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Abstract

On the basis of credibilistic optimization method, the multi-item single-period inventory problem is
studied. A new risk-neutral inventory problem with uncertain demand is presented, in which the expected
value is adopted in the formulation of profit objective function. We use both discrete and continuous
possibility distributions to describe uncertain demands in our inventory problem. To compute expected
value objective, we assume uncertain demands follow triangular, trapezoidal and Erlang possibility dis-
tributions. Finally, the numerical discussion is given in the cases of discrete distribution and continuous
triangular distribution.
c⃝2016 World Academic Press, UK. All rights reserved.
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1 Introduction

The financial and decision theoretical aspects are important in inventory management. The multi-item single-
period inventory problem is of significance in terms of both theoretical and practical consideration in real
life. In this work, we model the single-item/multi-item single-period inventory problem under risk-neutral
criterion, and consider a firm producing multiple products in a single period and the buyers can order goods
in advance. The key points of the problem are to determine the order quantity as well as the demands in
order to maximize the total profit.

In the recent literature, the importance of financial and decision theoretical aspects in inventory manage-
ment has been evidenced by a variety of optimal methods [9, 16, 19, 27, 24, 28]. Many relevant literature
of single-item/multi-item inventory problem have been made in the probabilistic framework, in which the
uncertainty of demand is characterized by the randomness. Benjaafar and Elhafsi [2] analyzed the optimal
production and inventory control of an assemble-to-order system with m components, one end-product, and
n customer classes. Ahmed [1] considered an extension of the classical multi-period, single-item, linear cost
inventory problem, where the objective function was a coherent risk measure. Chen et al. [5] proposed a
framework for incorporating risk aversion in multi-period inventory models as well as multi-period models
that coordinate inventory and pricing strategies. Gotoh and Takano [7] considered the minimization of the
conditional value-at-risk (CVaR) in the well-known single-period newsvendor problem, which was originally
formulated as the maximization of the expected profit or the minimization of the expected cost. Keren [8]
studied a special form of the single-period inventory problem with a known demand and stochastic supply.
By assuming random demand, Ozler et al. [18] considered a single-period stochastic inventory (newsvendor)
problem with downside risk constraints. See and Sim [20] proposed a robust optimization approach to ad-
dress a multi-period inventory control problem under ambiguous demands. Taleizadeh et al. [22] optimized
multiproduct multiconstraint inventory control systems with stochastic period length and emergency order.

In real life there exist situations where there are no sufficient historical data or historical data are unavail-
able. Then the demands in the inventory problem have to be given mainly by experts’ estimations instead of
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historical data, and thus contain much subjective imprecision rather than randomness. Under this consider-
ation, some researchers addressed fuzzy uncertainty in inventory management. For example, Yao et al. [26]
applied a stochastic single-period inventory management approach to analyzing optimal cash management
policies with fuzzy cash demand. Shao and Ji [21] studied the multi-product newsboy problem with fuzzy
demands under budget constraint [10]. Chang and Yeh [4] investigated the effects of the manufacturer’s refund
on retailer’s unsold products for the two-echelon decentralized and centralized supply chains of a short life
and returnable product with trapezoidal fuzzy demand. Yaghin et al. [25] proposed a hybrid bi-objective
credibility-based fuzzy optimization model including both quantitative and qualitative objectives to cope with
these issues.

Many researchers investigated the single-item/multi-item single-period inventory problem with risk-neutral
or risk-averse polices. Borgonovo and Peccati [3] adopted some methods like expected value, quadratic utility,
mean-absolute and conditional value at risk (CVaR) to optimize the inventory problems. In this study, we
maximize the profit by using the risk-neutral method in the multi-item single-period inventory problem. In
addition, the uncertain demands in our problem is expressed by a fuzzy variable with known possibility
distribution functions.

The purpose of this work is to discuss the financial management in inventory problems under uncertain
demands. We model a multi-item single-period inventory system by using credibilistic optimization methods
[13], in which the financial characteristics are described by expectation profit function. In our optimization
model, the uncertain demands follow several common possibility distributions. Our purpose is to find the
optimal order quantity by maximizing the profit with respect to the expected value. Firstly, by the properties
of the demand, we calculate the expected value about the reciprocal of the demand so that the optimal policy
can be obtained. Secondly, we deal with the calculation of the expected value when the demand follows a
discrete distribution and common continuous distributions. Finally, the numerical discussion is carried out in
the situations of that the demand is a discrete fuzzy variable and a triangular fuzzy variable. The reader may
refer to the recent works [6, 17, 23] about the practical applications of credibilistic optimization methods.

The main contributions of the paper can be summarized as follows. (i) We propose the credibilistic
optimization model for multi-item single-period inventory problems, in which the demands are described by
known possibility distribution functions. (ii) We identify the conditions to obtain the optimal order policy for
profit objective function. (iii) We discuss the properties of the demand to calculate the expected value about
the reciprocal of the demand.

The structure of this paper is organized as follows. Section 2 builds a risk-neural expected value model
for the single-period inventory problem. Section 3 deals with the computation about the expected value of
the discrete fuzzy demand and the continuous fuzzy demand. Section 4 provides some numerical examples to
illustrate the proposed optimization method. Section 5 gives the conclusions of this paper.

2 Model Formulation of Inventory Problem

The problem studied in this paper is the multi-item single-period inventory problem. To describe our problem
clearly, we adopt the notations in Table 1.

The firm allows the buyers to order goods in advance, and it can obtain the revenue through the order
quantity. Since the firm allows buyers ordering goods in advance, we consider two types of costs. One is the
fixed order cost component and the other is the holding cost which are both paid at the beginning in the
single-item inventory problem. Now, we describe the two kinds of costs in details.

(1) Order cost: We consider a fixed component a > 0 per order, so that during the ordering process the
ordering cost amounts to a.

(2) Holding cost: Since the average amount of inventories is x/2 and the holding cost is assumed to be
proportional to the quantity on stock and to time, the holding cost amounts to hxT/2 with the constant h > 0
and T = x/D. Its expected value is mhx2/2, where x is the order quantity, D is the fuzzy demand, and

m = E

[
1

D

]
=

∫ +∞

0

Cr

{
1

D
≥ r

}
dr

with Cr the credibility measure defined in [10].
The relationship between the demand and the quantity on stock has been showed in Figure 1, where x/D

is the time that goods are sold out and the shaded area represents the quantity on stock.
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Table 1: The notations in inventory problem

Notations Definitions
Single-item:
a Fixed order cost per inventoried item
p Revenue per unit of inventoried item
h Unit holding cost
D Fuzzy demand in the inventory problem
x Order quantity in the inventory problem
Multi-item:
a = [a1, a2, · · · , an] Unit fixed costs per inventoried item
p = [p1, p2, · · · , pn] Unit revenues per inventoried item
h = [h1, h2, · · · , hn] Unit holding costs per inventoried item
D = [D1, D2, · · · , Dn] Fuzzy demand vector in the inventory problem
x = [x1, x2, · · · , xn] Order quantity vector in the inventory problem

0 x/D t

x

−D

Figure 1: The relationship between the demand and the quantity on stock

If decision makers want to obtain the maximum profit, they often use the expected value of the profit
as the objective function, and maximize the total mean profit. In order to determine the optimal policy of
replenishment, we have firstly to determine the expected costs associated to each policy.

It is easy to get a single-item inventory model, in which profit objective function is

π(x,D) = px− a− hx2

2D
,

where px is the total revenue in the inventory problem, a is the fixed order cost and hx2/2D is the holding
cost. The expected value of fuzzy profit π(x,D) is denoted by E[π(x,D)]. By the properties of expected value
operator [10], one has

E[π(x,D)] = E

[
px− a− hx2

2D

]
= px− a− E

[
hx2

2D

]
= px− a− hx2

2
E

[
1

D

]
.

(1)

In this case, the expected value model for the single-item single-period inventory problem reads{
max E[π(x,D)]

s. t. x ≥ 0.
(2)
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According to Eq. (1), we can obtain the following solution to model (2):

x∗ =
p

hm
,

where m = E[1/D].
In real life, the multi-item single-period inventory problem is of significance in terms of both theoretical

and practical consideration. We next discuss the issue when the inventory has various items in single period.
Let i = 1, 2, . . . , n denote the types of goods (items), and suppose there is no influence between any two items.
In this case, the multi-item profit function is expressed as

π(x,D) =

n∑
i=1

(
pixi − ai −

hix
2
i

2Di

)
.

Under the risk-neutral criterion, the expected value model of the multi-item inventory problem is formally
built as {

max E[π(x,D)]

s. t. x ≥ 0.
(3)

If we denote the demand vector D = (D1, D2, · · · , Dn), and suppose the demand variables Di are mutually
independent fuzzy variables [15], then the joint possibility distribution µD is represented by

µD(t1, t2, · · · , tn) = min
1≤i≤n

µDi(ti).

Let

πi(xi, Di) = pixi − ai −
hix

2
i

2Di
, i = 1, 2, . . . , n.

Then πi(xi, Di), i = 1, 2, . . . , n, are also mutually independent. By the independence linearity of expected
value operator [14], one has

E[π(x,D)] =
n∑

i=1

E[πi(xi, Di)].

By calculation, we obtain

E[π(x,D)] =
n∑

i=1

(
pixi − ai −

hix
2
i

2
E

[
1

Di

])
.

As a consequence, the equivalent model of model (3) is as follows

max
n∑

i=1

(
pixi − ai −

mihix
2
i

2

)
s. t. x ≥ 0,

(4)

where

mi = E

[
1

Di

]
, i = 1, 2, . . . , n.

It is evident that model (4) is a convex programming model. By solving the following equations,

∂

∂xi

n∑
i=1

(
pixi − ai −

mihix
2
i

2

)
= 0, i = 1, 2, . . . , n,

we obtain

x∗ =

[
p1

h1m1
,

p2
h2m2

, . . . ,
pn

hnmn

]
.

So far, we have obtained the general solution x∗ to model (4), which depends on the values of mi =
E[1/Di], i = 1, 2, . . . , n. In the next section, we discuss the calculation of mi, i = 1, 2, . . . , n under common
demand distributions.



134 Y.-N. Li and Y. Liu: Optimizing Fuzzy Multi-item Single-period Inventory Problem

3 Model Analysis under Common Demand Distributions

In this section, we deal with the calculation of E[1/Di] (i = 1, 2, . . . , n) under common demand distributions.
We divide our discussion into two cases. One is the case that the demands Di (i = 1, 2, . . . , n) follow discrete
distributions, and the second case is that demands follow common continuous distributions.

3.1 Discrete Demand Distributions

Theorem 1. Suppose demand D in model (2) has the following discrete possibility distribution

D ∼
(

t1 t2 · · · tn · · ·
µ1 µ2 · · · µn · · ·

)
,

where ti ≥ ti+1 for any i, and µi > 0 with max1≤i<+∞ µi = 1. Then the expected value E[1/D] is

E

[
1

D

]
=

+∞∑
i=1

qi
ti
, (5)

where the weights qi are determined by the following formula

qi =
1

2
(max
j≤i

µj − max
j≤i−1

µj) +
1

2
(sup
j≥i

µj − sup
j≥i+1

µj) (6)

for any i with µ0 = 0.

Proof. By supposition, the possibility distribution of demand D is as follows(
t1 t2 · · · tn · · ·
µ1 µ2 · · · µn · · ·

)
.

Hence, the variable 1/D has the following possibility distribution

1
D ∼

(
1
t1

1
t2

· · · 1
tn

· · ·
µ1 µ2 · · · µn · · ·

)
.

Note that for any i, one has
1

ti
≤ 1

ti+1
.

Thus, by the definition of expected value operator [10], the expected value E[1/D] has the analytical
expression (5). The proof of theorem is complete.

3.2 Continuous Demand Distributions

Theorem 2. If demand D in model (2) is a triangular fuzzy variable (r1, r2, r3) with r1 > 0, then the expected
value E[1/D] is

E

[
1

D

]
=

1

2(r3 − r2)
ln

r3
r2

+
1

2(r2 − r1)
ln

r2
r1

.

In the case of r1 ≥ 0, the expected value E[1/D] does not exist.

Proof. If we denote η = 1/D, then the possibility distribution of η is

µη(t) = Pos{η = t} = Pos

{
D =

1

t

}
= µD

(
1

t

)
.

According to the distribution of D = (r1, r2, r3), we have

µη(t) =



1
t − r1

r2 − r1
, r1 ≤ 1

t
< r2

r3 − 1
t

r3 − r2
, r2 ≤ 1

t
< r3

0, others.
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Thus, the possibility distribution of η is

µη(t) =



r3t− 1

(r3 − r2)t
,

1

r3
≤ t ≤ 1

r2
1− r1t

(r2 − r1)t
,

1

r2
≤ t ≤ 1

r1

0, others.

For any r > 0, the credibility distribution of η is computed by

Cr{η ≥ r} = Cr{D ≤ 1
r} =



1, 0 < r <
1

r3
(r3 − 2r2)r + 1

2r(r3 − r2)
,

1

r3
≤ r <

1

r2
1− r1r

2r(r2 − r1)
,

1

r2
≤ r <

1

r1

0, r ≥ 1

r1
.

(7)

As a consequence, the expected value E[η] is computed as follows

E[η] =

∫ +∞

0

Cr{η ≥ r}dr−
∫ 0

−∞
Cr{η ≤ r}dr

=

∫ +∞

0

Cr{η ≥ r}dr

=

∫ 1
r3

0

dr +

∫ 1
r2

1
r3

(r3 − 2r2)r + 1

2r(r3 − r2)
dr +

∫ 1
r1

1
r2

1− r1r

2r(r2 − r1)
dr

=
r3

2r2r3
+

1

2(r3 − r2)
ln

r3
r2

+
1

2(r2 − r1)
ln

r2
r1

− r1
2r1r2

=
1

2(r3 − r2)
ln

r3
r2

+
1

2(r2 − r1)
ln

r2
r1

.

We next to show that when r1 = 0, the expected value E[1/D] does not exist. In fact, the credibility
distribution of η in this case is

Cr{η ≥ r} = Cr{D ≤ 1
r} =



1, 0 < r <
1

r3
(r3 − 2r2)r + 1

2r(r3 − r2)
,

1

r3
≤ r <

1

r2
1

2r2r
, r ≥ 1

r2
.

(8)

Thus, the expected value E[η] is computed by

E[η] =

∫ +∞

0

Cr{η ≥ r}dr−
∫ 0

−∞
Cr{η ≤ r}dr

=

∫ +∞

0

Cr{η ≥ r}dr

=

∫ 1
r3

0

dr +

∫ 1
r2

1
r3

(r3 − 2r2)r + 1

2r(r3 − r2)
dr + lim

d→+∞

∫ d

1
r2

1

2r2r
dr

=
1

2(r3 − r2)
ln

r3
r2

+
1

2r2
(1 + lim

d→+∞
ln dr2),

which implies the expected value E[1/D] does not exist. The proof of theorem is complete.
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Theorem 3. If demand D in model (2) is a trapezoidal fuzzy variable (r1, r2, r3, r4) with r1 > 0, then the
expected value E[1/D] is

E

[
1

D

]
=

1

2(r4 − r3)
ln

r4
r3

+
1

2(r2 − r1)
ln

r2
r1

.

In the case of r1 ≥ 0, the expected value E[1/D] does not exist.

Proof. If we denote η = 1/D, then the possibility distribution of η is

µη(t) = Pos{η = t} = Pos

{
D =

1

t

}
= µD

(
1

t

)
.

According to the distribution of D, we have

µη(t) =



r4t− 1

(r4 − r3)t
,

1

r4
< t ≤ 1

r3

1,
1

r3
< t ≤ 1

r2
1− r1t

(r2 − r1)t
,

1

r2
< t ≤ 1

r1

0, others.

For any r > 0, the credibility distribution of η is

Cr{η ≥ r} = Cr{D ≤ 1
r} =



1, 0 < r <
1

r4
(r4 − 2r3)r + 1

2r(r4 − r3)
,

1

r4
≤ r <

1

r3
1

2
,

1

r3
≤ r <

1

r2
1− r1r

2r(r2 − r1)
,

1

r2
≤ r <

1

r1

0, r ≥ 1

r1
.

(9)

Thus, the expected value E[η] is computed by

E[η] =

∫ +∞

0

Cr{η ≥ r}dr−
∫ 0

−∞
Cr{η ≤ r}dr

=

∫ +∞

0

Cr{η ≥ r}dr

=

∫ 1
r4

0

dr +

∫ 1
r3

1
r4

(r4 − 2r3)r + 1

2r(r4 − r3)
dr +

∫ 1
r2

1
r3

1

2
dr +

∫ 1
r1

1
r2

1− r1r

2r(r2 − r1)
dr

=
1

2(r4 − r3)
ln

r4
r3

+
1

2(r2 − r1)
ln

r2
r1

.

We next to show that when r1 = 0, the expected value E[1/D] does not exist. In fact, the credibility
distribution of η in this case is

Cr{η ≥ r} = Cr{D ≤ 1
r} =



1, 0 < r <
1

r4
(r4 − 2r3)r + 1

2r(r4 − r3)
,

1

r4
≤ r <

1

r3
1

2
,

1

r3
≤ r <

1

r2
1

2r2r
, r ≥ 1

r2
.

(10)
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Furthermore, the expected value E[η] is computed by

E[η] =

∫ +∞

0

Cr{η ≥ r}dr−
∫ 0

−∞
Cr{η ≤ r}dr

=

∫ +∞

0

Cr{η ≥ r}dr

=

∫ 1
r4

0

dr +

∫ 1
r3

1
r4

(r4 − 2r3)r + 1

2r(r4 − r3)
dr +

∫ 1
r2

1
r3

1

2
dr + lim

d→+∞

∫ d

1
r2

1

2r2r
dr

=
1

2(r4 − r3)
ln

r4
r3

+
1

2r2
(1 + lim

d→+∞
ln dr2),

which implies the expected value E[1/D] does not exist. The proof of theorem is complete.

Theorem 4. If demand D in model (2) is an Erlang fuzzy variable Er(λ, r), where D ∈ [r1,+∞) with r1 > 0,
r is a positive integer and λ > 0, then we have

E

[
1

D

]
=

1

2
λ(

1

λr
)r

 r∑
j=1

j+1∏
i=2

(i− r)(−λ)j+1((
1

r1
)j+2−r exp(r)− 2(

1

λr
)j+2−r)− (

1

λr
)2−r

+ (
1

r1
)2−r exp(r)

]
+

1

λr
.

In the case of r1 ≥ 0, the expected value E[1/D] does not exist.

Proof. If demand D is an Erlang fuzzy variable Er(λ, r), then the possibility distribution of η = 1/D is as
follows

µη(t) = Pos{η = t} = Pos

{
D =

1

t

}
= µD

(
1

t

)
.

Since

µD(t) =

(
t

λr

)r

exp

(
r − t

λ

)
,

one has

µη(t) =

(
1

λrt

)r

exp

(
r − 1

λt

)
,

It follows that the credibility distribution of η is

Cr{η ≥ x} = Cr{D ≤ 1
x} =


1− 1

2

(
1

λrx

)r

exp

(
r − 1

λx

)
, 0 < x <

1

λr

1

2

(
1

λrx

)r

exp

(
r − 1

λx

)
,

1

λr
≤ x ≤ 1

r1
.

(11)

Thus, the expected value E[η] is computed by

E[η] =

∫ +∞

0

Cr{η ≥ x}dx−
∫ 0

−∞
Cr{η ≤ x}dx

=

∫ +∞

0

Cr{η ≥ x}dx

=

∫ 1
λr

0

(1− 1

2
(

1

λrx
)r exp(r − 1

λx
))dx +

∫ 1
r1

1
λr

1

2
(

1

λrx
)r exp(r − 1

λx
)dx

=
1

2
λ(

1

λr
)r[−

∫ 1
λr

0

x−r exp(r − 1

λx
)dx +

∫ 1
r1

1
λr

x−r exp(r − 1

λx
)dx] + (

1

λr
− 1)

=
1

2
λ(

1

λr
)r[

r∑
j=1

j+1∏
i=2

(i− r)(−λ)j+1((
1

r1
)j+2−r exp(r)− 2(

1

λr
)j+2−r)− (

1

λr
)2−r

+ (
1

r1
)2−r exp(r)] +

1

λr
.
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The rest of theorem is similar to prove. The proof of theorem is complete.

4 Numerical Discussion

In this section, we present numerical examples to illustrate the proposed optimization methods for inventory
problem.

In our inventory problem, a firm allows the buyers to order goods in advance, and obtain its revenue
through the order quantity. There are two types of costs, the fixed order cost and the holding cost. The
economics parameters p, a and h in the inventory problem are provided in Table 2, where p denotes the
revenues per inventoried item, a denotes the fixed costs per inventoried item and h denotes the holding costs
per inventoried item.

Case I: Demand vector D follows a discrete distribution. There are 10 items in the inventory problem.
The demands Di (i = 1, 2, . . . , 10) have the following possibility distributions:

Di ∼
(

ti1 ti2 · · · ti10
µi
1 µi

2 · · · µi
10

)
.

The values tij in the possibility distributions of demands Di are collected in Table 3, while the possibilities µi
j

in the possibility distributions of demands Di are provided in Table 4.

Table 2: Economics inputs for the inventory problem ($)

Item 1 2 3 4 5 6 7 8 9 10
p 10 11 12.5 13 12 9.5 14 13.5 12.5 15
a 1 2 2.5 1.5 1.8 2.2 2.3 4.1 1.9 2.7
h 0.55 0.6 0.65 0.71 0.53 0.56 0.68 0.81 0.92 0.5

Table 3: The values tij in the distributions of demand Di

Item ti1 ti2 ti3 ti4 ti5 ti6 ti7 ti8 ti9 ti10
1 40 35 30 25 20 18 15 13 10 5
2 40 30 20 10 8 7 6 5 4 3
3 35 30 20 15 14 12 10 9 7 5
4 45 35 25 20 18 15 12 10 8 5
5 50 48 45 40 36 32 30 25 20 15
6 60 55 50 47 43 38 35 30 25 20
7 55 50 44 40 35 32 30 25 21 16
8 68 65 60 57 54 45 42 36 33 25
9 70 65 62 59 55 50 45 40 35 30
10 65 62 54 50 47 43 34 30 28 25

Table 4: The values µi
j in the distributions of demand Di

Item µi
1 µi

2 µi
3 µi

4 µi
5 µi

6 µi
7 µi

8 µi
9 µi

10

1 0.2 0.3 1 0.7 0.5 0.4 0.6 0.5 0.2 0.8
2 0.3 1 0.5 0.4 0.2 0.6 0.7 0.8 0.1 0.2
3 0.4 1 0.6 0.3 0.5 0.7 0.8 0.3 0.2 0.1
4 1 0.8 0.4 0.5 0.6 0.3 0.2 0.2 0.1 0.1
5 0.7 0.4 0.6 0.2 0.3 0.5 1 0.4 0.8 0.1
6 0.8 0.7 0.5 0.9 0.3 0.2 0.6 1 0.5 0.4
7 0.4 0.3 0.5 0.8 0.9 0.6 0.2 1 0.7 0.5
8 0.3 0.2 0.4 0.5 0.7 0.9 0.6 0.8 1 0.4
9 0.4 0.3 0.2 0.2 0.5 1 0.6 0.7 0.4 0.8
10 0.4 0.3 0.5 0.8 1 0.7 0.6 0.4 0.5 0.2
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Based on the possibility distributions of demands Di, we compute the expected value E[1/Di], where the
weights qi are computed by formula (6), and the computational results are shown in Table 5.

Table 5: The calculation results of the weights

Item 1 2 3 4 5 6 7 8 9 10
q1 0.1 0.05 0.45 0 0 0 0 0 0 0.4
q2 0.15 0.45 0 0 0 0 0 0.3 0 0.1
q3 0.2 0.4 0 0 0 0 0.25 0.05 0.05 0.05
q4 0.6 0.1 0 0 0.15 0.05 0 0.05 0 0.05
q5 0.35 0 0 0 0 0 0.25 0 0.35 0.05
q6 0.4 0 0 0.05 0 0 0 0.3 0.05 0.2
q7 0.2 0 0.05 0.15 0.05 0 0 0.2 0.1 0.25
q8 0.15 0 0.05 0.05 0.1 0.1 0 0 0.35 0.2
q9 0.2 0 0 0 0.05 0.35 0 0 0 0.4
q10 0.2 0 0.05 0.15 0.25 0.05 0.05 0 0.15 0.1

Based on Theorem 1, we compute E[1/D] and obtain the optimal order policy

x∗ =

[
p1

h1m1
,

p2
h2m2

, · · · , p10
h10m10

]
,

where mi = E[1/Di], i = 1, 2, . . . , 10. The computational results are reported in Table 6.

Table 6: Optimal order policy under discrete demand distributions

Optimal Item
policy 1 2 3 4 5 6 7 8 9 10
E[ 1D ] 0.0989 0.1121 0.0667 0.0429 0.0362 0.0297 0.0383 0.0266 0.0241 0.0243
x∗ 184 164 288 427 625 571 538 627 564 1235

According to the data in Tables 2–6, the maximum expected profit E[π(x∗,D)] to model (4) is $33623.5.
Case II: Demands Di (i = 1, 2, . . . , 10) follow triangular distributions (ri1, r

i
2, r

i
3) for 10 items in the

inventory problem. The possibility distributions of demands Di are provided in Table 7.

Table 7: The triangular distributions of demands Di

Item 1 2 3 4 5
(ri1, r

i
2, r

i
3) (10,20,30) (20,30,40) (5,15,25) (15,30,45) (9,24,39)

Item 6 7 8 9 10
(ri1, r

i
2, r

i
3) (10,15,25) (8,20,30) (15,20,35) (25,35,45) (16,32,40)

Based on Theorem 2, we compute the expected value E[1/D] and obtain the following optimal order policy

x∗ =

[
p1

h1m1
,

p2
h2m2

, · · · , p10
h10m10

]
,

where mi = E[1/Di], i = 1, 2, . . . , 10. The optimal solution x∗ is shown in Table 8.

Table 8: Optimal order policy under triangular demand distributions

Optimal Item
policy 1 2 3 4 5 6 7 8 9 10
E[ 1D ] 0.0549 0.0347 0.0805 0.0366 0.0489 0.0661 0.0585 0.0474 0.0294 0.0356
x∗ 331 528 239 500 463 257 352 352 462 843

According to the data in Tables 2, 7 and 8, the maximum expected profit E[π(x∗,D)] to model (4) is
$27329.5.
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5 Conclusions

This paper studied the multi-item single-period inventory problem with fuzzy demand. The major conclusions
include the following several aspects:

(i) We built a multi-item single-period expected profit model, in which the uncertain demands in the
inventory problem are described by possibility distributions. Since the expression of the optimal order
policy contains E[1/Di] (i = 1, 2, . . . , n), we calculated the expected value about the reciprocal of the
demand.

(ii) We addressed the cases of fuzzy demands follow discrete possibility distribution and triangular, trape-
zoidal and Erlang possibility distributions. The computational results have been summarized in Theo-
rems 1–4, which can help us to obtain the analytic solution to the proposed expected value model.

(iii) Based on the obtained theoretical results, some numerical experiments were conducted to illustrate
the proposed methods. The obtained optimal order policies were reported in Tables 6 and 8. The
computational results support our arguments.

In our future research, we will introduce risk measure to our inventory problem. In addition, we may ad-
dress the general case that the marginal possibility distributions of demands Di are not mutually independent.
In this situation, we can adopt the approximation method [11] to evaluate the expected objective E[π(x,D)],
and discuss the convergence of the approximation method [12].
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