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Abstract

One of the main problems of interval computation is computing the range of a given function on a given
box. In general, computing the exact range is a computationally difficult (NP-hard) problem, but there are
important cases when a feasible algorithm for computing such a function is possible. One of such cases is
the case of singe-use expressions (SUE), when each variable occurs only once. Because of this, practitioners
often try to come up with a SUE expression for computing a given function. It is therefore important to
know when such a SUE expression is possible. In this paper, we consider the case of functions that can be
computed by using only arithmetic operations (addition, subtraction, multiplication, and division). We
show that when there exists a SUE expression for computing such a function, then this function is equal
to a ratio of two multi-linear functions (although there are ratios of multi-linear functions for which no
SUE expression is possible). Thus, if a function is not equal to such a ratio, then we should not waste our
efforts on finding a SUE expression for computing this function.
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1 Introduction

Importance of interval computations. In many practical situations, we are interested in the value of
some quantity y which is difficult or even impossible to measure directly. This may be a difficult-to-directly-
measure quantity, such as the distance to a star or the amount of oil in an oil well; this may be a future value
of a quantity.

To estimate such values y, we find easier-to-measure quantities x1, . . . , xn that are related to y by a known
dependence y = f(x1, · · · , xn), measure these quantities xi, and use the results x̃i of these measurements to
compute the estimate ỹ = f(x̃1, · · · , x̃n) for the desired quantity y.

Measurements are never absolutely accurate. As a result, the actual value xi of the corresponding quantities
is, in general, different from the measurement results x̃i. Because of this difference, the estimate ỹ based on
measurement results is, in general, somewhat different from the actual value y = f(x1, · · · , xn). In practical
applications, it is important to know how accurate it is the estimate x̃i.

In many practical situations, the only information that we have about the measurement error ∆xi
def
= x̃i−xi

is the upper bound ∆i on its absolute value: |∆xi| ≤ ∆i. In such situations, after each measurement,
the only information that we have about the actual (unknown) value xi is that it belongs to the interval
[xi, xi] = [x̃i −∆i, x̃i + ∆i].

Different combinations (x1, · · · , xn) of possible values xi ∈ [xi, xi] lead, in general, to different values of
y = f(x1, · · · , xn). Our task is thus to find the range of all possible values of y, i.e., the interval

{f(x1, · · · , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

The problem of computing this range is known as the problem of interval computations; see, e.g., [5, 8].
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Importance of SUE expressions. In general, computing the desired range is NP-hard [1, 2, 6]. This
means, in particular, that if P6=NP (as most computer scientists believe), then it is not possible to have a
feasible (= polynomial-time) algorithm that would always compute the desired range.

There are, however, cases when this range can be feasibly computed. One of such cases is when each
variable occurs only once. The fact that in this case, we get the exact range was first mentioned by R. E.
Moore himself in his 1966 book [7]; see also [3, 4, 5, 8, 9]. Following Bill Walster (see, e.g., [4, 9]), we will call
such expressions single use expressions (SUE, for short)

In this case, the straightforward interval computation technique works perfectly: if we represent the compu-
tation of f as a sequence of elementary arithmetic operations and replace each operation by the corresponding
interval operation, then – modulo rounding errors – we get the exact range.

Often, the original expression of a function is not SUE, but there is a SUE expression for computing the
same function: for example, the expression f(x1, x2) = x1/(x1 + x2) is not SUE, but (at least for x1 6= 0) this
function can be computed by a SUE expression f(x1, x2) = 1/(1 + x2/x1).

Since a SUE expression helps to compute the range of a function, it is important to analyze for which
functions such SUE expressions are possible.

Comment. To be more precise, if we only use real numbers, then the above two expressions have different
domains:

• the first expression f(x1, x2) = x1/(x1 + x2) is well-defined when x1 = 0 and x2 6= 0 (and equal to 0 in
this case), while

• the second expression is not defined when f(x1, x2) = 1/(1 + x2/x1).

Most computers, however, follow the IEEE Standard 754 when performing computations on real numbers, and
this standard requires that the values +∞ and −∞ are also legitimate computer-represented real numbers.
In this case, the second expression is also defined for x1 = 0 and x2 6= 0: namely, we get x2/x1 =∞, thus,

1 +
x2

x1
= 1 +∞ =∞ and f(x1, x2) =

1

1 +
x2

x1

=
1

∞
= 0.

This is one of the examples that motivated the introduction of infinities as possible values into the IEEE
Standard 754.

What we do in this paper. In this paper, we consider functions which can be computed by a finite sequence
of arithmetic operations (+, −, multiplication, and division). We prove that if for such a function, there is a
SUE expression computing this function, then this function is a ratio of two multi-linear functions (although
there are ratios of multi-linear functions for which no SUE expression is possible).

2 Definitions and Results

Definition 1. Let n be an integer; we will call this integer a number of inputs.

• By an arithmetic expression, we mean a sequence of formulas of the type s1 := u1�1 v1, s2 := u2�2 v2,
. . . , sN := uN �N vN , where:

– each ui or vi is either a rational number, or one of the inputs xj, or one of the previous values sk,
k < i;

– each �i is either addition +, or subtraction −, or multiplication ·, or division /.

• By the value of the expression for given inputs x1, . . . , xn, we mean the value sN that we get after we
perform all N arithmetic operations si := ui �i vi.

Definition 2. An arithmetic expression is called a single use expression (or SUE, for short), if each variable
xj and each term sk appear at most once in the right-hand side of the rules si := ui �i vi.

Example. An expression 1/(1 + x2/x1) corresponds to the following sequence of rules:

s1 := x2/x1; s2 := 1 + s1; s3 = 1/s2.
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One can see that in this case, each xj and each sk appears at most once in the right-hand side of the rules.

Definition 3. We say that a function f(x1, · · · , xn) can be computed by an arithmetic SUE expression if
there exists an arithmetic SUE expression whose value, for each tuple (x1, · · · , xn), is equal to f(x1, · · · , xn).

Example. The function f(x1, x2) = x1/(x1 + x2) is not itself SUE, but it can be computed by the above
SUE expression 1/(1 + x2/x1).

Definition 4. A function f(x1, · · · , xn) is called multi-linear if it is a linear function of each variable.

Comment. For n = 2, a general bilinear function has the form

f(x1, x2) = a0 + a1 · x1 + a2 · x2 + a1,2 · x1 · x2.

A general multi-linear function has the form f(x1, · · · , xn) =
∑

I⊆{1,...,n}
aI ·

∏
i∈I

xi.

For example, if we take I = {1, 2}, then:

• for I = ∅, we get the free term a0;

• for I = {1}, we get the term a1 · x1;

• for I = {2}, we get the term a2 · x2, and

• for I = {1, 2}, we get the term a1,2 · x1 · x2.

Main Result. If a function can be computed by an arithmetic SUE expression, then this function is equal to
a ratio of two multi-linear functions.

Auxiliary Result. Not every multi-linear function can be computed by an arithmetic SUE expression.

Comment. As we will see from the proof, this auxiliary result remains valid if, in our definition of a SUE
expression, in addition to elementary arithmetic operations, we also allow additional differential unary and
binary operations (e.g., computing values of special functions of one or two variables).

3 Proofs

Proof of the Main Result. The main result means, in effect, that for each arithmetic SUE expression, the
corresponding function f(x1, · · · , xn) is equal to a ratio of two multi-linear functions. We will prove this result
by induction: we will start with n = 1, and then we will use induction to prove this result for a general n.

1◦. Let us start with the case n = 1. Let us prove that for arithmetic SUE expressions of one variable, in
each rule si := ui �i vi, at least one of ui and vi is a constant.

Indeed, it is known that an expression for si can be naturally represented as a tree:

• We start with si as a root, and add two branches leading to ui and vi.

• If ui or vi is an input, we stop branching, so the input will be a leaf of the tree.

• If ui or vi is an auxiliary quantity sk, quantity that come from the corresponding rule sk := uk �k vk,
then we add two branches leading to uk and vk, etc.

Since each xj or si can occur only once in the right-hand side, this means that all nodes of this tree are
different. In particular, this means that there is only one node xj . This node is either in the branch ui or in
the branch vi. In both case, one of the terms ui and vi does not depend on xj and is, thus, a constant.

Let us show, by (secondary) induction, that all arithmetic SUE expressions with one input are fractionally
linear, i.e., have the form f(x1) = (a · x1 + b)/(c · x1 + d), with rational values a, b, c, and d. Indeed:

• the variable x1 and a constant are of this form, and
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• one can easily show that as a result of an arithmetic operation between a fractional-linear function f(x1)
and a constant r, we also get an expression of this form, i.e., f(x1) + r, f(x1)− r, r − f(x1), r · f(x1),
r/f(x1), and f(x1)/r are also fractionally linear.

Comment. It is worth mentioning that, vice versa, each fractionally linear function f(x1) =
(a · x1 + b)/(c · x1 + d) can be computed by an arithmetic SUE expression. Indeed, if c = 0, then f(x1)
is a linear function

f(x1) =
a

d
· x1 +

b

d
,

and is, thus, clearly SUE.
When c 6= 0, then this function can be computed by using the following SUE form:

f(x1) =
a

c
+

b− a · d
c

c · x1 + d
.

2◦. Let us now assume that we already proved his result for n = k, and we want to prove it for functions of
n = k + 1 variables. Since this function can be computed by an arithmetic SUE expression, we can find the
first stage on which the intermediate result depends on all n variables. This means that this result comes from
applying an arithmetic operation to two previous results both of which depended on fewer than n variables.
Each of the two previous results thus depends on < k + 1 variables, i.e., on ≤ k variables. Hence, we can
conclude that each of these two previous results is a ratio of two multi-linear functions.

Since this is SUE, there two previous results depend on non-intersecting sets of variables. Without losing
generality, let x1, . . . , xf be the variables used in the first of these previous result, and xf+1, . . . , xn are
the variables used in the second of these two previous results. Then the two previous results have the
form N1(x1, · · · , xf )/D1(x1, · · · , xf ) and N2(xf+1, · · · , xn)/D2(xf+1, · · · , xn), where Ni and Di are bilinear
functions. For all four arithmetic operations, we can see that the result of applying this operation is also a
ratio of two multi-linear functions:

N1(x1, · · · , xf )

D1(x1, · · · , xf )
+

N2(xf+1, · · · , xn)

D2(xf+1, · · · , xn)
=

N1(x1, · · · , xf ) ·D2(xf+1, · · · , xn) + D1(x1, · · · , xf ) ·N2(xf+1, · · · , xn)

D1(x1, · · · , xf ) ·D2(xf+1, · · · , xn)
;

N1(x1, · · · , xf )

D1(x1, · · · , xf )
− N2(xf+1, · · · , xn)

D2(xf+1, · · · , xn)
=

N1(x1, · · · , xf ) ·D2(xf+1, · · · , xn)−D1(x1, · · · , xf ) ·N2(xf+1, · · · , xn)

D1(x1, · · · , xf ) ·D2(xf+1, · · · , xn)
;

N1(x1, · · · , xf )

D1(x1, · · · , xf )
· N2(xf+1, · · · , xn)

D2(xf+1, · · · , xn)
=

N1(x1, · · · , xf ) ·N2(xf+1, · · · , xn)

D1(x1, · · · , xf ) ·D2(xf+1, · · · , xn)
;(

N1(x1, · · · , xf )

D1(x1, · · · , xf )

)
:

(
N2(xf+1, · · · , xn)

D2(xf+1, · · · , xn)

)
=

N1(x1, · · · , xf ) ·D2(xf+1, · · · , xn)

D1(x1, · · · , xf ) ·N2(xf+1, · · · , xn)
.

After that, we perform arithmetic operations between a previous result and a constant – since neither of the
n variables can be used again.

Similar to Part 1 of this proof, we can show that the result of an arithmetic operation between a ratio
f(x1, x2, · · · , xn) of two multi-linear functions and a constant r, we also get a similar ratio.

The proposition is proven.

Proof of the auxiliary result. Let us prove, by contradiction, that a bilinear function f(x1, x2, x3) =
x1 · x2 + x2 · x3 + x2 · x3 cannot be computed by a SUE expression. Indeed, suppose that there is a SUE
expression that computes this function. By definition of SUE, this means that first, we combine the values
of two of these variables, and then we combine the result of this combination with the third of the variables.
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Without losing generality, we can assume that first we combine x1 and x2, and then add x3 to this combination,
i.e., that our function has the form f(x1, x2, x3) = F (a(x1, x2), x3) for some functions a(x1, x2) and F (a, x3).

The function obtained on each intermediate step is a composition of elementary (arithmetic) operations.
These elementary operations are differentiable, and thus, their compositions a(x1, x2) and F (a, x3) are also
differentiable. Differentiating the above expression for f in terms of F and a by x1 and x2, we conclude that

∂f

∂x1
=

∂F

∂a
(a(x1, x2), x3) · ∂a

∂x1
(x1, x2)

and
∂f

∂x2
=

∂F

∂a
(a(x1, x2), x3) · ∂a

∂x2
(x1, x2).

Dividing the first of these equalities by the second one, we see that the terms
∂F

∂a
cancel each other. Thus,

the ratio of the two derivatives of f is equal to the ratio of two derivatives of a and therefore, depends only
on x1 and x2:

∂f

∂x1

∂f

∂x2

=

∂a

∂x1
(x1, x2)

∂a

∂x1
(x1, x2)

.

However, for the above function f(x1, x2, x3), we have
∂f

∂x1
= x2 + x3 and

∂f

∂x2
= x1 + x3. The ratio

(x2 + x3)/(x1 + x3) of these derivatives clearly depends on x3 as well – and we showed that in the SUE case,
this ratio should only depend on x1 and x2. The contradiction proves that this function cannot be computed
by a SUE expression. The proposition is proven.
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