 7.26 8.7 

 

5 5.15 5.18 5.45 5.59 5.57 6.15 6.02 7.23 

 

6 4.76 4.83 4.89 5.14 5.48 5.25 6.57 6.26 

 

7 4.32 4.33 4.5 4.41 4.76 5.5 5.78 5.57 

 

8 4 4.17 4.21 4.23 4.23 4.91 5.21 5.07 

 

9 3.86 3.86 3.98 4.08 4.3 4.47 4.76 4.67 

 

10 3.65 3.78 3.79 3.96 3.93 4.11 4.41 4.36 

0.95 0 85.71 91.83 98.03 91.89 91.87 122.48 153.1 91.87 

 

1 20.31 19.84 22.92 19.76 22.94 21.6 27.01 32.41 

 

2 11.5 11.48 12.23 11.4 14.18 14.98 13.74 16.49 

 

3 8.49 8.58 8.67 8.5 9.23 9.93 9.37 11.24 

 

4 6.68 7.13 6.95 7.06 8.14 7.53 9.41 8.7 

 

5 5.87 5.91 5.94 6.2 6.52 7.43 7.68 7.23 

 

6 5.34 5.41 5.28 5.63 6.23 6.29 6.57 6.26 

 

7 4.8 4.81 5.14 5.22 5.38 5.5 5.78 5.57 

 

8 4.53 4.58 4.75 4.57 4.76 4.91 5.21 6.25 

 

9 4.21 4.21 4.45 4.38 4.76 5.1 4.76 5.71 

 

10 3.96 4.08 4.21 4.22 4.33 4.68 5.14 5.29 

0.99 0 134.68 146.92 147.04 153.14 137.8 183.71 153.1 183.73 

 

1 27.38 27.8 30.01 28.65 29.63 30.59 38.24 32.41 

 

2 15.35 14.95 15.32 15.28 17.1 18.9 18.72 16.49 

 

3 10.79 10.66 11.45 10.83 12.75 12.31 12.41 14.89 

 

4 8.6 8.58 8.88 9.48 9.37 9.2 9.41 11.29 

 

5 7.32 7.36 7.4 7.42 8.38 8.69 9.29 9.22 

 

6 6.49 6.56 6.83 6.6 6.97 7.3 7.86 7.88 

 

7 5.9 6 6.1 6.02 6.61 6.34 6.87 6.94 

 

8 5.34 5.39 5.56 5.6 5.81 6.35 6.14 6.25 

 

9 5.02 5.09 5.15 5.26 5.66 5.72 5.58 6.7 

 

10 4.77 4.85 4.83 5 5.14 5.23 5.85 6.17 
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About the Tables 

Tables 3 through 6, present the results of time truncated acceptance sampling plan when it is assumed that the life 

time of test items follows the hybrid exponential distribution where the scale parameter is treated as triangular fuzzy 

variable. Now, we shall discuss the utility of these tables. Table 3 provides minimum sample size as well as the 

acceptance number c  required to ensure that the median life time exceeds a given pre-specified median value 
0

m  

with consumer’s confidence level 
*.P  The calculations were performed on using binomial approximation by 

assuming that the lot is large enough and p  is not very small. Table 4 provides similar results under the poisson 

approximation to binomial. Operating characteristic function values are shown  in Table 5 for different combinations 

of the median ratio 0 ,m m   probability * ,P  and the experimental time ratio 0 .mt   Table 6 shows the minimum ratios 

of the actual median life to the specified median life for the acceptance of the lot with producer’s risk of 0.05.  

Assuming that the life time distribution follows hybrid exponential distribution and it is decided to establish a 

minimum median life time of 
0

m =1000 hours with probability 
*P =0.95 given that the life test gets terminated at t  

=628 hours. For this situation, from Table 3, we get the minimum sample size 16 and acceptance number 2.  This 

means that, out of 16 items, if no more than 2 items fail during 628 hours, then the experimenter assures that the 

actual median life time m  of the items is at least 1000 hours with confidence level of 0.95. Table 4 can be used in the 

same manner when poisson approximation to binomial probabilities is justified.  

Table 5 gives the values of the operating characteristic function for the acceptance sampling plan adopted from 

Table 3, for different values of 0

m m   and 
*.P  For example, when 

*P =0.95, 0

mt  =0.628, c =2, 0

m m  =4, the 

probability of accepting the lot is 0.58297. It implies that, the lot is accepted with probability 0.58297 when time 

truncated sampling plan with samples size 16 and acceptance number 2 is used with 4 0.628m t   =4000 hours. 

For the acceptance of a lot, Table 6 provides the minimum ratio of the true median life to the specified median life 

when the producer’s risk is 0.05. For example, if 
*P =0.95, 0

mt  =0.628, and c =2, then the table value of 0

m m  is 

11.5. This implies when 11.5 0.628m t   , the lot will be rejected with probability less than or equal to 0.05 

 

5 Conclusion 
 

Thus in this paper, a new hybrid distribution called hybrid exponential distribution is considered based on the Liu’s 

chance theory [25]. Theoretical and numerical studies have been carried out to study its properties. The distribution is 

developed using the exponential distribution where the mean is treated as a triangular fuzzy variable. In this work, the 

minimum sample size required to decide to accept/reject a lot based on its specified median life time of the 

experimental units have been tabulated assuming the life time distribution follows hybrid exponential distribution 

under time truncated acceptance sampling plan. The optimal sample size provides the desired level of protection for 

both the customers as well as manufacturers. Apart from this, Operating Characteristic function has been evaluated 

for different choices of the parameters involved in the hybrid exponential distribution. Finally, values of the minimum 

ratio of the true median life to the specified median life are also tabulated when the producer’s risk is 0.05. The 

authors are investigating designing such plans under other distributions as well. 
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