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Abstract 

 

We prove the existence and uniqueness of common fixed point for a sequence of mapping, considering each pair of 

mapping satisfies the contractive condition on fuzzy metric space. We also prove same for generalized fuzzy metric 

spaces. We give the lemma to prove the main result in generalized fuzzy metric space. In this paper we extend the 

theorem of Gajic [5] in fuzzy metric space as well as in generalized fuzzy metric space for sequence of mappings. We 

give example to explain our main result.  
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1 Introduction 
 

Zadeh’s [22] fuzzy set commencement has evolved the concept of fixed point theory in different directions. In 1992, 

concept of D -metric space was introduced by Dhage [4]. This D -metric space also known as generalized metric 

space. In 2006, Mustafa and Sims [15] introduced a new structure of generalized metric space called  G -Metric 

spaces. Sung and Yang [21] introduced the notion of generalized fuzzy metric spaces. Generalized fuzzy metric space 

is a combination of the concept of fuzzy set introduced by Zadeh [22] in 1965 and the concept of fuzzy metric space 

introduced by Kramosil and Michalek [13]. George and Veeramani [6, 7] modified the definition of fuzzy metric 

space by defining the Hausdorff topology on Kramosil’s fuzzy metric space. Many authors have also studied fuzzy 

metric space and generalized fuzzy metric space [1, 2, 3, 9, 10, 11, 12, 14, 16, 17, 18, 20]. Gajic [5] proved a common 

fixed point theorem for a sequence of self mappings defined on D -metric space given as follows: 

Theorem 1.1 [13] Let ( ,D)X  be a complete D -metric space, : , ,
n

f X X n N  be a sequence of mappings with 

property that for each , ,x y z X  and any  (n,n,n) : n ,, , \ , Ni j k N      

D( ( ), ( ), ( )) .D( , , )
i j k

f x f y f z q x y z
 
for some 1.q           

      
(1) 

If there exists 0x X  such that 
0 1 0sup ( , ( ), ) ,

y X

D x f x y M


 for some 0,M   then there exists a unique common fixed 

point for the family{ }
n

f . 

 

2 Preliminaries 
 

Definition 2.1 [19] A binary operation      : 0,1 0,1 0,1    is a continuous t -norm. If   satisfies the following 

conditions: 

(i)   is commutative and associative, 

(ii)   is continuous, 

(iii) 1a a   for all  0,1a , 
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(iv) a b c d   , whenever a c  and b d  for all  , , , 0,1a b c d  . 

Definition 2.2 [13] A 3-tuple ( , ,*)X M  is said to be a fuzzy metric space if X  is an arbitrary set,   is a continuous 

t-norm, and M  is fuzzy sets on  2 0,X    satisfying the following conditions for all , ,x y z X and , 0 :s t   

(FM-1) ( , , ) 0,M x y t   

(FM-2) ( , , ) 1M x y t   for all t > 0 iff ,x y  

(FM-3) ( , , ) ( , , ),M x y t M y x t   

(FM-4) ( , , )* ( , , ) ( , , ),M x y t M y z s M x z t s   

(FM-5)    ( , ,.) : 0, 0,1M x y    is left continuous. 

The function ( , , )M x y t  denotes the degree of nearness between x  and y  w.r.t. .t  

Remark 2.3 Since   is continuous, it follows from ( FM -4) that the limit of the sequence in FM-space is uniquely 

determined. Let us consider ( , , )X M T  is a fuzzy metric space with the following condition: 

(FM-6)  lim ( , , ) 1.M x y tt   

Lemma 2.4 [8] In fuzzy metric space ( , , )X M  , ( , ,.)M x y is non-decreasing for all ,x y X . 

Definition 2.5 [8] Let ( , , )X M   be a fuzzy metric space, then  

a) a sequence  nx  in X is said to be convergent to a point x X  if, for all 0t  , ;lim ( , , ) 1
n n

M x x t


  

b) a sequence  nx  in X is said to be Cauchy sequence if, for all 0t   and 0p   , lim ( , , ) 1
n n p n

M x x t
 

  or if for 

each 0  , there exist 
0

n N  such that ( , , ) 1
n m

M x x t   , for each 
0
;,n m n  

c) a fuzzy metric space ( , , )X M   is said to be complete if and only if every Cauchy sequence in X  is convergent. 

Example 2.6 Let    01 :X n n N    and T  be the continuous t -norm defined by ( , )T a b ab   

 ( ( , ) min , )T a b a b  respectively, for all  , 0,1a b . For each 0t   and ,x y X , define ( , , )X M T  by 

,   0
( , , )

0,                0

t
t

t x yM x y t

t

 
 

   
  

, 

clearly ( , , )X M T  is a complete fuzzy metric space. 

Definition 2.7 [21] A 3-tuple ( , , )X G   is said to be a G -fuzzy metric space (denoted by GF-space) if X  is an 

arbitrary nonempty set,   is a continuous t -norm and G  is a fuzzy set on  3
0,X   satisfying the following 

conditions for each , 0t s  : 

 1GF  ( , , , ) 0G x x y t   for all ,x y X  with ,x y  

 2GF  ( , , , ) ( , , , )G x x y t G x y z t for all , ,x y z X  with ,y z  

 3GF  ( , , , ) 1G x y z t   if and only if ,x y z   

 4GF  ( , , , ) ( ( , , ), )G x y z t G p x y z t , where p is a permutation function, 

 5GF  ( , , , ) ( , , , ) ( , , , )G x a a t G a y z t G x y z t s  
 
(triangle inequality), 

 6GF     ( , , ,.) : 0, 0,1G x y z    is continuous. 

Definition 2.8 [21] Let ( , , )X G   be a GF-space, then 

(1) a sequence  nx  in X  is said to be convergent to x  (denoted by lim
n n

x x


 ) if lim ( , , , ) 1
n n n

G x x x t


  for all 

0,t   

(2) a sequence  nx  in X  is said to be a Cauchy sequence if 
,

lim ( , , , ) 1,
n m n n m

G x x x t



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(3)  a GF-space is said to be complete if every Cauchy sequence in X  is convergent. 

Remark 2.9 [12] Let ( , , )X G   be a GF-space with the following condition: 

 7GF 
 
lim ( , , , ) 1

t
G x y z t


  for all , .x y X  

Lemma 2.10 [21] Let ( , , )X G   be a GF-space. Then ( , , , )G x y z t  is non-decreasing with respect to t  for all 

, , .x y z X  

Lemma 2.11 [21] Let ( , , )X G   be a GF-space. Then G  is a continuous function on  3 0,X   . 

 

3 Main Results 
 

Here we give the introductory results for sequence of mappings to prove our result. The first result assumes that each 

pair of self mappings satisfies the same contraction condition and sequence{ }nf  has a common fixed point. The 

second result assumes that each nf satisfies the same contraction condition and sequence { }nf  tends to point wise to a 

limit function ,f  then f  has a fixed point ,z  which is the limit of each of the fixed points nz of nf . The third result 

assumes that each { }nf  converges uniformly to a function f
 
which satisfies the particular contraction condition and 

each nf  has a fixed point nz , then a sequence { }nz converges to z , where z  is a fixed point of f . In this paper we 

prove a fixed point result of first type of sequence of mappings in fuzzy metric space and generalized fuzzy metric 

space. To prove our main result in fuzzy metric space we apply the following lemma. 

Lemma 3.1 [14] Let  nx  be a sequence in fuzzy metric space ( , , )X M   with the condition (FM-6), if there exists a 

number (0,1)q such that    
2 1 1
, , , ,

n n n n
M x x qt M x x t

  


 
for all 0t  and 1,2,3,...n  , then  nx is a Cauchy 

sequence in .X  

Lemma 3.2 [14] If for all , ,x y X 0t  and for a number (0,1)q ,    , , , , ,M x y qt M x y t  then .x y   

Theorem 3.3 Let ( , , )X M   be a complete fuzzy metric space and : , ,
n

f X X n N   be a sequence of mappings 

with property that for each , ,x y z X  and any  ( , ) : ,, \ , n n n Ni j N      

( ( ), ( ), ) ( , , )i jM f x f y qt M x y t  for some 1q  .
           

(2) 

Then there exists a unique common fixed point for the family 
n

f . 

Proof: For ,x X define a sequence{ }nx
1

{ ( )},
n n

f x


 ,n N  first we prove that  
n

x  is a Cauchy sequence. For any 

,n p N  and using (2) we have  

   1 1
, , ( ), ( ),

n n p n n n p n p
M x x qt M f x f x qt

    
  ,

1 1
.,

n n p
M x x t

  
  

Using Lemma (3.1), we observe that  nx  is a Cauchy sequence. Since ( , , )X M   being complete fuzzy metric space, 

there exists z Z  such that lim
n n

z x


 . 

Now we prove that z  is the unique fixed point of the sequence 
n

f . 

For fixed k N  and for any , ,m N m k   
   

1
, ( ), ( ), ( ),

m k m m k
M x f z qt M f x f z qt


  

1
., ,

m
M x z t


  

Since M  is continuous, it follows that    , ( ), , ,
k

M z f z qt M z z t . Consequently ( ).
k

z f z  Hence z  is a fixed 

point of the sequence 
n

f .  

Uniqueness: We suppose that for some ,y X ( )
k

f y y  for all ,k N as 1q  and  , ,M z y qt
 

   .( ), ( ), , ,
k k

M f z f y qt M z y t  Using Lemma (3.2), we have z y . So the uniqueness is proved and hence the 

proof is completed. 
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Corollary 3.4 Let ( , , )X M   be a complete fuzzy metric space and : , ,
n

f X X n N   be a sequence of mappings 

with property that ( ( ), ( ), ) ( , , )m m

i j
M f x f y qt M x y t  for some ,m N  each , ,x y z X  and any  

 ( , ) :, \ , n n n Ni j N      for some 1.q   Then there exists a unique common fixed point for the family 
n

f . 

Proof: Theorem 3.3 implies that there exists a unique common fixed point for the sequence m

k
f . But by uniqueness, 

fixed point for m

k
f  is a fixed point for .kf  Hence the proof is completed. 

Example 3.5 Let the sequence { },
n

f
 
where

2( ) (1 )
n

f x x nx  is defined in fuzzy metric space with ( , , ),X M 

 ,0,1X   converges point wise to limit ( ) 0f x  . Also 0x   is a unique common fixed point for the family{ }.
n

f   

To prove our main result in G -fuzzy metric space, first we prove lemma in G -fuzzy metric space. 

Lemma 3.6 Let  nx
 
be a sequence in a G -fuzzy metric space ( ,G, )X  with the condition  7 .GF   If there exists 

a number (0,1)q such that   

   
1 1 2 1
, , , , , ,

n n n n n n
G x x x qt G x x x t

   
  for all 0t  and 1,2,3,...,n                     (3) 

then  nx
 
is a Cauchy sequence in .X  

Proof: For 0t  and (0,1),q
 
we have      2 2 3 1 1 2 0 0 1

,, , , , , , , , , tG x x x qt G x x x t G x x x
q

  this implies 

  22 2 3 0 0 1
., , , , , , tG x x x t G x x x

q
 

  
 

 

By simple induction with the condition (3), we have  

 
1 1 2 0 0 1
, , , , , , nn n n

tG x x x qt G x x x
q  

 
  

 
                                           (4) 

for all 0t   and 1,2,3....n   Thus by (4) and  5 ,GF  for any positive integer p  and real number 0,t   we have 

     1 1 1 1 2 1 1
, , , , , , , , ,

n n n p n n n n p n p n pp p
t tG x x x t G x x x p times G x x x

          
     

1 21 1 2 1 1 2
, , , , , ,n n p

t tG x x x p times G x x x
pq pq  

   
      

   
.  

Therefore, by  7 ,GF   we have  

 1 1
lim , , , 1 1 1 1,

n n n n p
G x x x t

   
    

 
this implies that  

n
x  is a Cauchy sequence in X . This completes the proof. 

Lemma 3.7 [12] If for all , ,x y X 0t  and for a number (0,1)q ,     ,, , , , , ,G x x y qt G x x y t then .x y  

Theorem 3.8 Let ( , , )X G   be a complete G -fuzzy metric space, : , ,
n

f X X n N 
 
be a sequence of mappings 

with the property that for each , ,x y z X  and any  (n,n,n) : n ,, , \ , Ni j k N      

( ( ), ( ), ( ), ) ( , , , )
i j k

G f x f y f z qt G x y z t
 
for some 1.q              (5) 

Then there exists a unique common fixed point for the family{ }.
n

f  

Proof:  For ,x X  define a sequence
1

{ } { ( )},
n n n

x f x


 n N , we prove that  
n

x  is a G -Cauchy sequence. 

For any ,n p N
 
and using (5) we have 

   ,
1 1 1

, , ( ), ( ), ( ),
n n n p n n n n n p n p

G x x x qt G f x f x f x qt
     

  1 1 1
., , ,

n n n p
G x x x t

   
  

Now using Lemma (3.6) we observe that  nx  is a G -Cauchy sequence. Since ( , , )X G   being complete fuzzy metric 

space, there exists z Z  such that .lim
n n

z x



 

We prove that z  is the unique fixed point of the sequence{ }
n

f . 

Fixed k N  for any ,m N m k  ,  

   
1

, ( ), ( ), ( ), ( ), ( ),
m k k m m k k

G x f z f z qt G f x f z f z qt


  
1

., , ,
m

G x z z t



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Since G  is continuous, it follows that    ., ( ), ( ), , , ,
k k

G z f z f z qt G z z z t Consequently ( ).
k

z f z
 
Hence z  is a 

fixed point of the sequence { }.
n

f
 

Uniqueness: We suppose for some , ( ) ,
k

y X f y y   for all k N , as 1q 
 
and 

     , , , ( ), ( ), ( ), , , , .
k k k

G z z y qt G f z f z f y qt G z z y t 
 

Using Lemma (3.7), we have z y . So, uniqueness is proved and the proof is completed. 

Corollary 3.9 Let ( , , )X G   be a complete G -fuzzy metric space. : , ,
n

f X X n N 
 
be sequence of mappings with 

property that for some ,m N  each , ,x y z X  and any  (n,n,n) : n ,, , \ , Ni j k N      

( ( ), ( ), ( ), ) ( , , , )m m m

i j k
G f x f y f z qt G x y z t  for some 1.q 

                                    
(6)

 
Then there exists a unique common fixed point for the family { }

n
f . 

Proof: Here, Theorem 3.8 implies that there exists the unique common fixed point for the sequence  ,m

k
f  but the 

fixed point for m

k
f  by uniqueness is a fixed point for .

k
f  This completes the proof. 
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