- ACADEM]C Journal of Uncertain Systems

Vol.10, No.1 .72-80, 2016
H™ \orid Academic Union R
Online at: www.jus.org.uk

When Can We Simplify Data Processing: An Algorithmic Answer

Julio Urenda!, Olga Kosheleva!, Vladik Kreinovich!* Berlin Wu?
Y University of Tezas at El Paso, El Paso, TX 79968, USA

2 Department of Mathematical Sciences, National Chengchi University, Taipei 116, Taiwan

Received 11 June 2015; Revised 5 July 2015

Abstract

In many real-life situations, we are interested in the values of physical quantities x1,...,x, which
are difficult (or even impossible) to measure directly. To estimate these values, we measure easier-to-
measure quantities yi,...,yn which are related to the desired quantities by a known relation, and use
these measurement results to estimate z;. The corresponding data processing algorithms are sometimes
very complex and time-consuming, so a natural question is: are simpler (and, thus, faster) algorithms
possible for solving this data processing problem? In this paper, we show that by using the known Tarski-
Seidenberg algorithm, we can check whether such a simplification exists and, if it exists, produce this
simplification.

(©2016 World Academic Press, UK. All rights reserved.

Keywords: data processing, indirect measurements, measurement uncertainty, algorithm simplification

1 Formulation of the Problem

Need for data processing. In many practical situations, we are interested in a quantity which is difficult
or even impossible to measure directly. For example:

e while it is possible to directly measure a distance to the Moon — by sending a laser signal to a Moon-
based reflector and measuring the time that it takes to get back — there is no easy way to directly
measure a distance to the faraway star;

e while we can directly measure the amount of oil in a reservoir, it is not possible to directly measure the
overall amount of oil in an oil field.

In all such situations, when we cannot directly measure the values of the quantities-of-interest x1, ..., x,, we:
e find auxiliary easier-to-measure quantities y1, ..., ¥, which have known relation with x;, i.e., for which
yi = fi(x1,- -+ ,xy) for some known function f;;

e measure the values y;, and then

e find the values of the desired quantities by solving the corresponding system of equations
fi(wy, - xn) = y1;

fo(z1, -, xn) = Y23

fm(xlf" >$n) = Ym-

*Corresponding author.
Emails: jeurenda@utep.edu (J. Urenda), olgak@Qutep.edu (O. Kosheleva), vladik@utep.edu (V. Kreinovich),
berlin@nccu.edu.tw (B. Wu).

Journal of Uncertain Systems, Vol.10, No.1, pp.72-80, 2016 73

Computations needed to reconstruct the desired values x; from the measurement results y; form what is
known as data processing.

Examples. To find a distance to a faraway star, we can measure the angle to this star from different Earth
locations — or, better yet, from different points on the Earth’s orbit. Then, we can use trigonometric formulas
to estimate the actual orbit. Even more complex computations are needed to estimate the amount of oil in a
given oil field.

Data processing algorithms are often time-consuming. In many practical situations, the dependencies
fi between physical quantities are non-linear. In such situations, to find the desired quantities x;, we need to
solve systems of non-linear equations.

It is known that the general problem of solving a system of non-linear equations — even quadratic equations
— is NP-hard; see, e.g., [4]. This means, crudely speaking, that unless P=NP (which most computer scientists
believe to be impossible), no algorithm is possible that would always solve all such systems in feasible time.
In other words, algorithms for solving such systems often require a large amount of computation time.

This is especially critical in real-time situations, when we use the estimates of the dynamically changing
quantities x; to make decision — e.g., in control situations and in medical decision making.

The problem becomes even more complex if we take measurement uncertainty into account. The
above equations describe the ideal case, when the measurement uncertainty can be ignored and the measured
values y; are exactly equal to the values f;(x1,---,x,). In practice, there is always some measurement
uncertainty.

Usually, we know an upper bound A; on the inaccuracy of each measurement. This means that the
measurement result y; can differ from the actual (unknown) value f;(z1,--- ,2,) by no more than A;. In this
case, instead of the above system of equations, we have a system of inequalities:

y1 — A1 < fi(zr, - xn) <1+ Ag;

Y2 — A1 < fo(zr, -+, 2n) <2 + Ag;

This measurement uncertainty makes the corresponding computational problem even more complex: namely,
as shown in [4], this problem becomes NP-hard even in the simplest case, when all the dependencies
fi(x1,- -+ ,x,) are linear.

While the general problem is NP-hard, specific problems can be simplified. While the general
problem is hard to solve, there are many specific measurement situations in which we can feasibly estimate
the desired quantities x; based on the measurement results.

In mathematical terms, a specific situation means that instead of generic functions f;(z1,--- ,z,), we have
a given family of functions F;(z1,- -+ ,zpn,c1, -+ ,cx) With parameters cy, ..., cg.

Resulting problem. For each specific class of measurement situations, it is desirable to find out beforehand
whether for this class of situations, a feasible data processing algorithm is possible, and, if such an algorithm
is possible, design such an algorithm.

It is important to notice that:

e while data processing itself is often on-line, so that the resulting data processing algorithm itself should
be fast,

e the design of the corresponding algorithm can be off-line, so it is tolerable if the method for designing
this algorithm requires a long computation time.

What we do in this paper. In this paper, we show how to use the known Tarski-Seidenberg algorithm to
solve the above problem.

Note about the fuzzy case. In some cases, in addition to the upper bounds A; on the measurement errors,
experts can also tell which values within these bounds are more probable and which are less probable. Experts
usually describe this additional information by using imprecise (“fuzzy”) words from natural language; for

74 J. Urenda et al.: When Can We Simplify Data Processing

example, an expert can say “the measurement error is most probably much smaller than A”. To represent this
knowledge in precise terms, it is reasonable to use techniques which were specifically designed for representing

this knowledge — namely, fuzzy techniques; see, e.g., [3, [1, 10]. In this approach, the expert knowledge

is represented by a membership function u;(Ay;) that assigns, to each value of the difference Ay; def Yi —

fi(x1,- -+ ,x,), a degree to which, according to the expert(s), this value of measurement uncertainty is possible.

For processing fuzzy data, it is often convenient to use not the original membership functions p;(Ay;), but

their a-cuts ©A; % {z : pi(z) > a} corresponding to different values « € [0,1]. It is known that for many

data processing algorithms, the a-cut describing the result of data processing is equal to the result of applying
the data processing algorithms to the a-cuts of the inputs [3] [7]. So, from the computational viewpoint, it is
sufficient, for each «, to consider the case when we have interval bounds on Ay;, namely, the bounds A;(«)
forming the corresponding a-cut *A; = [—A; (@), A;(a)].

Because of the possibility of this reduction, in the present paper, we only consider the above case of interval
uncertainty.

2 Formulating the Problem in Precise Terms

What we know. We know the measurement results y; and we know the relation between these results

and the desired values x1,...,x,. These relations are described in terms of equalities or inequalities.
Each of these equalities and inequalities can be transformed into a form f(x1, - ,Zn,¥1, " ,ym) = 0 or
flxy, - yxn,y1,+ ,ym) > 0, for some computable function f(x1,- -+ ,&n, 41, ,Ym): indeed, each relation

of the type u = v or uw > v can be equivalently reformulated as u — v = 0 and, correspondingly, u —v > 0.

From the mathematical viewpoint, this function can be complex, e.g., it can include computing sin(z),
exp(z), etc. In the computer, however, the only hardware supported elementary arithmetic operations are
arithmetic operations +, —, -, and /. Thus, any actually computed function is a composition of such operations
— i.e., a rational function (a ratio of two polynomials). For example, the values of the functions sin(z)
and exp(z) are computed, in most computers, by computing the sum of the first few terms in their Taylor
expansions — i.e., as polynomials.

We can also have branching, when different expressions are used depending on the values x; and y;;
this branching is also done by comparing the values of two comparable expressions. Let us describe these
computations in precise terms.

It should be noted that the functions f(z1, - ,Zn, Y1, ,Ym), which are used in describing the relation
between the measurement results y; and the desired values x;, rarely use loops. Loops are often used to solve
these systems, i.e., to find the desired values x; from the measurement results y;, but not to describe the
relation. Let us therefore explicitly describe the corresponding notion of a loop-less algorithm.

Definition 1. Let N and T be natural numbers. The number N will be called a number of inputs, and the
number T will be called the number of computation steps. By an instruction I; corresponding to step i, we
mean an expression of one of the following five types:

)

o ‘rri; — 1 ®ry”, where @ is one of the four arithmetic operations (+, —, -, and /), and j, k <T +i;
e “go to Step a”, where a > i;

o “ifr; =1 then go to Step a else go to Step b”, where j,k <T +i and a,b > i;

o “if r; > 1y then go to Step a else go to Step b”, where j,k <T 41 and a,b > i;

e “return r;”, where j <T +1i; and

o “stop”.

By a straightforward (loop-less) algorithm A, we mean a sequence of instructions Iy,...,In in which the
only allowed wvariables r; are the ones for which the corresponding instruction I; is of the arithmetic type
“TT+7; — T D ry”.

Definition 2. Let A be a straightforward algorithm with N inputs, and let r1,...,rxN be real numbers. By the
result of applying the algorithm A to these numbers, we mean the value(s) that are obtained after a step-by-step
implementation of the corresponding instructions.

Journal of Uncertain Systems, Vol.10, No.1, pp.72-80, 2016 75

Definition 3. We say that a function f(vy,--- ,vn) is straightforwardly computable if there exist constants
CM+1,---,CN and a straightforward algorithm A for which, for every tuple vy, ... ,vpr, the result of applying
A to the values vi,...,Vpr,CM41, - - CN coincides with f(vy, -+ ,vpr).

Example. Let us show how a simple computation of a piece-wise linear function can be described in these
terms. We want to compute a function f(z) which is equal:

e toa- -z +bwhen x <z and
e toc-x+d when z > xg.

In this example, we have N = 6 inputs: vy = x,ro = a, r3 = b, 74 = 29, r5 = ¢, and rg = d. The corresponding
instructions have the following form:

e the first instruction I is
“if r4 > r1, then go to Step 2 else go to Step 6”;

this instruction checks whether x < xg;
e the instruction Iy is “rg <— ro - r1”; it computes a - x;
e the instruction I3 is “rg <— rg + r3”; it adds b to a - x and thus, computes a - x + b;
e the instruction Iy is “return rg”;
e the instruction I5 is “stop”;
e the instruction Ig is “ris < 75 - r1”; this instruction computes c - x;
e the instruction I; is “ri3 < r12 + 16”; it adds d to ¢ - x and thus, computes ¢ - x + d;
e the instruction Ig is “return r3”;
e the final instruction Ig is “stop”.

In this case, we have one input M = 1, and five constants co = a, c3 = b, ¢4 = xg, ¢5 = ¢, and ¢g = d. The
above algorithm shows that the original piece-wise linear function is straightforwardly computable.

Formulation of the problem. We have relations expressed by straightforwardly computable functions; we
want to check whether a simple (straightforward) algorithm is possible for estimating the desired quantities
x; based on y;.

For example, we may want to check if we can find a linear mapping transforming y; into z;, or a quadratic
mapping, or a piece-wise linear mapping, with some threshold separating two linear expressions. In all these
examples, we have a general straightforward algorithm with unknown coefficients, and we would like to:

e check whether it is possible to find the values of the coefficients for which the algorithm always recon-
structs z; from y;, and

e if it is possible, to actually find the values of these coefficients.

For example, in the case of a linear transformation, the parameters a; and a;; describing a general linear
transformation x; = a; + Y ai; - y; are the desired coefficients.

J
There can be two versions of this problem:
e we can simply want to find some values x; that satisfy all the constraints, or

e we may want to find, for each ¢, the exact lower bound z; and the exact upper bounds Z; of the values
x; corresponding to possible solutions; see, e.g., [2] [6].

Let us describe all this in precise terms.

76 J. Urenda et al.: When Can We Simplify Data Processing

Definition 4.

e By a data processing problem P, we mean a finite set of relations of the type fi(x1, -, Tn, Y1, s Ym) =
0 or fi(mlf" yTny Y1, 7ym) 2 0.

o We say that a tuple y = (y1,- -+ ,Ym) s possible for a data processing problem P if there exists values
T1,..., T, for which all relations from P are satisfied.

o We say that an algorithm A solves the data processing problem P if for every possible tuple y, this
algorithm returns the values x1,...,x, for which all relations from P are satisfied.

o We say that an algorithm A reliably solves the data processing problem P if for every i, it returns
the exact lower bound x; and the exact upper bounds T; of the values x; corresponding to all possible
solutions.

Definition 5. By a data processing simplification problem, we mean the following problem:

e given a data processing problem P with straightforwardly computable relations, and a straightforward
algorithm A with N > m inputs,

e check whether there exist values of the parameters ¢mi1,-..,cn for which A solves the data processing
problem;
e for the cases when such values exist, compute such values cppi1,...,CN.

Definition 6. By an reliable data processing simplification problem, we mean the following problem:

e given a data processing problem P with straightforwardly computable relations, and a straightforward
algorithm A with N > m inputs,

e check whether there exist values of the parameters cp41,...,cn for which A reliably solves the data
processing problem;

e for the cases when such values exist, compute such values ¢ppi1,...,CN.

3 Main Results

Proposition 1. There exists an algorithm that solves the data processing simplification problem.
Proposition 2. There exists an algorithm that solves the reliable data processing simplification problem.

Comment. Our proof uses the Tarski-Seidenberg algorithm (see description below). While this algorithm
produces the desired results, it is known to be hyper-exponential: as the length ¢ of the formula increases, its
running time grows faster than 22" Thus, from the application viewpoint, it is desirable to come up with a
faster algorithm. For some important cases, such faster algorithm was proposed in [9].

4 Proof of the Main Results

Tarski-Seidenberg algorithm: reminder. In this paper, we will use Tarski-Seidenberg algorithm; see,
e.g., [1, 8]. This algorithm deals with the first-order theory of real numbers. Formulas of this theory are
defined as follows:

e we start with real-valued variables z1,..., z,;

e clementary formulas are formulas of the type FF = 0, F > 0, or ' > 0, where F is a polynomial with
integer coefficients;

e finally, a general formula can be obtained from elementary formulas by using logical connectives (“and”
&, “or” Vv, “implies” —, and “not” —) and quantifiers over real numbers (Vz; and Jx;).

Journal of Uncertain Systems, Vol.10, No.1, pp.72-80, 2016 77

For example, a formula describing that the given polynomial F(zq,--- ,x,) with integer coefficients has a
solution with x7 > 0 is a first-order formula:

Jzy ... Fzy (F(z1,-- - ,20) = 0) & (21 > 0)).

Another example is a formula that show that every quadratic polynomial with non-negative determinant has
a solution:
YavbVe((b* —4a-¢>0) = 3z (a-22 +b-x+c=0)).

Tarski designed an algorithm that, given a formula from this theory, returns 0 or 1 depending on whether this
formula is true or not.

Seidenberg noticed that Tarski’s algorithm works by “eliminating” quantifiers one by one, i.e., by sequen-
tially reducing a given formula to a one with one fewer quantifier. Because of this fact, he showed that we
can use a similar construction to reduce each first-order formula with free variables to a quantifier-free form.

Tarski-Seidenberg algorithm: corollary. From the above reduction, it follows that if a formula with
free variables has a solution, then it also has an algebraic solution, i.e., a solution in which each number is
a root of a non-zero polynomial with integer coefficients. Namely, we can reduce the original formula to a
quantifier-free formula F(z1, -, x,).

The formula 3z ... 3z, F (21,29, ,x,) can be similarly reduced to a quantifier-free expression, i.e., to
a combination of equalities and inequalities of the type P(xz1) = 0, P(xz1) > 0, and P(z1) > 0. If one of
them is an equality, then we get an algebraic number x1; if all of them are strict inequalities, then the whole
range of values satisfies these inequalities and thus, we can select a rational (hence, algebraic) value from this
interval.

Once we plug in the algebraic value z; into the original formula, we can then similarly find an algebraic
value o, etc. — and after n stages, we will get a tuple of algebraic numbers z1,...,z, that satisfies the
original formula F(x1,--- ,2,).

Proof of Propositions 1 and 2. Let us show that by using the Tarski-Seidenberg algorithm, we can come
up with the desired simplification algorithms for proving Propositions 1 and 2.

Let us first prove that the relation between the inputs of a straightforward algorithm and the result(s) of
applying this algorithm can be described by a first order formula. Indeed, we have finite number of branchings,
so we have finitely many possible branches. On each branch, each value r; is computed by using elementary
arithmetic operations and is, thus, a rational function of the inputs — i.e., ratios of two polynomials. Each
branching inequality is thus an inequality between rational functions.

Equalities and inequalities between rational functions can be explained in terms of the polynomials:

e the relation F'/G = 0 for polynomials F' and G is equivalent to F' = 0, and
e therelation F//G > 0 for polynomials F' and G is equivalent to ((F' > 0) & (G > 0))V((F < 0) & (G < 0)).

Thus, the relation between the inputs and the results of a straightforward algorithm can be indeed described
by a first order formula.
In these terms, the first task is to check whether the following formula is true:

Jeprar oo JenVyr . Yy (2 = Ay, ¢) = P, y)),
where:

e the first order formula z = A(y, ¢) means that the tuple x = (z1,--- ,x,) is the result of applying the
algorithm A to the values y supplemented by the parameters cps41, ..., cy, and

e the first order formula P(x,y) means that all the relations forming P are satisfied, i.e., that the results
of all the straightforward algorithms computing the functions f; are indeed either equal to 0 or greater
than or equal to 0.

We can see that this is also a first order formula. Thus, by using the Tarski algorithm, we can decide whether
this formula is true or not.

If this formula is true, then the above Corollary enables us to actually find the values cpsy1, ..., ey for
which the corresponding formula is true — i.e., for which the algorithm A solves the original data processing
problem. This proves Proposition 1.

78 J. Urenda et al.: When Can We Simplify Data Processing

To prove Proposition 2, it is sufficient to show that the relation between y and each of the bounds z; and
T; can also be described by first order formulas. Indeed, the property that z; is the exact lower bound of all
the values x; for which the tuple x is consistent with the observations y can be described in the first order
form:
—3zq ...z (z < z; & Pz, y)) &Ve > 032 ... Fzy, (2 < z; + & P(x,y)).

Similarly, the property that T; is the exact upper bound of all the values x; for which the tuple x is consistent
with the observations y can be described in the first order form:

-3z ... Jzp(x; > T & Pla,y)) &Ve > 032y ... 3xy, (; > T — e & Px,y)).

Thus, the use of the Tarski-Seidenberg algorithm enables us to prove Proposition 2 as well.

5 Auxiliary Result: In Some Reasonable Sense, the Above Result
is the Best We Can Have

Can we do better? The above results use the Tarski-Seidenberg algorithm for deciding first order formulas.
In this proof, we spend quite some efforts reducing our problems to the first order formulas. So, a natural
question is: maybe there is a larger class of formulas for which a deciding algorithm is possible, a class which
would be more natural for our problem.

Towards possible better results. When we think about speeding up algorithms, a natural idea is to take
into account that out of four hardware supported elementary arithmetic operations, division is the slowest.
Thus, one possibility to speed up computations is to come up with algorithms that do not use division, i.e.,
with algorithms that only use polynomials and not general rational functions.

Comment. This is, by the way, one of the reasons why, as we have mentioned, sin(x) and exp(z) are computed
as polynomials (namely, as the sums of the first few terms in the corresponding Taylor expansion).

A seemingly natural idea. In view of the above, a seemingly natural idea is to add the existence of a
polynomial to the list of elementary operations. Thus, we arrive at the following definition.

Definition 7. We will define a p-language (p for polynomial) with variables of two types:

e variables x1,xo,... that run over real numbers, and
e for every integer k > 0, variables PF, PY, ...that run over polynomials of k variables.
Then:

e p-terms are defined, by induction, as follows:

— a variable s a p-term;
— the sum, the difference, and the product of p-terms is a p-term;

— if t1,...,t, are p-terms, then PF(t1,--- ,tx) is a p-term.
e For each p-term t, we can have three types of elementary p-formulas: t =0, t > 0, and t > 0.
e A p-preformula F' is any formula can be obtained from elementary formulas by using:

— logical connectives “and” &, “or” V, “implies” —, and “not” —, and

— quantifiers over real numbers: Ya; and Jx;.

e Finally, a p-formula is a formula of the type APF ... F, where P¥ are all polynomial variables in F.

Example. In these terms, the possibility of polynomial data processing can be described in a very natural
way, as

P .. 3Py ((x1 = P"(y) & - &xp = P (y)) — P(z,v)).

n

Journal of Uncertain Systems, Vol.10, No.1, pp.72-80, 2016 79

Alas. Unfortunately, for this natural generalization, no deciding algorithm is possible:

Proposition 3. No algorithm is possible that, given a closed p-formula, checks whether this formula is true
or not.

Proof. Our proof is based on the known result [5] that no algorithm is known that, given an equation
F(vy,--- ,v,) =0, where F(vy,--- ,v,) is a polynomial with integer coefficients, checks whether this equation
has a solution in which all v; are natural numbers. This result is known since it solves 10th Hilbert’s problem.

Let us show that if it was possible to decide whether a given p-formula holds, then we would be able to
checking whether polynomial equations has natural-number solutions — and since this is not possible, this
means that it is not possible to decide truth on p-formulas either.

Some coefficients of a polynomial F' as positive, some are negative. By moving all the terms with neg-
ative coefficients to the other side of the equation F' = 0, we get an equivalent equation G(vy,- - ,v,) =
H(vy,- - ,v,) in which all the coefficients of both polynomials G(vy,--- ,v,) and H(vy,--- ,v,) are positive.
Let us form the corresponding p-formula as follows:

1°. To every variable v;, we put into correspondence a polynomial P} () for which
va V(Eg (le (CL’Q . .’Eg) = Pil (.’EQ) . Pil (1'3))

One can easily check that all such polynomials have the form P}(z;) = z}* for some natural number v;.

2

%

2
the form (z}%)" = x}".

2°. To each term v?, we put into correspondence a p-term P}(P}(x1)); one can see that this polynomial has

3
79

3°. Similarly, to each term v}, we put into correspondence a p-term P}(P!(P!(x1))); this term corresponds

3
v
to z,"'.

4°. In general, to Sach term v¥, we put into correspondence a p-term Pl(--- (P}(x1))---) (k times); this term

v
corresponds to x;".

. def k; o . il
5°. To each monomial m = vf‘ -...v;”, we similarly put into a correspondence a composition of p-terms
. y k; . .
corresponding to vf’; N One can easily check that this term has the form z7".

6°. Now, a general polynomial F' with positive integer coefficients can be represented as a sum of monomials.
For example, the expression v} + 2v; - v2 + v3 can be represented as v} + vy - vo + vy - V2 + V3.
To each such polynomial, we put into correspondence a p-term F’ which is defined as a product of the

. . . / 4 . .
p-terms corresponding to the monomials. Since 27" - 27" = 27" | the value of this term is exactly =1

7°. Now, we can form a p-formula
3P} ... 3P} (Vo Vo3 (Pl (29 - 23) = Pl (22) - Pl (23) & -+ & Pp (29 - w3) = Ppr(z2) - Pr(23)) &G'(2) = H'(2)),

where G’ and H' are p-terms corresponding to the polynomials G and H. The existence of such polynomials
means the existence of natural numbers v; for which P!(z1) = 2%, and the equality G’(2) = H’(2) means
that 2¢ = 29 ie., that G = H. Thus, the truth of this formula implies that the original equation F = 0 has
a solution in natural numbers.

Vice versa, if this equal has natural-valued solution vy, ...,v,, then the polynomials P! (x;) = z}* satisfy
the above formula.

The reduction is proven, and so is the proposition.

Acknowledgments

This work was supported in part by the National Science Foundation grants HRD-0734825 and HRD-1242122
(Cyber-ShARE Center of Excellence) and DUE-0926721.

80

J. Urenda et al.: When Can We Simplify Data Processing

References

N =

=Y N E

=

Basu, S., Pollack, R., and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-Verlag, Berlin, 2006.
Jaulin, L., Kieffer, M., Didrit, O., and E. Walter, Applied Interval Analysis, Springer Verlag, London, 2001.
Klir, G., and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River, New Jersey, 1995.

Kreinovich, V., Lakeyev, A., Rohn, J., and P. Kahl, Computational Complexity and Feasibility of Data processing
and Interval Computations, Kluwer, Dordrecht, 1997.

Matiyasevich, Y.V., Hilbert’s Tenth Problem, MIT Press, Cambridge, Massachusetts, 1993.

Moore, R.E., Kearfott, R.B., and M.J. Cloud, Introduction to Interval Analysis, STAM Press, Philadelphia, Penn-
sylviania, 2009.

Nguyen, H.T., and E.A. Walker, A First Course in Fuzzy Logic, Chapman and Hall/CRC, Boca Raton, Florida,
2006.

Tarski, A., A Decision Method for Elementary Algebra and Geometry, 2nd Edition, Berkeley and Los Angeles,
1951.

Urenda, J., Algorithmic Aspects of the Embedding Problem, Ph.D. Dissertation, Department of Mathematical
Sciences, New Mexico State University, Las Cruces, New Mexico, 2015.

[10] Zadeh, L.A., Fuzzy sets, Information and Control, vol.8, pp.338-353, 1965.

	JUS-10-1-1.pdf
	Formulation of the Problem
	Analysis of the Problem and the Resulting Algorithm
	How to Gauge Whether Activity Disruptions are Uniformly Distributed or Mainly Concentrated in Some Time Periods

	JUS-10-1-2.pdf
	Formulation of the Problem
	Theoretical Explanation of the Empirical Success of the Exponential Covariance Kernel: Reminder
	Our Main Result: Theoretical Explanation of the Empirical Success of the Modified Exponential Covariance Kernel
	Conclusions

	JUS-10-1-3.pdf
	Introduction
	How can a Divergent Infinite Series Have a Finite Sum: A Simple Example
	Can We Use This Idea to Compute the Sum of All Natural Numbers: First Attempt
	Computing the Sum of All Natural Numbers: Second Attempt and the Result

	JUS-10-1-4.pdf
	Formulation of the Problem
	Analysis of the Problem and the Main Result
	What If We Consider Average-Case Accuracy Instead of the Worst-Case One? What If We Consider Naive Approach Instead of a Guaranteed One?
	Proofs

	JUS-10-1-5.pdf
	Introduction
	How to Describe Expanding Knowledge: A Natural Simple Geometric Model
	What is the Best Research Strategy: Analysis of the Problem and the Resulting Conclusions

	JUS-10-1-6.pdf
	Formulation of the Problem
	Formulation of the Corresponding Mathematical Model
	Analyzing the Mathematical Model

	JUS-10-1-7.pdf
	Formulation of the Problem
	Description of the Case Study
	Power Law Model vs. Traditional Approach: Technical Details
	How We Compare the Two Models
	Comparison Results
	Conclusions and Future Work

	JUS-10-1-8.pdf
	Introduction
	Definitions and Results
	Proofs

	JUS-10-1-9.pdf
	Formulation of the Problem
	Let Us Describe This Setting in Terms of Utility-Based Decision Theory
	Analysis of the Resulting Problem Explains Why Awe Increases Empathy

	JUS-10-1-10.pdf
	How to Distribute Security Efforts Between Different Units of an Industrial System: Formulation of the Problem
	How to Distribute Security Efforts Between Different Units of an Industrial System: Limitations of the Existing Approach
	How to Distribute Security Efforts Between Different Units of an Industrial System: A New Proposal

	JUS-10-1-11.pdf
	Formulation of the Problem
	Analysis of the Problem
	Resulting Algorithms for Estimating Model Accuracy

	JUS-10-1-12.pdf
	Formulation of the Problem
	Analysis of the Problem
	Definitions and the Main Result
	Proof

	JUS-10-1-13.pdf
	Formulation of the Problem
	Formulating the Problem in Precise Terms
	Main Results
	Proof of the Main Results
	Auxiliary Result: In Some Reasonable Sense, the Above Result is the Best We Can Have

