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Abstract

To improve teaching and learning, it is important to understand how knowledge propagates. In general,
when a new piece of knowledge is introduced, people start learning about it. Since the potential audience
is limited, after some time, the number of new learners starts to decrease. Traditional models of knowledge
propagation are based on differential equations; in these models, the number of new learners decreases
exponentially with time. Recently, a new power law model for knowledge propagation was proposed. In
this model, the number of learners decreases much slower, as a negative power of time. In this paper, we
compare the two models on the example of readers’ comments on the Out of Eden Walk, a journalistic
and educational project in which informative messages (“dispatches”) from different parts of the world are
regularly posted on the web. Readers who learned the new interesting information from these dispatches
are encouraged to post comments. Usually, a certain proportion of readers post comments, so the number
of comments posted at different times can be viewed as a measure characterizing the number of new
learners. So, we check whether the number of comments is consistent with the power law or with the
exponential law. To make a statistically reliable conclusion on which model is more adequate, we need to
have a sufficient number of comments. It turns out that for the vast majority of dispatches with sufficiently
many comments, the observed decrease is consistent with the power law (and none of them is consistent
with the exponential law).
c©2016 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Traditional models of knowledge propagation. To improve teaching and learning, it is important to
understand how knowledge propagates. Traditional models of knowledge propagation are based on differential
equations, similar to epidemics propagation; see, e.g., [1, 3, 9].

Power law models of knowledge propagation. Some empirical data suggests that the spread follows the
power law [1, 5], when the number of people who learned the new material is proportional to some power tα

of time t.

Power laws in general and power law as a description of knowledge propagation: successes and
challenges. Power laws are ubiquitous in real life; these laws underlie the fractal techniques which has been
successful in many application areas; see, e.g., [2, 8, 12].

In many applications, the success of power laws is not just an empirical fact, there are convincing theoretical
explanations for their ubiquity. Such explanations exist for knowledge propagation as well: for example, in
[7], we used the general motivations for power laws to provide a theoretical explanations for the success of
power law in describing knowledge propagation.

However, while the theoretical foundations for the power law are reasonably well-developed, the empirical
foundations remains rather thin, since the power law was tested only on a few cases. Thus, more testing is
needed.
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What we do in this paper. In this paper, we empirically check whether power law is indeed a better
description of knowledge propagation than models based on differential equations. For that purpose, we
consider an example – comments on the messages (“dispatches”) posted as a part of the Out of Eden Walk
project [10]; see also [6, 11, 14].

The structure of this paper is as follows: In Section 2, we give a brief description of the case study and
explain how it is related to knowledge propagation. In Section 3, we provide technical details related to the
traditional and power law models of knowledge propagation. In Section 4, we describe our methodology for
comparing the two models. Section 5 contains the results of this comparison. Finally, Section 6 contains
conclusions and future work.

2 Description of the Case Study

Out of Eden Walk project: a description. Commenced on January 10th, 2013 in Ethiopia, the Out
of Eden Walk is a 7-year, 21,000 mile long, storytelling journey created by two-time Pulitzer Prize winning
journalist Paul Salopek. This project is sponsored by the National Geographic Society. Reports from this
journey regularly appear in the National Geographic magazine, in leading newspapers such as New York
Times, Washington Post, Chicago Tribune, Los Angeles Times, and on the US National Public Radio (NPR).

This project has important educational and knowledge propagation goals. The Out of Eden Walk
is a very ambitious project, its main objective is to enhance education and knowledge propagation as main
features of journalism, to reinvent digital reporting in the age of nano-headlines by embracing the concept
of slow journalism: revealing human stories and world events from the ground, at a walking pace. The
slow journalism of the Out of Eden Walk is immersive and sustained reporting, yet conveyed through the
state-of-the-art digital platforms, with presence on the web, on Facebook, on Twitter, and in the traditional
media.

The project has largely succeeded in these goals: now in its third year, the website has thousands of follow-
ers worldwide, not counting Facebook, Twitter, and other followers. Over 200 schools worldwide regularly use
Salopek’s reports as an education tool, to enrich the students’ understanding of different worldwide cultures.

Out of Eden Walk project: technical details. After visiting a new geographic area, Paul Salopek selects
an important topic related to this area and publishes a dispatch describing his impressions, experiences, and
thoughts. As of January 2015, there are close to 100 dispatches.

Followers are welcome to add comments after each dispatch. After two weeks, each dispatch gathers from
15 to more than 250 comments. Many of these comments are made by teachers and students who use these
dispatches as part of their learning experience.

Sometimes, Paul Salopek replies to some of these comments, often by providing additional details about
the story. These replies, in their turn, elicit more comments, etc. All these comments are part of the knowledge
propagation process.

What we do. In this project, we trace, for each dispatch, how the number of comments made by the readers
changes with time. This number reflects how the knowledge contained in a dispatch propagates with time.

Specifically, as we mentioned earlier, we check whether this propagation is better described by a traditional
model based on differential equations or by a power law. To make this comparison, let us first recall the
formulas describing these two approaches to quantifying knowledge propagation.

3 Power Law Model vs. Traditional Approach: Technical Details

The power law model. The power law formulas predict that the number of comments r(t) decreases with
t as r(t) = A · t−α. This model has two parameters A and α > 0.

In practice, after a large period of time t, the number of new comments decreases to practically 0 – and
this is exactly what the power law predicts, since A · t−α → 0 as t→∞.

The traditional model. The traditional description of knowledge propagation is based on first order
differential equations. In particular, a general way to describe how the number of comments r(t) changes with

time is to use a differential equation
dr

dt
= −f(r), for an appropriate function f(r).
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As we have mentioned, in practice, after a large period of time t, the number of new comments decreases

to practically 0. In this case, we have r(t) ≈ 0 and
dr

dt
≈ 0. So, we should have f(0) = 0.

In principle, we can have models of different complexity. We can have models with a linear function f(r),
we can have models with a more general quadratic dependence f(r), etc. To make a fair comparison, we
should select a class of models which is characterized by the same number of parameters as the power law
model – otherwise, the traditional model will be more accurate just because we allow it to use more parameters
to adjust to the data. Let us start with the simplest case of a linear function f(r). A general linear function
with f(0) = 0 has the form f(r) = α · r for some α. For this function f(r), the above differential equation
has a 2-parametric family of solutions r(t) = A · exp(−α · t).

For quadratic functions f(r) = α · r + c · r2, we already have a 3-parametric family of solutions. So, to
keep our comparison fair, in this paper, we use the exponential model r(t) = A · exp(−α · t) as a traditional
model of knowledge propagation.

4 How We Compare the Two Models

Selecting a time period. Our observation is that once a dispatch is posted, there is a short period with
practically no comments, then the bulk of the comments start, first with a big burst in comments, and then
usually gradually decreasing.

Both power law and exponential law describe only how the number of comments decreases with time.
Thus, to compare the observations with the model, we start with the day on which the most comments were
posted, and considers this day and several days after that. In most cases, the vast majority of comments are
posted within the first month, so we limited our data to 30 consecutive days (starting with the day in which
the largest number of comments were posted).

Finding parameters of the model: Least Squares approach. In our analysis, for each of the two
models, we first find the values of the parameters leading to the best fit, and then check how good is the
resulting fit.

Let us start with the power law model. The number of responses fluctuates, so clearly responding is a
random process. Let p(t) denote the probability with which a person responds at moment t. The overall
numbers of responses r(t) can be viewed as a the sum r(t)1 + · · · + r(t)N , where r(t)i is the number of
responses coming from the i-th reader at moment t. Since the probability of a person responding is equal to
p(t), this means that each value ri is equal to 1 with probability p(t) and to 0 with the remaining probability
1− p(t). One can easily see that the expected value E[ri] is then equal to p(t), and the variance V [ri] is equal
to p(t) · (1−p(t)). Since we assume that all the respondents are independent, the expected value of the sum is
equal to the sum of the expected values, and the variance of the sum is equal to the sum of variances. Thus,
the expected value is equal to N · p(t), and the variance is equal to N · p(t) · (1− p(t)).

It is reasonable to estimate the probability p(t) by the corresponding frequency, i.e., as the ratio r(t)/N .
In this case, the variance can be estimated as

V (t) = N · r(t)
N
·
(

1− r(t)

N

)
.

Here, r(t)� N , so

1− r(t)

N
≈ 1 and V (t) ≈ N · r(t)

N
= r(t).

Since the standard deviation is equal to the square root of the variance, we conclude that

r(t) ≈ r0(t), with accuracy σ(t) =
√
r(t),

where r0(t) denotes the corresponding model.

Finding parameters of the model: case of power model. For the power model r0(t) = A · t−α, the
above formula takes the form

r(t) ≈ A · t−α, with accuracy σ(t) =
√
r(t). (1)
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For large N , due to the Central Limit theorem, the distribution of an approximation error is close to
Gaussian, so, in principle, we can find the parameters A and α by using the Maximum Likelihood method,
which in this case takes the form∑

t

(r(t)−A · t−α)2

σ2(t)
=
∑
t

(r(t)−A · t−α)2

r(t)
→ min .

From the computational viewpoint, however, this approach has a limitation. Such a Gaussian-based Maximum
Likelihood (= Least Squares) approach is usually applied to situations when the model linearly depends on
the parameters. In our case, however, the objective function is a quadratic function of these parameters, and
so, by differentiating this objective function with respect to all these parameters and equating the resulting
partial derivatives to 0, we get an easy-to-solve system of linear equations. In our case, the dependence of the
model on the parameters A and α is strongly non-linear, and, as a result, we end up with a mode-difficult-to-
solve system of nonlinear equations. To simplify computations, it is therefore desirable to reduce our problem
to the case when the model linearly depends on parameters.

It is known that in log-log scale, the power law becomes a linear dependence. Specifically, if we take
logarithms of both sides of the formula r(t) = A · t−α, then we get ln r(t) = ln(A)− α · ln(t).

To use this fact, we need to find out how the inaccuracy in r(t) is transformed into the inaccuracy with
which we know ln(r(t)). We know that the inaccuracy ∆r(t) has standard deviation

√
r(t). When this

inaccuracy is small, for ln(r(t)), we have
∆(ln(r(t))

∆r(t)
≈ d(ln(r(t))

dr(t)
=

1

r(t)
. Thus, in this approximation,

∆(ln(r(t)) = ∆r(t)/r(t). In general, when we multiply a random variable ξ by a positive constant c, its
standard deviation σ[ξ] is multiplied by the same constant: σ[c · ξ] = c · σ[ξ]. Thus, we conclude that
σ[ln(r(t))] = σ[r(t)]/r(t). Since we already know that σ[r(t)] =

√
r(t), we thus conclude that σ[ln(r(t))] =

1/
√
r(t). For the power model, we have ln(r(t)) ≈ ln(A)− α · ln(t), so we have

ln(r(t)) ≈ ln(A)− α · ln(t) with accuracy σ =
1√
r(t)

.

If we multiply both sides of this approximate equality by
√
r(t), we conclude that√

r(t) · ln(r(t)) ≈ a ·
√
r(t) + b · ln(t) ·

√
r(t) with accuracy σ = 1,

where we denoted a
def
= ln(A) and b

def
= −α. For this problem, the Maximum Likelihood (= Least Squares)

method means minimizing the sum∑
t

(√
r(t) · ln(r(t))− a ·

√
r(t)− b · ln(t) ·

√
r(t)

)2
.

Once we find the corresponding values of a and b, we can then find A = exp(a) and α = −b.

Finding parameters of the model: case of exponential model. For the exponential model r0(t) =
A · exp(−α · t), the formula for finding the parameters takes the form

r(t) ≈ A · exp(−α · t), with accuracy σ(t) =
√
r(t). (2)

Similarly to the case of the power model, we can conclude that the distribution of an approximation error is
close to Gaussian, so, we can find the parameters A and α by using the Maximum Likelihood method, which
in this case takes the form∑

t

(r(t)−A · exp(−α · t))2

σ2(t)
=
∑
t

(r(t)−A · exp(−α · t))2

r(t)
→ min .

The exponential law r(t) = A · exp(−α · t) becomes linear if we consider the dependence of ln(r(t)) on time t:
ln(r(t)) = ln(A)− α · t.

We already know, from our analysis of the power model, that σ[ln(r(t))] = σ[r(t)]/r(t). Thus, we have

ln(r(t)) ≈ ln(A)− α · t with accuracy σ =
1√
r(t)

.
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If we multiply both sides of this approximate equality by
√
r(t), we conclude that√

r(t) · ln(r(t)) ≈ a ·
√
r(t) + b · t ·

√
r(t) with accuracy σ = 1,

where we denoted a
def
= ln(A) and b

def
= −α. For this problem, the Maximum Likelihood (= Least Squares)

method means minimizing the sum∑
t

(√
r(t) · ln(r(t))− a ·

√
r(t)− b · t ·

√
r(t)

)2
.

Once we find the corresponding values of a and b, we can then find A = exp(a) and α = −b.

From the traditional Least Squares to the robust `1 method for parameter estimation. When
a model predicts the values Ei and observations are Oi, the traditional Least Squares estimate selects the
parameters for which the sum of the squares of the differences

∑
i

(Oi − Ei)2 is the smallest possible. As we

have mentioned, this works well if the difference Oi − Ei is normally distributed.
In practice, in addition to a normally distributed differences Oi −Ei, we also have outliers. For example,

a measuring instrument may malfunction, generating a number which is far away from the actual value of the
measured quantity. Such outliers can drastically change the Least Squares estimate.

For example, if the model is a constant Ei = const, the Least Square estimate for this constant is simply
the arithmetic mean of all observed values

1

n
·
n∑
i=1

Oi.

If there are no outliers, this works well. For example, if the actual value is 0, and standard deviation is σ = 1,
then after 100 observations, we get 0 with an accuracy of σ/

√
n ≈ 0.1. However, if due to a malfunction, one

of the recordings is 10000, we get the average 100.
In situations when outliers are possible, it is therefore reasonable to use methods which are less sensitive

to outliers. Such methods are known as robust; see, e.g., [4]. One of the most widely used robust methods is
the `1-method, when we select parameters for which the sum of absolute values

∑
i

|Oi − Ei| is the smallest

possible.
For example, in the above example when the model is a constant, the `1 methods results in selecting a

median of all the observation instead of the arithmetic mean, and one can easily check that the median is
much less sensitive to outliers.

To take into account the possibility of outliers, in this paper, in addition to using the Least Squares method
to find the parameters of the model, we also use an `1 method.

How to check whether the data fits a model. Once we have found the parameters of a model, we
can apply the Pearson’s chi-squared test to check whether the data fits the corresponding formula. This test
checks whether the number of events O1, . . . , On that occurred in n different situations is consistent with the
model that predicts that, one average, Ei events will occur in situation i. To apply this test, we compute the
sum

µ =

n∑
i=1

(Oi − Ei)2

Ei
.

This distribution of this value is close to the chi-squared distribution with n − nparam parameters, where
nparam is the number of parameters that was determined based on this distribution (in our case, nparam = 2).
Then, we compare a p-value by comparing the value of the statistic to a chi-squared distribution, and use this
p-value to decide whether the observations fit the model.

In our case, different situations i correspond to different moments of time t, the expected values come
from the corresponding model Ei = r0(t), and the observed values are Oi = r(t). Thus, for this situation,
Pearson’s chi-squared test means computing the expression

χ2 def
=
∑
t

(r(t)− r0(t))2

r0(t)
.
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In particular, for the power model, we compute the value

χ2
p

def
=
∑
t

(r(t)−A · t−α)2

A · t−α
.

For exponential model, we compute the value

χ2
e

def
=
∑
t

(r(t)−A · exp(−α · t))2

A · exp(−α · t)
.

Based on this value of χ2 and on the number n − 2 of degrees of freedom, we compute the corresponding
p-value pp or pe.

The values of χ2 and p based on `1-estimates will be denoted, correspondingly, by χ2
p,1, χ2

e,1, pp,1, and pe,1.
If this p-value is smaller than some threshold p0 (usually, p0 = 0.05), then we can conclude that the data

is inconsistent with the corresponding model, and the model is rejected. Otherwise, if the p-value is greater
than or equal to the threshold p0, we conclude that the data is consistent with the model.

5 Comparison Results

Selecting dispatches. When the sample size is small, both models fit. Empirically, we have found that
the models can be separated if we have at least 50 comments. Some dispatched are shorter than others;
these dispatches are marked as “trail notes”. None of these trail notes has 50 or more comments; so, we only
considered “proper” dispatches, i.e., dispatches which are not trail notes.

Our interest is in analyzing knowledge propagation. New dispatches appear all the time, and new comments
are added all the time. Thus, the more recent the dispatch, the more probable it is that new comments
will be added and therefore, that the available comments do not yet present a final description of how the
corresponding knowledge propagates. So, in our analysis, we concentrated on the earliest dispatches, for which
the picture of knowledge propagation is (most probably) complete.

Specifically, to compare the two models, out of the 25 earlier “proper” dispatches, we selected all the
dispatches which by February 1, 2015, had at least 50 comments. There were seven such dispatches; these
dispatches are listed in the following table.

For each dispatch, there is usually a few days delay until the bulk of the comments appear. At first, there
is a burst of comments, then the number of comments gradually decreases, and after a month, very few new
comments appear. So, for our analysis, we limited our data to a time period that:

• starts on the first day when the largest number of comments appear, and

• ends 30 days after the posting of the original dispatch.

Comparison results. The result of analyzing the selected ten dispatches are given in the following table;
here, Nc is the number of comments, and all the p-values are rounded to two digits. P-values exceeding 0.05
– that indicate that the model is consistent with the data – are underlined.

The `1 values corresponding to the exponential model are not given, but the resulting p-values are similar
to the values corresponding to the Least Squares estimates.

Dispatch Title Nc χ2
p χ2

p,1 χ2
e pp pp,1 pe

Let’s Walk 271 30.6 30.0 31,360 0.33 0.37 0.00
Sole Brothers 61 22.1 22.8 83 0.76 0.74 0.00
The Glorious Boneyard 59 16.3 18.6 262 0.96 0.91 0.00
The Self-Love Boat 67 63.1 60.0 124 0.00 0.00 0.00
Go Slowly–Work Slowly 91 33.0 31.5 821 0.24 0.29 0.00
The Camel and the
Gyrocopter 52 28.4 24.6 72 0.45 0.65 0.00
Lines in Sand 69 21.4 18.3 89 0.81 0.92 0.00
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Conclusions:

• None of the dispatches is consistent with the exponential law.

• For both the Least Squares method and a more robust `1-method to estimate the parameters, the vast
majority of the dispatches is consistent with the power law.

So, this data supports the power law model in comparison with the more traditional exponential model.

Discussion. A possible reason why comments on some dispatches fit neither the power law nor the exponential
law is that Salopek sometimes replies to the comments, and these replies trigger another wave of comments.
As a result, some observed distributions of comments over time are bimodal or close to bimodal.

6 Conclusions and Future Work

Conclusions. To improve teaching and learning, it is important to know how knowledge propagates. Tradi-
tional models of knowledge propagation are similar to differential-equations-based models of propagation in
physics. Recently, an alternative fractal-motivated power-law model of knowledge propagation was proposed,
that, in several cases, provides a more adequate description of knowledge propagation. In this paper, we
compare this model with the traditional model on the example of the comments to the Out of Eden Walk
project, an ambitious journalistic and educational project aimed at educating the general audience about
different societies around the world, their culture, their history, etc.

It turns out that for the related data, the power law is indeed a more adequate description:

• for the vast majority of dispatches, the dependence of number of comments on time is consistent with
the power law, while

• the differential equations-motivated exponential law is not consistent with any of this data sets.

This shows that the fractal-motivated power law is indeed a more adequate description of knowledge prop-
agation – to be more precise, a more adequate first approximation to describing knowledge propagation.

Possible future work. There are many possibilities to expand our analysis:

• we can further analyze our power law models,

• we can go beyond the power law models and try to get models which are even more adequate for
describing knowledge propagation,

• instead of simply counting comments corresponding to different dispatches, we can also look into the
substance of these comments and dispatches, and finally,

• we can use information beyond web-posted comments.

Let us describe these possibilities one by one.

Possible further analysis of the power law models corresponding to different dispatches. First, it
would be interesting to further analyze our power law results. In our analysis, we simply checked whether the
dependence is described by the power law or not. However, the power laws come with different parameters α.
The larger α, the faster the number of comments decreases with time. It would be interesting to check whether
the values α corresponding to different dispatches depend on the overall number of comments. Based on the
few dispatches that we analyzed, it appears that when we have more initial comments, then the decrease is
slower, but so far, we do not have enough data to rigorously confirm this observation.

Beyond power law models. As we have mentioned earlier, the power law explains the time distribution
of comments only for a little more than a half of dispatches. It is therefore desirable to design models that
would explain the time dependence for all the dispatches – or at least for a large portion of dispatches. There
are two possible ways to get a better fit.



46 L.O. Lerma et al.: Testing a Power Law Model of Knowledge Propagation

One possibility is to consider more complex models. A natural way to do it is to take into account that a
power law is linear in log-log scale, it leads to a linear dependence of ln(r(t)) on ln(t):

ln(r(t)) ≈ ln(A)− α · ln(t);

thus, a natural idea is to see if a quadratic dependence

ln(r(t)) ≈ ln(A)− α · ln(t) + β · (ln(t))2

leads to a better fit.
Another possibility is to take into account some external events that affect the number of comments: for

example, the number of comments spikes when Salopek replies to comments, when he appears on National
Public Radio, or when an article of his is published in the National Geographic magazine.

Probably, both ideas need to be implemented to get a better fit with the observed number of comments
to different dispatches.

Beyond counting the number of comments. In our analysis, we simply counted the number of comments.
It is desirable to also take into account the substance of these comments – and also the substance of the
dispatch.

Our main interest is in the educational applications. From the educational viewpoints, not all comments
are equal:

• some comments simply praise the dispatch, without any explicit indication that the replier learned
something new from it;

• other comments explicitly indicate that the replier learned some new information from the dispatch;

• a few comments go even further, indicating that the replier plans to inform their friends and colleagues
about some material from this dispatch – in particular, some repliers who are teachers plan to use this
material in their classes.

It would be interesting to analyze how the numbers of such “learning” and “teaching” comments changes with
time.

Similarly, not all dispatches are equal. Some topics – e.g., the dispatches about the beasts of burden such
as camels or mules – caused many comments, and these comments come a few days after the dispatch is
posted. On the other hand, other topics cause fewer replies. It would be interesting to analyze which types
of dispatches elicit more comments. This may be useful in teaching, since eliciting comments from students
is a known way to improve their learning.

It is also desirable to use information about the repliers:

• The majority of repliers sign their comments with their names. It would be interesting to trace how
many repliers for each dispatch are new and how many also replied to one or more of the previous
dispatches; this will show how the audience changes in time.

• Some repliers indicate their geographic location. It would be interesting to analyze the geographic
distribution of comments, and to see how the geographic distribution of comments to a given dispatch
depends on the geographic area that is the subject of this dispatch.

Beyond web-based replies. Finally, we should take into consideration that, in addition to comments posted
on the website, repliers also post comments on Twitter, Instagram, and Facebook. It to desirable to analyze
these comments as well.
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