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Abstract

In geophysics, we usually have several Earth models based on different types of data: seismic, gravity,
etc. Each of these models captures some aspects of the Earth structure. To properly combine these
models, it is important to know the accuracy of different models. In our previous papers, we showed how
this accuracy can be estimated under the assumption that the inaccuracy of these models is normally
distributed. In practice, however, the distribution of the model inaccuracy is often non-Gaussian. In this
paper, we describe how accuracy estimation methods can be extended to the non-Gaussian case.
c©2016 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Need to estimate accuracy of different geophysical models. One of the main objectives of geophysics
is to determine the density ρ(x, y, z) at different depths z and at different geographical locations (x, y). There
exist several methods for estimating the density: e.g., we can use seismic data [5], or we can use gravity
measurement. Each of the techniques for estimating ρ has its own advantages and limitations. For example:

• seismic measurements often lead to a more accurate value of ρ than gravity measurements, but

• seismic measurements mostly provide information about the areas above the Moho surface.

It is desirable to combine (“fuse”) the models obtained from different types of measurements into a single
model that would combine the advantages of all of these models.

To properly combine several models into a single one, it is important to know the accuracy of different
models; see, e.g., [10, 14].

In geophysics, the model’s accuracy usually depends on the depth: the deeper the layer that we want to
estimate, the less accurate our estimate. The accuracy may also depend on other parameters. We want to
find out, for each model and for each value of the corresponding parameter (such as depth), how accurate is
this model.

How can we describe model accuracy. We cannot determine the actual value of the approximation error.
Indeed, if we knew the value of the approximation error, we would be able to correct for this known error and
thus, get a more accurate estimate. What we can, in principle, determine is:

• the bounds on approximation error, and

• how frequently different values within these bounds may occur.
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In other words, what we can, in principle, estimate, is the probability distribution describing different possible
values of the approximation error.

Traditional methods of estimating accuracy cannot be directly used in geophysics. The problem
of estimating approximation accuracy is ubiquitous in measurement practice. The most widely used method
of estimating the accuracy of a given measuring technique is available when we have a “standard” measuring
instrument or technique which is several times more accurate than the technique whose accuracy we are
estimating; see, e.g., [10]. Since the “standard” measuring technique is much more accurate than the one we
testing, the result of using this “standard” measuring instrument is practically equal to the actual value of
the measured quantity. Thus, the model inaccuracy can be well approximated by the difference between the
measurement results obtained by the two techniques.

In geophysics, however, seismic (and other) methods are state-of-the-art, no method leads to more accurate
determination of the densities. As a result, this “calibration” method cannot be directly applied to estimating
approximation errors in the geophysical problems.

Another accuracy estimation technique is applicable when we have several independent measuring instru-
ments of the same type. In this case, the random inaccuracies corresponding to different instruments are
independent and thus, when we average a large number of such measurement results, we get a very accurate
approximation to the actual value. So, by comparing the measurement results obtained by each technique
with this average, we can get a very good understanding of each model’s accuracy [10].

In geophysics, however, we only have one model coming from the application of each technique, so we
cannot directly use this method either.

Estimating accuracy of different models: towards a precise formulation of the problem. Let
v1,k, v2,k, . . . are the estimates of the same quantity vk in different models. For example, in geophysical
applications, vk is the density at a certain depth, measured at different geographical locations k.

In the ideal cases, all models are exact, i.e., vik = vk for i and k. In this case, there is no difference between
estimates produced by different models: vik − vjk = 0 for all i, j, and k. In reality, models are approximate,
so, in general, the estimates corresponding to different models i 6= j are different: vik − vjk 6= 0.

For each pair of models (i, j), we can view the corresponding differences vik− vjk as a sample of a random
variable ∆vij = vi− vj that describes the difference between the two models’ estimates vi and vj at the given
depth.

It is reasonable to assume that inaccuracies ∆vi
def
= vi− v corresponding to different models i are indepen-

dent. Our objective is to reconstruct the probability distributions for model inaccuracies ∆vi based on the
observed distributions of the differences ∆vij = vi − vj = ∆vi −∆vj .

What is known: Gaussian case. The above problem has been largely solved in the case when all the
inaccuracies are assumed to be normally distributed; see, e.g., [7, 13].

Indeed, a normal distribution is uniquely characterized by its mean and its standard deviation σ. Of
course, if we only know the differences, we cannot detect the systematic bias, we can only hope to determine
the random component of the model inaccuracies. If we limit ourselves to random components, all the means
become 0, and all we need to determine is the standard deviation σi of each approximation error ∆vi.

Since the approximation errors ∆vi are independent and normally distributed, each (observed) difference
vi − vj = ∆vi −∆vj is also normally distributed, with 0 mean and variance σ2

ij = σ2
i + σ2

j .
In the simplest case, when we only have two models, the only information that we can extract from the

observations v1 − v2 is the sum σ2
12 = σ2

1 + σ2
2 of these models’ variances. Of course, when we only know the

sum of the two numbers, we cannot uniquely reconstruct both of these numbers. So, in this case, it is not
possible to estimate the accuracy of different models.

However, once we have at least three different models, the situation changes: for each three of these
models, by observing the variances of the differences v1− v2, v2− v3, and v2− v3, we can determine the three
sums σ2

12 = σ2
1 + σ2

2 , σ2
23 = σ2

1 + σ2
3 , and σ2

13 = σ2
1 + σ2

3 . Once we know the values of these three sums, we can
uniquely determine all three values σ2

i . For example, one can easily check that we can determine σ2
1 as

σ2
1 =

σ2
12 + σ2

13 − σ2
23

2
=

(σ2
1 + σ2

2) + (σ2
1 + σ2

3)− (σ2
2 + σ2

3)

2
.

Problem: distributions are often non-Gaussian. In measurement practice, Gaussian distributions occur
in only about 60% of the cases; see, e.g., [6, 9]. In all other cases, the distribution of the approximation error
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is different from Gaussian; see, e.g., [1]. To cover such cases, it is therefore desirable to extend the above
model estimation techniques to the non-Gaussian case. This is the problem that we analyze in this paper.

2 Analysis of the Problem

We also need correlation. At first glance, all we need to do is to find, for each quantity v (e.g., for densities
at a given depth) and for each model i, the probability distribution of the corresponding approximation error
∆vi = vi−v. This would indeed be sufficient if the approximation errors corresponding to different quantities
v were independent.

In practice, the approximation errors ∆vi and ∆wi corresponding to different quantities v and w (corre-
sponding, e.g., to different depths) are usually correlated, since they are largely caused by the same global
inaccuracies. In the geophysical example, this correlation is especially strong if the variables v and w corre-
spond to nearby depths. As a result, to properly describe model accuracy:

• we need to know not only the probability distributions for each approximation error ∆vi or ∆wi,

• we also need to know, for each model i, the joint probability distribution of the pair (∆vi,∆wi).

It is convenient to use characteristic functions. We want to reconstruct the probability distribution of
each approximation error (∆vi,∆wi) based on the known probability distributions for the differences

(vi − vj , wi − wj) = (∆vi −∆vj ,∆wi −∆wj).

The usual way to represent a 2-D probability distribution of a random variable (∆vi,∆wi) is by describing
its probability density function (pdf) ρi(∆vi,∆wi). However, in terms of the pdfs, the relation between the
distributions of two independent random variables and the distribution ρij(v, w) for their difference is rather
complicated:

ρij(v, w) =

∫
ρi(∆vi,∆wi) · ρj(v + ∆vi, w + ∆wi) d∆vi d∆wi.

This relation can be described in a much simpler way if, for each random variable, instead of the pdf, we
use its characteristic function

χi(ωv, ωw)
def
= E[exp(i · (ωv ·∆vi + ωw ·∆wi))],

where i
def
=
√
−1, i.e.,

ρi(ωv, ωw) =

∫
ρi(∆vi,∆wi) · exp(i · (ωv ·∆vi + ωw ·∆wi)) d∆vi d∆wi.

From the mathematical viewpoint, the characteristic function is the Fourier transform of the pdf, and efficient
algorithms are known both for computing the Fourier transform and for reconstructing a function from its
Fourier transform (this reconstruction is known as the inverse Fourier transform); see, e.g., [2, 4, 8, 15].

For the difference

(∆vij ,∆wij)
def
= (∆vi −∆vj ,∆wi −∆wj),

the characteristic function has the form

χij(ωv, ωw)
def
= E[exp(i · (ωv ·∆vij + ωw ·∆wij)] = E[exp(i · (ωv · (∆vi −∆vj) + ωw · (∆wi −∆wj))].

This expression can be equivalently reformulated as

χij(ωv, ωw) = E[exp(i · (ωv ·∆vi + ωw ·∆wi)− i · (ωv ·∆vj + ωw ·∆wj))].

Since the exponent of the sum is equal to the product of the exponents, we have

χij(ωv, ωw) = E[exp(i · (ωv ·∆vi + ωw ·∆wi)) · exp(−i · (ωv ·∆vj + ωw ·∆wj))].
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Due to the fact that different approximation errors (∆vi,∆wi) and (∆vj ,∆wj) are independent random
variables, we can conclude that

χij(ωv, ωw) = E[exp(i · (ωv ·∆vi + ωw ·∆wi))] · E[exp(−i · (ωv ·∆vj + ωw ·∆wj))].

The first factor is simply a characteristic function of the i-th variable. The quantity exp(−i·(ωv·∆vj+ωw·∆wj))
used in the second factor is a complex conjugate of the term used in the characteristic function:

exp(−i · (ωv ·∆vj + ωw ·∆wj) = (exp(i · (ωv ·∆vj + ωw ·∆wj))
∗,

where the conjugation operation z∗∗ is defined in the usual way: for z = a + b · i, we have z∗ = a − b · i.
Thus, the expected value of the second factor is equal to the complex conjugate of the expected value of the
term exp(i · (ωv ·∆vj + ωw ·∆wj)), i.e., to the complex conjugate of the j-th characteristic function. So, we
conclude that

χij(ωv, ωw) = χi(ωv, ωw) · χ∗j (ωv, ωw). (1)

This relation is indeed much simpler than the above pdf-based formula.

How can we determine the characteristic functions χij(ωv, ωw) based on the samples. To find the
characteristic function, we must use the sample values (vik − vjk, wik −wjk) of the corresponding differences.

One possibility is to used these sample values to estimate the corresponding pdf ρij(v, w), and then use
Fourier Transform to compute the characteristic function. Another possibility is to use the fact that, due to
the Large Numbers Theorem (see, e.g., [14]), for each quantity, its mean is approximately equal to the average
over sample values. So, we can estimate the characteristic function as

χij(ωv, ωw) =
1

K
·

K∑
k=1

exp(i · (ωx · (vik − vjk) + ωw · (wik − wjk))),

where K is the number of pairs in the available sample.

Analysis of the problem. Let us consider three different models. For these models, we know, for each pair
ω = (ωv, ωw), the values of the characteristic functions χ12(ωv, ωw), χ23(ωv, ωw), and χ13(ωv, ωw). We want
to use this information to estimate the characteristic functions χ1(ωv, ωw), χ2(ωv, ωw), and χ3(ωv, ωw) that
describe the desired distributions ρi(∆vi,∆wi) of the approximation errors. For this estimation, we can use
the following equalities:

χ12(ωv, ωw) = χ1(ωv, ωw) · χ∗2(ωv, ωw), (2)

χ13(ωv, ωw) = χ1(ωv, ωw) · χ∗3(ωv, ωw), (3)

and
χ23(ωv, ωw) = χ2(ωv, ωw) · χ∗3(ωv, ωw). (4)

Based on the known functions χij(ωv, ωw), we want to reconstruct the functions χ1(ωv, ωw), χ2(ωv, ωw), and
χ3(ωv, ωw).

Without losing generality, let us consider the problem of determining the first characteristic function
χ1(ωv, ωw). Let us see what we can deduce about χ1(ωv, ωw) based the available information. For this, we
need to eliminate the additional variables χ2(ωv, ωw) and χ3(ωv, ωw) from the above system of equations
(2)–(4). From the first equation (2), we can express χ2(ωv, ωw) as

χ2(ωv, ωw) =
χ12(ωv, ωw)

χ1(ωv, ωw)
.

Similarly, from the second equation (3), we can express χ3(ωv, ωw) as

χ3(ωv, ωw) =
χ13(ωv, ωw)

χ1(ωv, ωw)
.

Substituting the resulting expressions for χ2(ωv, ωw) and χ3(ωv, ωw) into the third equation (4), we conclude
that

χ23(ωv, ωw) =
χ12(ωv, ωw)

χ1(ωv, ωw)
· χ
∗
13(ωv, ωw)

χ∗1(ωv, ωw)
=
χ12(ωv, ωw) · χ∗13(ωv, ωw)

χ1(ωv, ωw) · χ∗1(ωv, ωw)
.
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Thus, for |χ1(ωv, ωw)|2 = χ1(ωv, ωw) · χ∗1(ωv, ωw), we get

|χ1(ωv, ωw)|2 =
χ12(ωv, ωw) · χ∗13(ωv, ωw)

χ23(ωv, ωw)
. (5)

So, by using the observed values, we can find the absolute value |χ1(ωv, ωw)| of the desired characteristic
function.

Can we reconstruct a function from its absolute value? It is known that for functions of two or
more variables, it is almost always possible to reconstruct a function from the absolute value of its Fourier
transform – modulo a transformation that maps each function ρi(∆vi,∆wi) to its mirror image ρ′i(∆vi,∆wi) =
ρi(−∆vi,−∆wi) [11, 12, 13]. Thus, in almost all cases (in some reasonable sense), we can estimate the accuracy
ρi(∆vi,∆wi) of each model i.

How can we reconstruct a function from its absolute value? There are many methods for recon-
structing a pdf from the absolute value of its Fourier transform. The most widely used method takes into
account that we want to find a probability distribution ρi(v, w) which has the given absolute value of the
characteristic function Ai(ωv, ωw) = |χi(ωv, ωw)| for the difference; see, e.g., [11]. In precise terms, we want
to find a function ρi(v, w) which satisfies the following two conditions:

• the first condition is that ρi(v, w) ≥ 0 for all v and w, and

• the second condition is that |χi(ωv, ωw)| = Ai(ωv, ωw), where χi(ωv, ωw) denotes the Fourier transform
of the function ρi(v, w).

One way to find the unknown function that satisfies two conditions is to use the method of successive projec-

tions. In this method, we start with an arbitrary function ρ
(0)
i (v, w). On the k-th iteration, we start with the

result ρ
(k−1)
i (v, w) of the previous iteration, and we do the following:

• first, we project this function ρ
(k−1)
i (v, w) onto the set of all functions which satisfy the first condition;

to be more precise, among all the functions which satisfy the first condition, we find the function ρ′(v, w)

which is the closest to ρ
(k−1)
i (v, w);

• then, we project the function ρ′(v, w) onto the set of all functions which satisfy the second condition;
to be more precise, among all the functions which satisfy the second condition, we find the function

ρ
(k)
i (v, w) which is the closest to ρ′(z).

We continue this process until it converges.

As the distance between the two functions f(v, w) and g(v, w) – describing how close they are – it is

reasonable to take the natural analog of the Euclidean distance: d(f, g)
def
=

√∫
(f(v, w)− g(v, w))2 dv dw.

One can check that for this distance function:

• the closest function in the first part of the iteration is the function ρ′(v, w) = max(0, ρ
(k−1)
i (v, w)), and

• on the second part, the function whose Fourier transform is equal to

F
(k)
i (ωx, ωy) =

A(ωx, ωy)

|F ′(ωx, ωy)|
· F ′(ωx, ωy).

Comment. Recently, more efficient methods have been proposed; see, e.g., [3].

We are now ready to present an algorithm. Thus, we arrive at the following algorithms for estimating
model accuracy.
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3 Resulting Algorithms for Estimating Model Accuracy

What is given. We have several models i = 1, 2, 3, . . . estimating the values of the same quantities – e.g.,
density values at different depths and at different spatial locations.

We divide all the quantities estimated by each model into groups, so that within each group, we expect
approximately the same accuracy. For each group v, we denote the corresponding quantities by v1, . . . , vk, . . .,
where k = 1, . . . ,K. In geophysics, k indicates geographical location of the corresponding 3-D point.

Let us denote the i-th model’s estimate of the quantity vi by vik.

Our objective. Our objective is, for every model i0 and for every pair of groups (v, w), to estimate the
pdf ρi0(∆vi0 ,∆wi0) that describes the probability distribution of the corresponding 2-D approximation error
(∆vi0k,∆wi0k) = (vi0k − vk, wi0k − wk).

Algorithm: Step 0. Let us assume that we are given a model i0 and a a pair of groups (v, w). To find the
desired distribution, we need to select two more models, j0 and k0.

Algorithm: Step 1. For each of the three pairs of models (i, j) from the triple (i0, j0, k0), we use the
corresponding sample values (vik − vjk, wik − wjk), k = 1, . . . ,K, to estimate the characteristic function
χij(ωv, ωw) of this distribution. This can be done in two possible way:

• One possibility is to use the available sample values to to estimate the corresponding pdf ρij(v, w) [14],
and then use Fourier Transform to compute the characteristic function.

• Another possibility is directly estimate the characteristic function as

χij(ωv, ωw) =
1

K
·

K∑
k=1

exp(i · (ωx · (vik − vjk) + ωw · (wik − wjk))).

Algorithm: Step 2. On this step, we estimate the absolute value Ai0(ωv, ωw) = |χi0(ωv, ωw)| of the desired
characteristic function by using formula (5), i.e., as

Ai0 =

√
χi0j0(ωv, ωw) · χ∗i0k0

(ωv, ωw)

χj0k0
(ωv, ωw)

.

Algorithm: Step 3. On this step, we use the known absolute value Ai0(ωv, ωw) to reconstruct the desired
pdf ρi0(∆vi0 ,∆wi0).

One way to do it is by using the above-described iterative procedure. Namely, we start with an arbitrary

function ρ
(0)
i0

(∆vi0 ,∆wi0). On the k-th iteration, we start with the function ρ
(k−1)
i0

(∆vi0 ,∆wi0) obtained on
the previous iteration, and we do the following:

• first, we compute ρ′(∆vi0 ,∆wi0) = max(0, ρ
(k−1)
i0

(∆vi0 ,∆wi0));

• then, we apply Fourier transform to ρ′(∆vi0 ,∆wi0) and get F ′(ωv, ωw);

• after that, we compute F
(k)
i0

(ωv, ωw) =
Ai0(ωv, ωw)

|F ′(ωv, ωw)|
· F ′(ωv, ωw);

• finally, as the next approximation ρ
(k)
i0

(∆vi0 ,∆wi0), we take the result of applying the inverse Fourier

transform to F
(k)
i0

(ωv, ωw).

We continue this process until it converges.

Comment. Alternatively, we can use one of the algorithms described in [3].

Conclusion. In almost all cases (in some reasonable sense), we get either the pdf ρi0(∆vi0 ,∆wi0) of the
desired distribution, or its mirror image function ρ′i0(∆vi0 ,∆wi0) = ρi0(−∆vi0 ,−∆wi0).
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