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Abstract

This paper studies the risk-averse optimal ordering decision problems with random demand in supply
contracts. In order to maximize the profit and minimize the risk simultaneously, we present a two-
stage bi-objective stochastic model which employs the double evaluation criteria of mean and standard
deviation. Constraints are used to guarantee that the optimal decisions are in accordance with the actual
situation. In the process of dealing with the model, the main concern is to calculate the mean of random
profit and its standard deviation. When the random demand follows common continuous or discrete
probability distributions, the proposed optimization model can be turned into single-stage single objective
models. Finally, numerical experiments and parameter analyses are given to demonstrate the validity of
the proposed model. From the experimental results, we conclude that the distributor’s risk preference
level has a strong impact on optimal decisions.
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1 Introduction

With the development of business, the diversity of products is increasing, the supply and demand are changing
rapidly, and their uncertainties are raising. All of these changes sophisticate the business environment and
multiply the risk of supply chain’s breakage. The supply chain members will be more concerned with the risk
associated with demand uncertainties under random environment. The risk attitude of any firm may affect the
decisions of all members. In the 1990s, there was rising a research methodology which made decisions under
risk aversion in the inventory and supply chain problems. Finch [I0] indicated the importance of undertaking
risk assessment. This risk-averse thought was used in numerous fields like finance risk management [20],
strategic risk management [2], and project risk management [16].

In the literature, researchers have chosen different risk evaluation criteria. Lau [I4] determined the op-
timum order quantity under two risk management objectives: maximizing expected utility and maximizing
the probability of achieving a budgeted profit. Choi et al. [d] took variance as risk evaluation criterion,
and discussed the variance of profit associated with the ordering decision. They addressed two fundamental
questions in inventory management: when to place the single order and how much to order. In order to
find the optimal ordering decisions, Ahiska et al. [I] used a discrete-time Markov decision process to model
inventory risk with an unreliable supply chain. Wu et al. [24] researched the risk-averse newsvendor model
with a mean-variance objective function, and proposed that stockout cost had a significant impact on the
newsvendor’s optimal ordering decisions. Ghadge et al. [IT] used the method of systematic literature review
to summarize literature about supply chain risk management. Wang and Chen [22] adopted the method of
mean-standard deviation to averse the risk generated by uncertain cycle time and derived optimal ordering
quantity. Ozler et al. [I7] utilized value at risk (VaR) as the risk measure in a newsvendor framework and
investigated the multi-product newsvendor problem under a VaR constraint. In 2002, Rockafellar and Uryasev
[19] proposed conditional value at risk (CVaR) for general loss distributions. It takes the risk of tail distribu-
tion that beyond VaR into account. Borgonovo and Peccati [5] discussed the effect of risk measure selection in
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the determination of inventory policies. They derived the optimal ordering decision problems by risk neutral,
quadratic utility (variance), mean-absolute deviation and CVaR, respectively. Wu et al. [25] introduced the
concept of CVaR as the evaluation criterion in a supply contract model. They derived the manufacturer’s
optimal decisions and analyzed the impact of risk aversion on them. Despite all of these, Wu et al. [27]
deemed that CVaR measure should be used with caution. The main reasons were the CVaR approach did
not take the expected profit into consideration, and its result was counter-intuitive that a higher retail price
may lead to a smaller order quantity. Wu et al. [26] compared VaR risk criterion with CVaR. They found
that the optimal order quantity was not affected by the capacity uncertainty for the risk-neutral newsvendor.
However, capacity uncertainty decreased the order quantity with CVaR criterion, and led to an order decrease
for low confidence levels but increase for high confidence levels with VaR criterion. They implied that the
risk criteria should be carefully selected as it has an important effect on inventory decisions. For a firm in a
supply chain with demand risk and supply risk, He [12] and Zhang [28] studied sequential decision problems.

Signing a contract is one of methods to averse risks. Brown and Lee [6] presented an option-based capacity
reservation contract, and they coped with the amount of futures and options to maximize the manufacturer’s
expected profit. Brown and Lee [7] compared the different decisions produced via options-futures contract,
options-only contract, backup contract, and quantity-flexibility contract. Cachon [8] researched the impacts
of supply chain efficiency with three types of wholesale price contracts (push, pull and advance-purchase
discount contracts). The author found that the efficiency of a single wholesale price contract was considerably
higher than previous thought as long as firms considered both push and pull contracts. Avinadav et al. [3]
employed the revenue sharing contract to circumvent the double marginalization effect that associated with
vertical competition, and they showed that risk-seeking might obtain a higher expected profit contrasted with
risk-neutral. In recent years, some scholars studied the optimal ordering decisions in supply contract such as
Hu et al. [I3], Wang and Chen [2I], Wang and Luo [23].

In this paper, we are in the perspective of distributor to study problems with random demand. Distributor
is a key link of supply chain. Distributors purchase commodities from upstream suppliers then sell them to
downstream retailers to benefit from price difference. In this process, distributors are likely to encounter a
lot of risks, such as uncertain demand information, uncertain supply, better alternatives, economic recession,
natural disaster, and policy change. Some risks like uncertain supply will cause stockout; some risks like better
alternatives will lead to inventory backlog; and some risks like uncertain demand information will either bring
about stockout or inventory backlog. All these are what we are unwilling to see. The problem is how to make
optimal ordering decisions which bring risk-averse distributors the maximum benefit.

In order to averse risks, the distributor signs an options-futures contract with upstream supplier. Standard
deviation is used as risk evaluation criterion. We build a two-stage stochastic programming model to find the
optimal ordering decisions. The futures purchasing capacity and the maximum options reserve capacity are
made in the first stage. After the realization of random demand is known, the purchase quantity of options,
as a recourse decision, is made in the second stage. The two-stage stochastic programming is an effective
method to solve the decision-making problem with recourse action, and has a wide range of applications. For
example, Li et al. [I5] utilized two-stage stochastic programming to model insuring critical path problems,
and Qin et al. [I8] developed a new decomposition method for two-stage birandom programming and gave
its application in production planning problem. The interested readers may refer to Birge and Louveaux [4]
for detailed discussions.

Compared with the related literature, the main contributions of this paper consist of the following four
aspects. Firstly, by means of options-futures contract, distributors’ ordering decisions are made twice in
the whole time horizon. In this way, according to the realized exact demand, decision makers can make
a recourse decision at the second time. Thus this contract reduces the risks under uncertain data, and
distributors’ ordering decisions problem is built as a two-stage optimization model. Secondly, considering
the most concerned two factors of decision makers synthetically, there are two objectives in the proposed
model: maximizing the profit and minimizing the risk. Using the weight coefficient method to deal with the
bi-objective, decision makers can adjust the share of profit and risk on the basis of their risk preference level.
Thirdly, by analyzing the second-stage programming problem, the two-stage bi-objective model is simplified
into a tractable single-stage single objective model. Fourthly, from the computational results of numerical
experiments, we can get the impacts of the risk preference level on decisions, mean profit and risk.

The structure of this paper is organized as follows. Section [2] builds a two-stage bi-objective model for
the ordering decision in a supply chain which includes a supplier, a distributor and some retailers. Section
derives the optimal value expression of the second-stage programming problem. Then the proposed two-
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stage model is transformed into its equivalent single-stage optimization model. This section also deals with
the calculations about the expected value and standard deviation of the discrete random demand and the
common continuous random demand. Section [4] provides some numerical examples to illustrate the impacts
of the risk preference level on the distributor’s futures purchasing capacity, maximum reserve capacity, mean
profit and risk. Section [5| gives the conclusions of this paper.

2 Formulation of a New Two-stage Bi-objective Options-Futures
Contract Model

In this paper, we consider the ordering decision in a supply chain which includes a supplier, a distributor and
several retailers. Before describing the research problem, we make the following assumptions: Firstly, there
is an options-futures contract allowed to sign between the distributor and the supplier. The options-futures
contract lists some agreements that ensure vendees to buy a certain number of commodities at a certain price
on a stated future date. Futures are commodities that vendees promise to buy. Options are commodities
that vendees book from vendors; the options are flexible, that means vendees can buy discretionary quantity
within the booking volume. Secondly, before the sales season, the demand from retailers is undetermined and
no one knows how much it will be. Since the production of commodities need time, the distributor has to
sign a contract at that uninformed moment, scilicet, decide how much the futures and how much the options
are. In the sales season, the exact demand is known, the distributor can decide whether or not to exercise the
options and how much to purchase. Thirdly, the distributor is risk-averse.

2.1 Notations

Decision variables

y: futures purchasing capacity;

z: maximum commodities reserve capacity;

q: the distributor’s purchase quantity of options;
Parameters

¢ : random demand;

cy: unit cost of futures;

Co: unit cost of reserving options;

¢p: unit cost of purchasing options;

r: unit revenue for each commodity.

contract
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Figure 1: Flow chart of the supply chain about time t

2.2 Problem Description

Now we are in the perspective of distributor to deal with the research problem. As shown in Figure [1} the
distributor purchases commodities from an upstream supplier then sells them to downstream retailers. In
order to meet customers’ demand and achieve zero inventory, the distributor will sign an options-futures
contract with the supplier to obtain the maximum profit and the minimum risk before the sales season. The
contract ensures the distributor can make twice decisions in the whole time horizon. In the moment of signing
the contract, the distributor has to make two initial decisions, which are the futures purchasing capacity y
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and the maximum commodities reserve capacity z. In fact, z is not less than y and z — y is the options reserve
capacity. They also need to sign the unit cost ¢y of the futures, the unit cost ¢, of the reserve options and the
unit cost ¢ of the buying options on the contract. When the exact demand is determined, the distributor can
use the second decision-making chance to make a reasonable recourse decision; let ¢ be the purchase quantity
of options, where 0 < ¢ < z —y. At the end of the sales season, the distributor obtains revenue r for each
commodity which has been sold. According to the actual situation, it is obvious that cy < ¢, + ¢, < r and
¢o < ¢y. The initial decision vector (y, z), called the first-stage decision, must be made before knowing the
realization of the random demand &, while the recourse decision, called the second-stage decision, is made
after the realization of the random demand £ is known.

Distributor, who pursues interests, hopes to get the maximum profit. The profit is determined by the
total revenue and costs. The total revenue is the product of the unit revenue and the quantity of the sold
commodity. Obviously the latter is the smaller one between demand and the final purchase quantity of the
distributor. So the total revenue is » min{¢, (y + ¢)}. The costs consist of initial costs and recourse costs. The
initial costs include the future costs cyy and the costs of reserving options ¢,(z — y). The recourse costs refer
to the costs of the exercised options after the demand & is known. The recourse costs can be expressed as ¢,q.
In conclusion, the profit function is as follows:

rmin{&, (y +q)} — ¢y — co(z — y) — g

2.3 Two-stage Bi-objective Stochastic Model

The maximum profit is
7, 25€) = max rmind€, (g + )} — epy = colz ) — g

Since m(y, z; &) is related to the random demand, it is also a random variable. We measure the profit level
by its mean. Considering the distributor is risk-averse, the standard deviation is used to measure the risk. A
small standard deviation indicates the small risk, on the contrary, a larger standard deviation indicates the
larger risk. We want to obtain the maximum profit as well as bear the minimum risk. Then the problem can
be constructed as the following bi-objective model

max Ee[m(y, z; )]
min  o¢[n(y, 2 )] (1)
s. t. 0<y<z

where
m(y, 2 €) =max rmin{, (y +q)} — cpy — co(z —y) — crq

s. t. 0<g<z—y.

3 Model Analysis

In this section, we analyze the proposed two-stage bi-objective model —. Firstly the second-stage pro-
gramming is solved for the given first-stage decision vector (y, z) and known realization of random demand &.
Then the weight coefficient method is used to transform the equivalent single-stage bi-objective model into a
single-stage single objective model.

3.1 The Optimal Value of the Second-Stage Model

After the options-futures contract is signed, the futures purchasing capacity y and the maximum reserve
capacity z are fixed. Now suppose the retailers’ demand is known. Then we solve the second-stage model

m(y, 2 ) = max rmin{¢, (y +q)} — cpy — co(z — y) — g @
=rmin{¢, (y +¢")} — cyy — co(z — y) — g,
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where ¢* is the optimal quantity of the exercised options. The value of ¢* is

0, ifE<y
'y, )= &—y, fy<i<z (4)
z—y, ifz<¢

It indicates that ¢* is dependent on the random demand & and decision vector (y, z).

Eq. presents three different relationships between the determined demand and the first-stage decisions.
In the first case, the actual demand is less than the futures purchasing capacity, we call it overrated demand.
In this case, the amount of futures can meet the demand and the distributor does not need to exercise the
options. In the second case, the actual demand is less than the maximum reserve capacity and more than
the futures purchasing quantity, we call it anticipated demand. In this case, the amount of futures can not
meet the demand and the distributor needs to exercise the options to cover the shortfall. In the third case,
the actual demand is more than the maximum reserve capacity, we call it underrated demand. In this case,
the maximum reserve capacity can not meet demand. Hence the distributor exercises entire options. The
reason we name the above three cases of demands is that: the distributor wishes the actual demand falls in
the interval [y, z] when making the first-stage decisions.

These results show that the final purchase quantity of options decided by distributor is based on the
retailers’ demand, and the distributor will not purchase any commodities beyond the demand.

Substituting Eq. into Eq., we have

r§ —cpy — co(z — ), if&<y
T(y,2€) = § € —cry —colz —y) —a(§ —y), fy<E< (5)
rz—cpy —co(z —y) —a(z—y), ifz<E
The above three cases correspond to overrated demand, anticipated demand and underrated demand, respec-
tively. We denote them by 7,, 74, 7y, respectively. Obviously, 7, is a constant function. According to the

actual situation, the realizations of random demand £ are in the interval [0, 400). We draw an approximate
image of 7(y, z;£) as Figure

ah

rz-ty Yoy (2-Yh o (Z-1)

Y1 Z

ey

“C e (zy)

Figure 2: Random profit m(y, z;€)

From Figure [2| it is obvious that 7(y, z;£) is a continuous, piecewise differentiable function with respect
to & € [0,+00). Also m(y,z;&) is increasing with respect to the random remand ¢, where m,, 7, are both
strictly increasing, and have a lower bound —csy — ¢,(z — y) (which is less than 0) and an upper bound
Tz — cfY — Co(2 — y) — ¢p(z — y) (which is more than 0). The slopes of m,, 7, and 7, are r, r — ¢; and 0,
respectively. All these imply that each decision vector (y,z) determines a unique profit function w(y, z;§).
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Nevertheless, for different values of (y, z), we are not sure which is the larger one in 7(y, z;£) and 0 when the
realization of random demand £ is y.

3.2 The Objectives in the First-Stage Model
Substituting the optimal value of model into model , the two-stage model — is equivalent to a

single-stage model. There are two objectives in the equivalent model, which are maximizing the mean profit
and minimizing the profit’s standard deviation. We calculate them respectively.

3.2.1 The Expected Value of Random Profit

Note the structure of m(y, 2;£), there is a same term —[c;y + ¢,(z — y)] without random variable £ in each
piecewise expression. Hence we have

T(y,2:€) = —lery + colz — y)] + 7' (y, 2 €),

where
&, <y
m(y,z8) = r€—a(€—y), fy<E<e (6)
rz—cy(z—y), ifz<E.
Therefore,

Ee[n(y, 2 €)] = —[epy + co(z — y)] + Ee[n' (y, z: 6]

We only need to calculate E¢[n'(y, 2;§)]. Next, we deal with the calculation of E¢[n(y, z;€)] under common
demand distributions. In real life, some commodities are sold by an arbitrary number, others are sold by piece.
We divide our discussion into two cases. One is the case that the demand & follows discrete distribution, and
the second case is that demand follows common continuous distributions.

Case I. Discrete demand distribution

Suppose £ has the following discrete probability distribution

§N<él & EAN)’ 1)

p1 P2 - PN

with 51 < 52 <-- < éN. Then we have

e[ (y, 2 €)] Zﬂyyzﬁ
Z (Y, 2:80pi + Y mily 2 80pi + Y mily, 2 &)p

i€l i€ly i€l3 (8)
=rY &Gpit(r—a)d &pitay Y pitr—ca)zd p
i€l i€ls i€laUlg i€ls
=(1=F)ay+(1—-F(2)(r—c)z+r Z &pi+ (r — o) Z &ipi,
i€l i€l
where I = {i |0 < & <y}, Lo ={i |y <& <z}, and Is = {i | & > z}. F(-) is the probability distribution

function.
As a result, the mean profit is

Ee[n(y, % 6)] = lco + (L= F(y))es — ¢y + (1= F(2))(r =) =colz+r Y &pi+(r—e) Y &pie (9)

i€l i€ly
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If ¢ follows the following equiprobable distribution
(38 09) 10
N N N

with 51 < 52 << éN. Then, according to Eq.(]él)7 the mean profit is

Belr(y, )] = eo + (1L F@))es — esly + (1~ FE)r— ) — e+ S &+ TS,
7,6[1 i€ly
where ) .
Fly) = £.iy = max{i | & <y} and F(2) = 72, = max{i | & < z}.

Case II. Continuous demand distribution

Suppose £ is a continuous random variable. Then

+oo
Eel' (y, 2:€)] = / (3, 2 2)dFe(2)

= /Oy redFe(x) + /Z re — cy(x —y)dFe(z) + /+OO rz — cp(z — y)dFe(z)
’ . . (1)
r/oyxdFE(x)Hrcb)/y xdFe(z +cby/y dFe(x) + [rz — cp(z — y)] /: dFe(x)

=cqy+(r—c)z— r/oy Fe(x)de — (r — c») /z Fe(x)de.

As a result, one has

Yy z
Ee[n(y,z,8)] = (co+ e —cp)y+ (r—co —cp)z — 7“/ Fe(x)dx — (r — cb)/ Fe(x)da. (12)
0 Y
When ¢ follows uniform distribution on the interval [a,b], the minimum demand is a, the maximum
demand is b. The distributor will determine the appropriate number of futures within this range. Therefore
distributor’s optimal decisions y and z are certainly such that a < y < z < b. So, based on Eq., the mean
profit is

Belr(,:€)) = (e + 00 = e+ (= 0 = )2 = gseoy = a)? + (r = )z — o).

When ¢ follows exponential distribution with parameter k, based on Eq., the mean profit is

—ky —kz].

Belr(y, 6] = (co — ¢s)y — coz + |

When ¢ follows normal distribution N(u,o?), based on Eq., the mean profit is

pop . (—a) [ o
(\/ZT Yda — 5 /yerf( ﬂg)dx,

r—ce Y —(r—cpe

(T’—Cb) .
2

Eelr(y. 2:6)] = (o + 5 — )y + (

where

erf(z \f/ et dt.

The aforementioned integral er f(z) can not be evaluated in closed form in accordance with elementary
functions. The integral can be calculated by using Maclaurin series

2n+1

erf(@ \/’Z n!( 2n+1)

which is derived by expanding the integrand et

term.

into its Maclaurin series, then it can be integrated term by
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3.2.2 The Standard Deviation of Random Profit

We next derive the analytic expressions of E¢[72(y, 2;€)] and (E¢[r(y, 2; £)])?, respectively. Then, on the basis
of

Var[z] = E[2%] — (E[z])?,

we can obtain the standard deviation.
We denote

A= legy+ oz — )

It is convenient to derive the above expressions. Eq. can be changed equivalently into

re — A, ife<y
m(y,z8) = ré—al-—y) —A, fy<{<z (13)
rz—c(z—y)—A, ifz<¢
Then
1?6 — 2Ar¢ + A%, if £ <y
Ty, 2,6) = (r— @)’ +2(r — ) (epy — A+ (ay — A)?, ify<E<e (14)
([rz — ez — )] = A)?, if 2 <€

We denote 72(y, z;£) in the above three cases as 72, 72, 72, respectively.

Case I. Discrete demand distribution

Suppose £ has the discrete probability distribution which is given in Eq. with él < ég << é ~- Then

E y,zf Zﬂ- wagz

= Z ﬂ-o,ipi + Z Waﬁipi + Z Wi’ipi

i€l i€ly icl3
=A%+ (1 = F(y))(cpy — 2A)cpy + (1 — F(2))(r — cp)*2?
£ 21— F)(r — )y — A) = 24r Y i+ 200 — ) ey — A) Y

i€l i€l

+r2Y Epit (r—a)’ ) (15)

1€l 1€l
=[(cf — co)* +2(1 = F(y))es(co — cy) + (1 — F(y))cily?
+2[=colco + (1= F(y))ep —cp) + (1 = F(2))(r — cp)(co + b — cy)]yz
+ ]2 —2(1-F(z ))(r —)co + (1= F(2))(r — )72

_Z[ny_‘_co(z_ Z{zpz +2(7”_Cb)(cby— [ny+co zZ=Y Zgzpz
i€l i€lo

+r? Zs‘fpz +(r —cp)? Zf?pi,

i€l i€ly
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and

(Ee[m(y, 2:9)))* = {[Co + (1= F@)es —esly + (1= F(2)(r — ) —colz+7 Y i

i€l

2
+r—a)> fipi}

i€ls

=[(co —cp)? +2(1 = F(y)es(co — c5) + (1 = F(y))*ctly?
+2[=colco + (1 = F(y))er —cy) + (1 = F(2))(r — cp)(co + (1 = F(y))ep — cf)lyz  (16)
+[c2=2(1 = F(2))(r — cp)co + (1 — F(2))*(r — cp)?]2?

= 2[[eo + (1= F(y))e» — Cf]y
+ [(1 - F(Z))(T - Cb - Co Z §ipi + 7” - Cb) Z ézpz]

i€l i€l

+[r Z Epi + (r — ) Z &ipil*.

i€l i€ly
It follows from Eq. and Eq. that

Var§ [W(yvz;f)] :Ef [71—2(2/7 275)] - (E§[7T(yvz§€)])2
=F(y)(1 = F(y)ciy* +2(1 — F(2))(r — eo) F(y)epyz + F(2)(1 = F(2))(r — p)*z”
—2r[[2¢; — (1= F(y))e — 2coly — [(1 = F(2))(r — ) — 2¢,]2] Y &ps

i€l ) (17)
+2(r —ep)[[2¢o — (2= F(y))ep — 2¢r]ly + [(1 — F(2))(r — c») — 2¢,)2] Z &ipi
i€ly
+7Y Gpi+ (r—a)? Y Epi— D Gpit+ (r—a) > &pil*.

el i€ly el i€ls
Therefore, we have
oelm(y, 2: €)] ={Vare[m(y. €)1} 2
={Fy)(1 = F(y)ciy®> +2(1 = F(2))(r — e) F(y)eoyz + F(2)(1 = F(2))(r — )?2*
—2r[[2¢; — (1= F(y))ey — 2¢oly — [(1 = F(2))(r — ) — 2¢0)2] Y _ &ipi

iel, (18)
+2(r — ) [[2¢0 — (2= F(y))ep — 2¢4)y + [(1 = F(2))(r — c) = 2¢,]2] Y &pi

i€l
+2Y EpiA (r—a)? Y Epi— [y i+ (r—a) D &pil*}?

i€l i€ly i€l i€ly

If ¢ follows the equiprobable distribution given in Eq. , then the standard deviation is as follows

oelm(y, 5:6)] = {F)(1 = F)efy? +2(1 = F())(r = ) Fy)esyz + F(2)(1 = F()(r — )"
— 22 {[2; — (1= F(y))e, — 2¢,)y = [(1 = F(2))(r = cp) = 2¢,]2] Y &

i€l
(r—cp)
n

(120 — (2= F(y)er — 25y + [(1 = F(2))(r — ) — 2c0)2] Y & (19)

i€ly

+2

252 r= 252—— St r—a) Y &Py

zeh i€ly i€l i€l
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Case II. Continuous demand distribution
Suppose £ is a continuous random variable. Then we can derive the following formulas

E¢[n*(y, 2 €)] =/O+OO w2 (y, z; 2)d Fe (x)
= / ’ m2dFe(z) + /y ) m2dFe(z) + / - m2dF ()
=(r — )22+ 2(r — &) (coy — A)z + (coy — A)? — 7 /Oy 22 Fe(x)dx
—(r—c)? /y 20 Fg(z)dz + 2rA /OU Fe(z)dx — 2(r — ) (cpy — A) /y

=[(co+ep—cp)y+ (r—co—cp)z]® —2r /Oy moFe(x)de — 2(r — cp) /Z o Fe(x)dz,

Fe(z)dx

and
(Eelm(y, 2 6)))? = {(co Fep—cp)y+(r—co—cp)z—r /OJ Fe(w)da — (r — o) /y Fg(x)d:c}

=[(co +cp— Cf)y + (r —co — Cb)z]z

—2[(co+cp—cp)y+ (r—co—cp)2[r /Oy Fe(z)da + (r —cp) /z Fe(x)da]
+ [r /Oy Fe(z)dz + (r —cp) /Z Fe(z)dz]?.

By and , we get
Vare[m(y, 2; €)] =Ee[r?(y, 2;€)] — (EBe[r(y, 2;€)])”

=2r[cpy + (r — ¢p)Z] /Oy Fe(z)dw — 272 /02/ xFe(z)da

+2(r — )z /z Fe(z)dz — 2(r — cp)? /Z cFe(x)dx

Y

_ [T/Oy Fe(w)da + (r —cb)/yz Fi(w)dal>.

So, one has

oelm(y, z;€)] = {QT‘[be +(r—o)?] /Oy Fe(x)da — 272 /Oy Fe(x)dx

+2“—%Va/3%mmx—mr_%fé

Y

pr /Oy Fe(w)de + (r — ) /y Fg(x)dx]2}2 .

xFe(x)dx

When ¢ follows uniform distribution on the interval [a, b], we deduce
1
oelm(y, 2 8)] = {(ba)[cb((r —a)z+ry)(y —a)’ + (r— )’ (2 — a)®

2
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(20)

(21)

— 27“2(y3 —a®) +ar*(y? — a®) — ;(r —p)? (2% —v®) +alr — e (2% — 3?)]

N

3

oo (0 = 4 (= (e — a2
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When ¢ follows exponential distribution with parameter k, we obtain

oeln(y, z;€)] = {}t[%cbyeky —2(r — ) [epy + (1 — ) 2]e "]

1 (25)
]:2 [—2¢(r — cp)e ™™ + 2c,(r — cp)e ™™ — [epe™ Y + (r — cp)e 7] + TQ}}
When ¢ follows normal distribution N(u,o?), we have
1 , 1
ol 5 ] ={ Jleww + 0 = el 4 grlew + 0= el [ er ("L
# 50l — )z =l [ e
(26)

—r2/ywerf(\[a)dw_(7“—cb) /erTf( \[0)

_i[ / erf( \fa)dm+(r_6b)/ er f( \[U) ]2}2

Now, under some common demand distributions, we have obtained the equivalent forms of the objective
functions E¢[n(y, z;€)] and o¢[n(y, 2;€)] in the equivalent single-stage model of the two-stage model —.
Next, we are going to solve the proposed two-stage model via the equivalent forms.

3.3 The Single Objective Models

Although model — reflects all distributors’ ordering expectations, it describes only an ideal situation
which is difficult to realize in a real supply chain management. That is to say we can not find a decision
vector (y, z) which is suitable for the distributor to minimize the risk and maximize the profit simultaneously.
Furthermore, we usually obtain the Pareto-optimal solutions rather than an optimal solution of the above
model. Here we use the weight coefficient method to transform the original model into the following single
objective model

max  AE¢[m(y,z;€)] — (1 = Nog[r(y, 2; )] (27)
s. t. 0<y<z

where

m(y, 2;€) :ml?x rmin{, (y + q)} — cry — co(z — y) — g (28)
s. t. 0<g<z—y,

where A € [0,1] is the weight coefficient, which represents the distributor’s preference level towards risk.
A = 1 stands for the distributor is risk-neutrality and aims to maximize the mean profit; A = 0 denotes the
distributor is risk-averse completely and aims to minimize the risk.

In section we have derived the expressions of E¢[m(y, 2;£)] and o¢[n(y, z;£)]. The next work is to seek
the optimal decisions about the futures purchasing capacity y and the distributor’s maximum reserve capacity
z. Substituting the expressions of E¢[n(y, 2;€)] and o¢[n(y, z; £)] into model , then the equivalent forms
of model — are provided in Theorems (1| and

Theorem 1. Suppose & has the following discrete probability distribution

(8 ) )

b1 p2 -+ DN
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with él < ég < < éN. The probability distribution function of £ is denoted as F(-). Then model —(@

can be transformed equivalently into the following model

max A {[Co + (L= F@))es —esly + (1= F2)(r =) =colz+1r Y &pi+(r—e) Y &pi}

i€l i€l
= (=N {Fy)(1 = F(y))cpy® +2(1 = F(2))(r — c) F(y)evyz + F(2)(1 = F(2))(r — e3)*2°

—2r([2¢; — (1= F(y))es — 2¢0ly — [(1 = F(2))(r — ) = 2¢0]2] ) &ipi

i€l ) (30)
+2(r — a)[[2c0 — (2= F(y))ey — 2¢7]y + [(1 = F(2))(r — &) — 2¢,)2] Y _ &ips

icla
+r23 @it (r— )2 Epi— Y Gpit(r—a) Y &pilP)?

i€l i€ls i€l i€ls
S. t. 0<y<z=

Theorem 2. If £ is a continuous random variable with probability distribution function F(-), then model
—(@) can be transformed equivalently into the following model

max /\{(co+cb—cf)y+(T—co—cb)z—r/Ong(a:)dx—(r—cb)/yng(x)dx}

Y {2T[cby + = e)?] /Oy Fe(w)da — 202 /y 2 Fe(x)da

0

+2(r — )2z /Z Fe(z)do — 2(r — p)? /Z xFe(z)dz (31)

Yy Yy

—[r /Oy Fe(x)dz + (r — cp) /y Fg(x)dm}Q}

s. t. 0<y<z=

When random demand ¢ follows uniform distribution, exponential distribution, normal distribution and

equiprobable discrete distribution, we have the following Theorems and @ Models , , and
(135) can be solved by LINGO software.

Theorem 3. If & follows uniform distribution on the interval [a,b], then model -@) can be transformed
equivalently into the following model

max A {(co +ep—cp)y+ (r—co—cp)z — ﬁ[cb(y —a)?+(r—c)(z— a)2]}

— (= N ol — s )y — @ + (7 = )P —
22— @)t ( a?) - S ) a2 ) Y
- [ﬁ [ea(y —a)* + (r — ) (z — )]}
s. t. a<y<z<h

Theorem 4. If £ follows exponential distribution with parameter k, then model —(@ can be transformed
equivalently into the following model

max A {(Co —Cp)y — Coz + %[r — e M — (r — cb)ekZ]}

—(1=X) {;[%«:byeky —2(r — ) [epy + (1 — ) 2]e "]

Nl=

1
—&—ﬁ[—%b(r — cb)e_ky + 2¢p(r — cb)e_kz — [cbe_ky + (r— cb)e_kz]2 + r2]}

s. t. 0<y<z=
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Theorem 5. If ¢ follows normal distribution N(u,0?), then model —(@ can be transformed equivalently
into the following model

max )\{(co—&—CZb—cf)y_p((r_zcb)_co)z—;/o erf(z\/_i:)dx_(rgcb)/y erf(x\/_i:)dx}

— =N o+ =)+ Grlew+ (- )] [ enf(C s

+ %(r —cp)[(r —cp)z — cpy] /yz erf(x_u)d

var (34
- / xer f( \fa)dz—(r—cb) / xerf( fg)d

3 [enf e+ =) [ ens (s )’

s.t. 0<y<z=

Theorem 6. If £ follows the following equiprobable distribution

€N(51 b o by )

N N ' N

with fl < ég < e < éN, the probability distribution function of € is denoted as F(-), then model —(@
can be transformed equivalently into the following model

max A {[Co + (L= F(y)e —eply + (1= F(2)(r — ) = colz + — Z& Zéz}

zeh i€ls
—(1=XN{Fy)(1 = F(y)ciy® +2(1 = F(2))(r — o) F(y)cpyz + F(2)(1 — F(2))(r — ¢)?2*

- 2%[[%‘ — (L= F(y))ey — 2]y = [(1 = F(2))(r — e) = 2¢0]2] Y &
i€l

- J_vcb)uzco @ F@)r— 2eqly + [(1 - FE)r - ) — 2,2 3 &
i€l

+ 2

N ZE’L Zé-z N2 Zél T‘—Cb)ZéiP}%

i€l i€ls i€l i€ly
s. t. 0<y<z=

3.4 Risk Visualization

The risk expressed by standard deviation is not intuitive. We can only compare the relative sizes of its values,
e.g. standard deviation 100000 runs more risk than standard deviation 10. However, how much is the risk that
the distributor should burden on earth when the standard deviation is 1000007 To overcome this problem,
we propose the following two theorems.

The following theorem characterizes risk by using probability that profit is less than 0.

Theorem 7 (Risk visualization theorem). For any given decision vector (y, z), we have the following two
assertions.

1) If y/z > co/(r — cs + ¢o), then the critical demand such that the profit is less than zero is
!

(cf —co)y + coz
r

o =

) y/z < co/(r —cf+co), then the critical demand such that the profit is less than zero is
1) If I hen th ld d h that th fi l h

(cf —co—cp)y + coz
T —Cp ’

o =
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In addition, the probability Pr{€ < &} can be calculated via a given probability distribution function.
Proof. (i) If the realized value of £ is y, and 7(y, 2;§)e=y = 1y — ¢;y — ¢o(z — y) > 0, namely
¥y G
z r—cr+tc

then the zero point of profit function 7(y, 2;£) is on y’s left, i.e. § < y. So r& — cpy — co(z — y) = 0 implies

(cf —co)y + coz
—

o =

(ii) If the realized value of £ is y, and 7(y, 2;§)e=y = 1y — cry — co(z — y) < 0, namely
Yo S
z r—cft+c
then the zero point of profit function 7 (y, z;£) is on y’s right, i.e. y < & < z. Since 1€y — ¢y — co(z — y) —
cp(€o —y) = 0, one has

(cf —co—cp)y+ oz
T —Cp '

o=

0
The following theorem characterizes risk by using probability that profit is less than w (0 < w < (¢, —
crt+ep)y+ (r—co—cp)z).

Theorem 8 (General risk visualization theorem). For any given decision vector (y,z), we have the
following two assertions.

(1) If (r — ¢ + co)y — coz > w, then the critical demand that the profit is less than w is

(cf — o)y + coz+w
" )

gw:

(1) If (r —cf + ¢o)y — coz < w, then the critical demand that the profit is less than w is

(cf—co— )y +coz+w
r—cp '

Ew:

In addition, the probability Pr{¢ < &,} can be calculated via a given probability distribution function.

Proof. The proof is similar to that of Theorem [7}
(i) If the profit 7(y, 2;§)e=y = 1y — c§y — Co(2 —y) > w, namely (7 —cf + o)y — oz > w, then &, < y. By
using 1€, — ¢;y — ¢o(2 — y) = w, one has

(cf —co)y+coz +w
" )

€w:

(i) I 7(y, 2;8)e=y = Ty — cyy — co(z — y) < w, namely (r — ¢5 + ¢,)y — coz < w, then y < &, < z. By using
P — 1y — col% = 9) — eo(€w — ) = w, we have

(cf—co— )y +coz+w
r—cp ’

gw:

O

After making the final decisions, we can use Theorem [7] or Theorem [§] to calculate the probability that

profit is less than some determined level. The calculated probability is corresponding to the standard deviation

that represents the risk in the original model. Based on this probability value, it is easier to judge whether
the risk is acceptable and to make appropriate adjustments.
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4 Numerical Experiments

In this section, we present a set of numerical experiments to demonstrate the feasibility and effectiveness of
the proposed optimization methods and observe the impact of the risk preference level A on the distributor’s
optimal decisions about the futures purchasing capacity y and the distributor’s maximum reserve capacity z.
We first give some descriptions about our natural gas supply problem in the next subsection.

4.1 Natural Gas Supply Problem

A firm, as distributor, first purchases natural gas from some natural gas processing plants, then provides
natural gas for the residents to meet the needs of winter heating. The production of natural gas requires
purification treatment, such as desulphurization, decarburization, dehydration. That means natural gas needs
to be prefabricated. Production of natural gas requires a certain period. Therefore, it is necessary for the
distributor to order a certain amount of natural gas from the supply plants.

In a warm winter, a small amount of heat supply can maintain an appropriate indoor temperature. On the
other hand, a cold winter requires a lot of heat supply. Hence the distributor cannot know the exact demand of
natural gas before the onset of winter. The distributor can sign an options-futures contract with the supplier
before the sales season. This contract make natural gas supply meet downstream demand and achieve zero
inventory as far as possible. When they sign the contract, the distributor make two initial decisions on the
basis of supplier’s quotation. The two initial decisions are the futures purchasing capacity and the maximum
reserve capacity. When winter comes, the exact demand is known. So the distributor can make the recourse
decision, i.e., whether the distributor exercises the options and how much to purchase.

According to the sales data in previous years, we suppose that the random demand £ follows uniform
distribution on the interval [5000, 15000], and kilostere is the corresponding measure unit. The parameters r,
cf, ¢, and ¢, denote the revenue, the futures’ cost, the options’ reserve cost and the options’ purchase cost,
respectively, all these are for per kilostere natural gas. The trade contract stipulates for the settlement of
balances in RMB.

This problem completely accords with the conditions of Theorem [3 we can apply Theorem [3| to solve it.

4.2 Computational Results

We adopt the following parameters used in Brown and Lee [7]: r = 2500, ¢; = 2000, ¢, = 400, ¢, = 1800.
Theorem [7]is used to transform the risk. The distributor’s risk preference level A takes values from 0.0 to 1.0
with the increment 0.1. LINGO provides the computational results which are shown in Table

Table 1: Risk preference level and optimal decisions

) 0 0.1 0.2 0.3 0.4 0.5

y 5000.000 5003.835 5018.794 5051.355 5108.644 5195.940

z 5000.000 5031.162 5151.403 5405.908 5829.107 6412.674
Ec[n(y, 2;€)] 2500000 2510080. 2548346, 2626039. 2745339, 2889687
oelm(y, 2 £)] 0 TA4.6276  7947.768 34642.68 99978.32 219097.7

%o 4000.000 4007.440 4036.252 4097.813 4202.180 4351.429
Pr{€ < &) 0 0 0 0 0 0

) 0.6 0.7 0.8 0.9 1

y 5314.910 5465.147 5647.283 5863.126 6111.111

z 7090.469 7769.353 8377.522 8883.360 9285.714

Ee[r(y,&)] 3028245, 3135937. 3205738. 3242767. 3253968
oelm(y, % €)]  388832.2 588351.8 796599.4 1004802. 1214268

& 4536.018 4740.790 4954.665 5173.738 5396.825
Pri¢ < &) 0 0 0 0.017374 0.039683

According to the data in Table[I] when risk preference level equals 0.8, the standard deviation is 796599.4.
The value of standard deviation, which is used to characterize the risk, seems so big that its corresponding
decisions cannot be chosen. While the probability that profit is less than zero is still zero. That means
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risk is not so big at this point. If we choose the more risk-averse attitude only by considering the standard
deviation value, we will loss the opportunity to gain greater profit. The above interpretation shows that risk
visualization theorem is meaningful.

The values of ¢, and ¢, are changed to 100 and 2100, respectively. It can be seen that the total cost of
buying each commodity which exercises options consists with the front. The other assumptions are remain
unchanged. The distributor’s risk preference level A takes values from 0.0 to 1.0 with the increment 0.1.
LINGO provides the computational results which are shown in Table

Table 2: Risk preference level and optimal decisions

) 0 0.1 0.2 0.3 0.4 0.5

y 5000.000 5005.377 5026.018 5069.161 5139.415 5234.249

2 5000.000 5093.272 5448.442 6174.455 7299.053  8666.695
Eelr(y, 2:€)] 2500000. 2528880. 2635643. 2838080. 3109845. 3372204
o¢[m(y, 2 €)
)
y
y4

0.064349 2131.055 22176.81 91444.78 239323.6 453778.6

0.6 0.7 0.8 0.9 1

5345413 5467.809 5604.440 5763279 5952.381

9976.380 11001.76 11713.07 12186.05 12500.00

Ee[r(y,2€)] 3554182, 3650689. 3695141, 3714512, 3720238,
oelm(y, 2 €)] 673917.7 850224.7 981221.9 1089472. 1193017

4.3 Sensitivity Analysis
According to the data in Table [ Figure [3]is plotted to show the impacts of the risk preference level on the

initial decisions, the mean profit and standard deviation.
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Figure 3: Impact of the risk preference level A

Figure demonstrates intuitively the impacts of the risk preference level A on decisions y and z. The
distributor’s futures purchasing capacity y and maximum reserve capacity z are both increasing with respect
to the risk preference level A. Compared with y, the growth of z is faster. When the distributor is more risk-
averse, i.e. A tends to zero, the amount of futures purchasing capacity y and the maximum reserve capacity
z are mighty close. However, when the distributor is risk-neutral, i.e. A tends to 1, the gap between futures
purchasing capacity y and the maximum reserve capacity z is very big. The impacts of the risk preference
level A on the mean profit E¢[n(y, z;€)] and the standard deviation o¢[n(y, 2;§)] are shown in Figure m
intuitively. The distributor’s mean profit E¢[n(y, z;€)] and the standard deviation o¢[m(y, 2;£)] are both
increasing with respect to the risk preference level A\. To obtain more mean profit, distributor must bear
larger risk relatively.
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According to the data reported in Table 2] Figure [ is plotted to show the impacts of the risk preference
level on the initial decisions, mean profit and standard deviation.
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Figure 4: Impact of the risk preference level A

Figure describes the impacts of the risk preference level A on decisions y and z. Figure de-
scribes the impacts of the risk preference level A on the mean profit E¢[n(y, 2;£)] and the standard deviation
oe[m(y, z;€)]. Obviously, Figures and are similar to Figures and @ and leads to the same
conclusions. The decisions y and z are both increasing with respect to A. y grows slowly but z grows fast.
When A tends to zero, the values of y and z are mighty close. While the gap between y and z is very big
when A tends to 1. The distributor’s mean profit and the standard deviation are both increasing with respect
to the risk preference level A\. To obtain more mean profit, distributor must bear larger risk relatively.
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Figure 5: Profit-risk contrast

Together Figures and we plot Figure |p| in which « is the risk level. Figure [5| shows intuitively
that: when the total cost of buying each commodity which exercises options is same, the lower the unit cost
of reserve options is, the smaller the risk the distributor will bear. Under the same risk level «, the mean
profit corresponding to lower reserve cost is higher than that corresponding to higher reserve cost. Therefore,
a risk-averse distributor will choose the supplier with lower unit cost of reserve options, or try to cut the unit
cost of reserve options in the contract.
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5

Conclusions

In this paper we studied how a risk-averse distributor makes optimal ordering decisions in supply contracts
when the retailers’ demand is random. The major results are summarized as follows.

(4)

(iid)

Ac

The

We established a two-stage bi-objective stochastic model for the problem, in which the mean profit
was maximized and the corresponding standard deviation was minimized. Dividing all the decisions
into the initial decisions made in the first-stage and the recourse decision made in the second-stage
facilitates distributor to meet customers’ demand and achieve zero inventory. This decision process
controls commodity supply within a certain range by the contract, so it effectively restrains the bullwhip
effect.

The optimal value expression of the second-stage programming problem was derived. As a consequence,
the proposed two-stage bi-objective model was equivalent to a single-stage bi-objective model. We
used the weight coefficient method to deal with the model’s objectives, then transformed the equivalent
single-stage bi-objective model into a single-stage single objective model.

In the cases that random demand follows discrete distribution and common continuous distributions, we
derived the deterministic expressions of the mean profit and the corresponding standard deviation. By
solving the equivalent models given in Theorem [3| (uniform distribution), Theorem [4] (exponential distri-
bution), Theorem [5] (normal distribution) and Theorem [§] (discrete distribution), the optimal decisions
of the distributor can be obtained.

Based on risk visualization theorems (Theorems [7| and , it is easier to judge whether the risk is
acceptable and to make appropriate adjustments.

From the computational results of the numerical experiments (Figures , the distributor’s futures
purchasing capacity and maximum reserve capacity are both increasing with respect to the risk pref-
erence level, the former’s growth is slower than that of the latter. The distributor’s mean profit and
the standard deviation are also increasing with respect to the risk preference level. Under the same
conditions, the lower unit cost of reserve options is more favorable for distributors.
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